Vol. 159
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-05-11
A Compact CPW Fed CRR Loaded Four Element Metamaterial Array Antenna for Wireless Application
By
Progress In Electromagnetics Research, Vol. 159, 15-26, 2017
Abstract
A compact coplanar waveguide (CPW) fed close ring resonator (CRR) loaded four-element metamaterial (MTM) array antenna for wireless application is designed and discussed in this article. The array is designed with corporate feeding network, arranged in a manner to offer 3 dB power at its each element. The proposed 1×4 MTM array antenna offers a fractional bandwidth of 10.18% with respect to the resonance frequency of fr = 2.26 GHz. At the resonance frequency of 2.26 GHz, the proposed 1×4 MTM array antenna offers a gain of 5.10 dBi in the direction of broadside radiation. Each element of the proposed array antenna consists of CRR, which removes the requirement of via and allows the design of a uniplanar MTM array. The overall electrical size of the single element antenna shows compactness of 0.255λ0 × 0.155λ0 × 0.012λ0, where λ0 is the free space wavelength at its resonance frequency of fr = 2.3 GHz. The proposed MTM array antenna is designed, and simulated on ANSYS HFSS 14.0 and simulated results are verified with the fabricated proto-type.
Citation
Naveen Mishra Raghvendra Kumar Chaudhary , "A Compact CPW Fed CRR Loaded Four Element Metamaterial Array Antenna for Wireless Application," Progress In Electromagnetics Research, Vol. 159, 15-26, 2017.
doi:10.2528/PIER17021304
http://www.jpier.org/PIER/pier.php?paper=17021304
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications, Wiley, Hoboken, NJ, 2005.
doi:10.1002/0471754323

2. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line," IEEE Antennas Wireless Propag. Lett., Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628

3. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Trans. on Antennas and Propagation, Vol. 63, 5197-5203, 2015.
doi:10.1109/TAP.2015.2477521

4. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494

5. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

6. Park, J. H., Y. H. Ryu, and J. H. Lee, "Mu zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832

7. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material inspired 900 electrically tilted ultra-wideband resonator," Opt. Eng., Vol. 53, No. 10, 107104, Oct. 2014, DOI: 10.1117/1.OE.53.10.107104.
doi:10.1117/1.OE.53.10.107104

8. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked µ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, Mar. 2016.
doi:10.1017/S175907871400138X

9. Xu, H.-X., G.-M. Wang, M.-Q. Qi, C.-X. Zhang, J.-G. Liang, J.-Q. Gong, and Y.-C. Zhou, "Analysis and design of two-dimensional resonant-type composite right left handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298

10. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

11. Lee, H. M., "A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1377-1380, 2011.

12. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, 868-876, 2007.
doi:10.1109/TAP.2007.891845

13. Liu, C. C., P. L. Chi, and Y. D. Lin, "Compact zeroth-order resonant antenna based on dual-arm spiral configuration," IEEE Antennas Wireless Propag. Lett., Vol. 11, 318-321, 2012.
doi:10.1109/TAP.2011.2167907

14. Mehdipour, A., T. A. Denidni, and A. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, 555-562, 2014.
doi:10.1109/TAP.2013.2290791

15. Mishra, N., A. Gupta, and R. K. Chaudhary, "A compact CPW-fed wideband metamaterial antenna using Ω-shaped interdigital capacitor for mobile applications," Microwave and Optical Technology Lett., Vol. 57, 2558-2562, 2015.
doi:10.1002/mop.29402

16. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dualband antenna," IEEE Antenna Wireless Propag. Lett., Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037

17. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. on Antennas and Propag., Vol. 62, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788

18. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. on Antennas and Propag., Vol. 57, 331-338, 2009.
doi:10.1109/TAP.2008.2011230

19. Nasimuddin, Z., N. Chen, and X. Qing, "Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth," IEEE Trans. on Antennas and Propag., Vol. 61, 3451-3456, 2013.
doi:10.1109/TAP.2013.2256094

20. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarizations," International Journal of Microwave and Wireless Technologies, 1-11, 2016.

21. Chen, H.-D., C.-Y.-D. Sim, J. Y. Wu, and T.-W. Chiu, "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Trans. on Antennas and Propag., Vol. 60, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116

22. Wang, H., X. B. Huang, and D. G. Fang, "A single layer wideband U-slot microstrip patch antenna array," IEEE Antenna Wireless Propag. Lett., Vol. 7, 9-12, 2008.
doi:10.1109/LAWP.2007.914122

23. Sharma, P. and S. Gupta, "Bandwidth and gain enhancement in microstrip antenna array for 8 GHz frequency applications," 2014 Students Conference on Proc. Engineering and Systems (SCES), 1-6, Allahabad, India, May 2014.

24. Palandoken, M., "Microstrip antenna with compact anti-spiral slot resonator for 2.4 GHz energy harvesting applications," Microwave And Optical Technology Letters, Vol. 58, No. 6, 1404-1408, June 2016, DOI: 10.1002/mop.29824.
doi:10.1002/mop.29824

25. Levine, E., G. Malamud, S. Shtrikman, and D. Treves, "A study of microstrip array antennas with the feed network," IEEE Trans. Antennas Propag., Vol. 37, 426-434, 1989.
doi:10.1109/8.24162

26. Yeung, S. H., A. G. Lamperez, T. K. Sarkar, and M. S. Palma, "Comparison of the performance between a parasitically coupled and a direct coupled feed for a microstrip antenna array," IEEE Trans. Antennas Propag., Vol. 62, 2813-2818, 2014.

27. Raheem, A. and E. K. I. Hamad, "Design of compact-efficient array of patch based on metamaterial T-junction," Proc. IEEE APS, (MECAP), 1-3, Cairo, Egypt, 2010.

28. Mansouri, Z., A. S. Arezoomand, S. Heydari, and F. B. Zarrabi, "Dual notch UWB fork monopole antenna with CRLH metamaterial load," Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016.
doi:10.2528/PIERC16040711

29. Lee, H. M., "A compact co-planar waveguide-fed zeroth-order resonant antenna with an improved efficiency and gain employing two symmetric unit cells," Electrical and Electronic Engineering, Vol. 1, No. 1, 12-16, 2011.

30. Kompa, G., Practical Microstrip Design and Applications, Artech House, London, 2005.

31. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on via-less single layer," IEEE Trans. Antennas Propag., Vol. 59, 363-372, 2011.
doi:10.1109/TAP.2010.2096191

32. Saravani, S., C. K. Chakrabarty, and N. Md Din, "Compact bandwidth-enhanced center-fed CPW zeroth-order resonant antenna loaded by parasitic element," Progress In Electromagnetics Research Letters, Vol. 66, 1-8, 2017.
doi:10.2528/PIERL16100201

33. Lee, J.-G., D.-J. Kim, and J.-H. Lee, "Compact penta-band dual ZOR antenna for mobile applications," International Journal of Antennas and Propagation, 2016.

34. Xiu, X. H., W. G. Ming, and G. J. Qiang, "Compact dual-band zeroth-order resonance antenna," Chinese Physics Letters, Vol. 29, No. 1, 014101, 2012.
doi:10.1088/0256-307X/29/1/014101