1. Dodgson, N. A., "Autostereoscopic 3D displays," Computer, Vol. 38, No. 8, 31-36, 2005.
doi:10.1109/MC.2005.252 Google Scholar
2. Konrad, J. and M. Halle, "3-D displays and signal processing," IEEE Signal Process. Mag., Vol. 24, No. 6, 97-111, 2007.
doi:10.1109/MSP.2007.905706 Google Scholar
3. Ferroli, P., G. Tringali, F. Acerbi, et al. "Advanced 3-dimensional planning in neurosurgery," Neurosurgery, Vol. 72, No. 1, 54-62, 2013.
doi:10.1227/NEU.0b013e3182748ee8 Google Scholar
4. Lucente, M., "Interactive three-dimensional holographic displays: Seeing the future in depth," ACM Siggraph Computer Graphics, Vol. 31, No. 2, 63-67, 1997.
doi:10.1145/271283.271312 Google Scholar
5. Ta, S., P. A. Blanche, R. Voorakaranam, et al. "An updatable holographic three-dimension," Nature, Vol. 451, No. 7179, 694-698, 2008.
doi:10.1038/nature06596 Google Scholar
6. Wan, W., W. Qiao, W. Huang, et al. "Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD," Optics Express, Vol. 2, No. 2, 1114, 2017.
doi:10.1364/OE.25.001114 Google Scholar
7. Ney, D. R., E. K. Fishman, and D. Magid, "Three-dimensional volumetric display of CT data: Effect of scan parameters upon image quality," Journal of Computer Assisted Tomography, Vol. 15, No. 15, 875-885, 1991.
doi:10.1097/00004728-199109000-00033 Google Scholar
8. Blundell, B. G. and A. J. Schwarz, "The classification of volumetric display systems: Characteristics and predictability of the image space," IEEE Transactions on Visualization & Computer Graphics, Vol. 8, No. 1, 66-75, 2002.
doi:10.1109/2945.981852 Google Scholar
9. Kumagai, K., D. Suzuki, S. Hasegawa, et al. "Volumetric display with holographic parallel optical access and multilayer fluorescent screen," Optics Letters, Vol. 40, No. 14, 3356-3359, 2015.
doi:10.1364/OL.40.003356 Google Scholar
10. Dodgson, N. A., "Analysis of the viewing zone of the Cambridge autostereoscopic display," Applied Optics, Vol. 35, No. 10, 1705-1710, 1996.
doi:10.1364/AO.35.001705 Google Scholar
11. Matusik, W. and H. Pfister, "3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes," ACM Transactions on Graphics, Vol. 23, No. 3, 814-824, 2004.
doi:10.1145/1015706.1015805 Google Scholar
12. Urey, H., K. V. Chellappan, E. Erden, et al. "State of the art in stereoscopic and autostereoscopic displays," Proceedings of the IEEE, Vol. 99, No. 4, 540-555, 2011.
doi:10.1109/JPROC.2010.2098351 Google Scholar
13. Liou, J. C. and F. H. Chen, "Design and fabrication of optical system for time-multiplex autostereoscopic display," Optics Express, Vol. 19, No. 12, 11007-11017, 2011.
doi:10.1364/OE.19.011007 Google Scholar
14. Zeng, X. Y., X. T. Zhou, T. L. Guo, et al. "Crosstalk reduction in large-scale autostereoscopic 3DLED display based on black-stripe occupation ratio," Optics Communications, Vol. 389, 159-164, 2017.
doi:10.1016/j.optcom.2016.12.042 Google Scholar
15. Chen, D., X. Sang, and X. Yu, "Improved halftoning method for autostereoscopic display based on float grid-division multiplexing," Optics Express, Vol. 24, No. 16, 18114, 2016.
doi:10.1364/OE.24.018114 Google Scholar
16. Allison, R. S., B. J. Rogers, and M. F. Bradshaw, "Geometric and induced effects in binocular stereopsis and motion parallax," Vision Research, Vol. 43, No. 17, 1879-1893, 2003.
doi:10.1016/S0042-6989(03)00298-0 Google Scholar
17. Donaldson, J. K., A. J. Weinberger, J. Gagne, et al. "New parallaxes and a convergence analysis for the TW Hya association," Astrophysical Journal, Vol. 833, No. 1, 2016.
doi:10.3847/1538-4357/833/1/95 Google Scholar
18. Johnson, P. V., J. Kim, and M. S. Banks, "Stereoscopic 3D display technique using spatiotemporal interlacing has improved spatial and temporal properties," Optics Express, Vol. 23, No. 7, 9252, 2015.
doi:10.1364/OE.23.009252 Google Scholar
19. Mphepo, W., Y. P. Huang, and H. P. D. Shieh, "Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption," Journal of Display Technology, Vol. 6, No. 2, 60-64, 2009.
