Vol. 160
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-10-30
High-Resolution Grid-Independent Imaging for Terahertz 2-d Synthetic Aperture Radar with Spatial Under-Sampling
By
Progress In Electromagnetics Research, Vol. 160, 29-39, 2017
Abstract
For the purpose of two-dimensional (2-D) imaging in the Terahertz (THz) near field through 2-D synthetic aperture radar technology, Fourier transform (FT) is one of the most popular imaging ways. However, FT-based algorithms would encounter performance loss either when spatial sampling is under Nyquist frequency or there are off-grid scatterers in the scene of interest. Therefore, by exploiting the theory of matrix enhancement and continuous parameter estimation, we propose to use matrix enhancement and matrix pencil (MEMP) method and matched filter to deal with arbitrarily located scatterers when spatial under-sampling is adopted. Through constructing a specifically expanded matrix, the information of the scatterers involved in the small data set can be enhanced. Then, highresolution grid-independence 2-D imaging can be achieved by the combination of MP and matched filter. Simulation results verify the effectiveness of the proposed algorithm.
Citation
Li Ding, Xi Ding, Yangyang Ye, Sixuan Wu, and Yiming Zhu, "High-Resolution Grid-Independent Imaging for Terahertz 2-d Synthetic Aperture Radar with Spatial Under-Sampling," Progress In Electromagnetics Research, Vol. 160, 29-39, 2017.
doi:10.2528/PIER17040101
References

1. Luukanen, A., R. Appleby, M. Kemp, and N. Salmon, Millimeter-wave and Terahertz Imaging in Security Applications, Springer, Berlin Heidelberg, 2012.
doi:10.1007/978-3-642-29564-5_19

2. Prozheev, I. V., O. A. Smolyanskaya, M. V. Duka, A. A. Ezerskaya, V. V. Orlov, E. A. Strepitov, N. S. Balbekin, and M. K. Khodzi, "Study of penetration depth dispersion of THz radiation in human pathological tissues," PIERS Proceedings, 1536-1539, Guangzhou, August 25–28, 2014.

3. Sheen, D. M., D. L. Mcmakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, 2001.
doi:10.1109/22.942570

4. Zhang, B., Y. Pi, and R. Min, "A near-field 3D circular SAR imaging technique based on spherical wave decomposition," Progress In Electromagnetics Research, Vol. 141, 327-346, 2013.
doi:10.2528/PIER13052011

5. Ding, J., M. Kahl, O. Loffeld, and P. H. Bolivar, "THz 3-D image formation using SAR techniques: Simulation, processing and experimental results," IEEE Transactions on Terahertz Science and Technology, Vol. 3, No. 5, 606-616, 2013.
doi:10.1109/TTHZ.2013.2271298

6. Li, S., C. Li, W. Liu, and Z. Sun, "Study of terahertz superresolution imaging scheme with realtime capability based on frequency scanning antenna," IEEE Transactions on Terahertz Science and Technology, Vol. 6, No. 3, 1-13, 2016.
doi:10.1109/TTHZ.2016.2530945

7. Franceschini, G., et al., "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753

8. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

9. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.

10. Chi, Y., L. L. Scharf, A. Pezeshki, and A. R. Calderbank, "Sensitivity to basis mismatch in compressed sensing," IEEE Transactions on Signal Processing, Vol. 59, No. 5, 2182-2195, 2011.
doi:10.1109/TSP.2011.2112650

11. Tang, G., B. N. Bhaskar, P. Shah, and B. Recht, "Compressed sensing off the grid," IEEE Trans. Inf. Theory, Vol. 59, No. 11, 7465-7490, 2013.
doi:10.1109/TIT.2013.2277451

12. Wang, M., W. Yu, and R. Wang, "Azimuth multichannel SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 141, 497-516, 2013.
doi:10.2528/PIER13052205

13. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

14. Roy, R. and T. Kailath, "Esprit-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

15. Hua, Y. and T. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 38, No. 5, 814-824, 1990.
doi:10.1109/29.56027

16. Hua, Y., "Estimating two-dimensional frequencies by matrix enhancement and matrix pencil," IEEE Transactions on Signal Processing, Vol. 40, No. 9, 2267-2280, 1992.
doi:10.1109/78.157226

17. Zhuge, X. and G. Y. Alexander, "A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 509-518, 2011.
doi:10.1109/TGRS.2010.2053038

18. Zhuge, X. and G. Y. Alexander, "Three-dimensional near-field MIMO array imaging using range migration techniques," IEEE Transactions on Image Processing, Vol. 21, No. 6, 3026-3033, 2012.
doi:10.1109/TIP.2012.2188036