1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications, Wiley, 2005.
doi:10.1002/0471754323
2. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line," IEEE Antennas Wireless Propag. Lett., Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628 Google Scholar
3. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Trans. on Antennas and Propagation, Vol. 63, 5197-5203, 2015.
doi:10.1109/TAP.2015.2477521 Google Scholar
4. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494 Google Scholar
5. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505 Google Scholar
6. Park, J. H., Y. H. Ryu, and J. H. Lee, "Mu zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832 Google Scholar
7. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material inspired 900 electrically tilted ultra-wideband resonator," Opt. Eng., Vol. 53, No. 10, 107104, Oct. 2014, DOI: 10.1117/1.OE.53.10.107104.
doi:10.1117/1.OE.53.10.107104 Google Scholar
8. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked µ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, Mar. 2016.
doi:10.1017/S175907871400138X Google Scholar
9. Xu, H.-X., G.-M. Wang, M.-Q. Qi, C.-X. Zhang, J.-G. Liang, J.-Q. Gong, and Y.-C. Zhou, "Analysis and design of two-dimensional resonant-type composite right left handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298 Google Scholar
10. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409 Google Scholar
11. Lee, H. M., "A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1377-1380, 2011. Google Scholar
12. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, 868-876, 2007.
doi:10.1109/TAP.2007.891845 Google Scholar
13. Liu, C. C., P. L. Chi, and Y. D. Lin, "Compact zeroth-order resonant antenna based on dual-arm spiral configuration," IEEE Antennas Wireless Propag. Lett., Vol. 11, 318-321, 2012.
doi:10.1109/TAP.2011.2167907 Google Scholar
14. Mehdipour, A., T. A. Denidni, and A. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, 555-562, 2014.
doi:10.1109/TAP.2013.2290791 Google Scholar
15. Mishra, N., A. Gupta, and R. K. Chaudhary, "A compact CPW-fed wideband metamaterial antenna using Ω-shaped interdigital capacitor for mobile applications," Microwave and Optical Technology Lett., Vol. 57, 2558-2562, 2015.
doi:10.1002/mop.29402 Google Scholar
16. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dualband antenna," IEEE Antenna Wireless Propag. Lett., Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037 Google Scholar
17. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. on Antennas and Propag., Vol. 62, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788 Google Scholar
18. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. on Antennas and Propag., Vol. 57, 331-338, 2009.
doi:10.1109/TAP.2008.2011230 Google Scholar
19. Nasimuddin, Z., N. Chen, and X. Qing, "Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth," IEEE Trans. on Antennas and Propag., Vol. 61, 3451-3456, 2013.
doi:10.1109/TAP.2013.2256094 Google Scholar
20. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarizations," International Journal of Microwave and Wireless Technologies, 1-11, 2016. Google Scholar
21. Chen, H.-D., C.-Y.-D. Sim, J. Y. Wu, and T.-W. Chiu, "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Trans. on Antennas and Propag., Vol. 60, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116 Google Scholar
22. Wang, H., X. B. Huang, and D. G. Fang, "A single layer wideband U-slot microstrip patch antenna array," IEEE Antenna Wireless Propag. Lett., Vol. 7, 9-12, 2008.
doi:10.1109/LAWP.2007.914122 Google Scholar
23. Sharma, P. and S. Gupta, "Bandwidth and gain enhancement in microstrip antenna array for 8 GHz frequency applications," 2014 Students Conference on Proc. Engineering and Systems (SCES), 1-6, Allahabad, India, May 2014. Google Scholar
24. Palandoken, M., "Microstrip antenna with compact anti-spiral slot resonator for 2.4 GHz energy harvesting applications," Microwave And Optical Technology Letters, Vol. 58, No. 6, 1404-1408, June 2016, DOI: 10.1002/mop.29824.
doi:10.1002/mop.29824 Google Scholar
25. Levine, E., G. Malamud, S. Shtrikman, and D. Treves, "A study of microstrip array antennas with the feed network," IEEE Trans. Antennas Propag., Vol. 37, 426-434, 1989.
doi:10.1109/8.24162 Google Scholar
26. Yeung, S. H., A. G. Lamperez, T. K. Sarkar, and M. S. Palma, "Comparison of the performance between a parasitically coupled and a direct coupled feed for a microstrip antenna array," IEEE Trans. Antennas Propag., Vol. 62, 2813-2818, 2014. Google Scholar
27. Raheem, A. and E. K. I. Hamad, "Design of compact-efficient array of patch based on metamaterial T-junction," Proc. IEEE APS, (MECAP), 1-3, Cairo, Egypt, 2010. Google Scholar
28. Mansouri, Z., A. S. Arezoomand, S. Heydari, and F. B. Zarrabi, "Dual notch UWB fork monopole antenna with CRLH metamaterial load," Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016.
doi:10.2528/PIERC16040711 Google Scholar
29. Lee, H. M., "A compact co-planar waveguide-fed zeroth-order resonant antenna with an improved efficiency and gain employing two symmetric unit cells," Electrical and Electronic Engineering, Vol. 1, No. 1, 12-16, 2011. Google Scholar
30. Kompa, G., Practical Microstrip Design and Applications, Artech House, 2005.
31. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on via-less single layer," IEEE Trans. Antennas Propag., Vol. 59, 363-372, 2011.
doi:10.1109/TAP.2010.2096191 Google Scholar
32. Saravani, S., C. K. Chakrabarty, and N. Md Din, "Compact bandwidth-enhanced center-fed CPW zeroth-order resonant antenna loaded by parasitic element," Progress In Electromagnetics Research Letters, Vol. 66, 1-8, 2017.
doi:10.2528/PIERL16100201 Google Scholar
33. Lee, J.-G., D.-J. Kim, and J.-H. Lee, "Compact penta-band dual ZOR antenna for mobile applications," International Journal of Antennas and Propagation, 2016. Google Scholar
34. Xiu, X. H., W. G. Ming, and G. J. Qiang, "Compact dual-band zeroth-order resonance antenna," Chinese Physics Letters, Vol. 29, No. 1, 014101, 2012.
doi:10.1088/0256-307X/29/1/014101 Google Scholar