doi:10.1109/JDT.2009.2031655 Google Scholar
20. Kim, S. K., K. H. Yoon, S. K. Yoon, et al. "Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display," Optics Express, Vol. 23, No. 10, 13230-13244, 2015.
doi:10.1364/OE.23.013230 Google Scholar
21. Yoon, K. H., H. Ju, H. Kwon, I. Park, et al. "Diffraction effects incorporated design of a parallax barrier for a high-density multi-view autostereoscopic 3D display," Optics Express, Vol. 24, No. 4, 4057, 2016.
doi:10.1364/OE.24.004057 Google Scholar
22. Kim, H., J. Hahn, and H. J. Choi, "Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array," Applied Optics, Vol. 50, No. 11, 1534-1540, 2011.
doi:10.1364/AO.50.001534 Google Scholar
23. Mumberson, S., "Persistence of vision," Computer Science & Communications Dictionary, Vol. 35, No. 1, 44-44, 2004. Google Scholar
24. Fan, H., Y. Zhou, J. Wang, et al. "Full resolution, low crosstalk, and wideviewing angle autostereoscopic display with a hybrid spatial-temporal control using free-form surface backlight unit," Journal of Display Technology, Vol. 11, No. 7, 620-624, 2015.
doi:10.1109/JDT.2015.2425432 Google Scholar
25. Wang, P. C., S. L. Hwang, H. Y. Huang, et al. "System cross-talk and three-dimensional cue issues in autostereoscopic displays," J. Electron. Imaging, Vol. 22, No. 1, 013032, 2013.
doi:10.1117/1.JEI.22.1.013032 Google Scholar
26. Kooi, F. L. and A. Toet, "Visual comfort of binocular and 3D displays," Displays, Vol. 25, No. 2–3, 99-108, 2004.
doi:10.1016/j.displa.2004.07.004 Google Scholar
27. Wang, J., H. Liang, H. Fan, et al. "High-quality autostereoscopic display with spatial and sequential hybrid control," Applied Optics, Vol. 52, No. 35, 8549-8553, 2013.
doi:10.1364/AO.52.008549 Google Scholar
28. Liang, H., S. An, J. Wang, et al. "Optimizing time-multiplexing auto-stereoscopic displays with a genetic algorithm," Journal of Display Technology, Vol. 10, No. 8, 695-699, 2014.
doi:10.1109/JDT.2014.2314138 Google Scholar
29. Zhou, Y., H. Fan, K. Li, et al. "Simulation and control of display uniformity in a backlight illuminated image array," Journal of Display Technology, Vol. 12, No. 7, 355-362, 2016.
doi:10.1109/JDT.2016.2524008 Google Scholar
30. Li, K., H. Fan, J. Wang, et al. "Visual effect of a linear Fresnel lens illuminated with a directional backlight," Journal of the Optical Society of America A, Vol. 33, No. 6, 1155, 2016.
doi:10.1364/JOSAA.33.001155 Google Scholar
31. Jacobs, D. H., "The stiles-crawford effect and the design of telescopes," J. Opt. Soc. Amer., Vol. 34, No. 11, 694-694, 1944.
doi:10.1364/JOSA.34.000694 Google Scholar
32. Moon, P. and D. E. Spencer, "On the stiles-crawford effect," J. Opt. Soc. Amer., Vol. 34, No. 6, 319-329, 1944.
doi:10.1364/JOSA.34.000319 Google Scholar
33. Kong, L., G. Jin, and T. Wang, "Analysis of Moir´e minimization in autostereoscopic parallax displays," Opt. Express, Vol. 21, No. 22, 26068-26079, 2013.
doi:10.1364/OE.21.026068 Google Scholar
34. Saveljev, V. V., J. Y. Son, B. Javidi, et al. "Moire minimization condition in three-dimensional image displays," J. Disp. Technol., Vol. 1, No. 2, 347-353, 2005.
doi:10.1109/JDT.2005.858869 Google Scholar
35. Kim, Y., G. Park, J.-H. Jung, et al. "Color moire pattern simulation and analysis in threedimensionalintegral imaging for finding the moire-reduced tilted angle of a lens array," Appl. Opt., Vol. 48, No. 11, 2178-2187, 2009.
doi:10.1364/AO.48.002178 Google Scholar
36. Zhou, Y., P. Krebs, H. Fan, et al. "Quantitative measurement and control of optical Moir´e pattern in an autostereoscopic liquid crystal display system," Applied Optics, Vol. 54, No. 6, 1521-1527, 2015.
doi:10.1364/AO.54.001521 Google Scholar
37. Zhou, Y., H. Fan, S. An, et al. "Pseudo-random arranged color filter array for controlling moire patterns in display," Optics Express, Vol. 23, No. 23, 29390, 2015.
doi:10.1364/OE.23.029390 Google Scholar
38. Laurent, B., B. Ousman, T. Dzudie, et al. "Digital camera images processing of hard-to-cook beans," Journal of Engineering & Technology Research, Vol. 2, 177-188, 2010. Google Scholar