1. Chan, C. C. and K. T. Chau, Modern Electric Vehicle Technology, Oxford University Press, 2001.
2. Chau, K. T. and C. C. Chan, "Emerging energy-efficient technologies for hybrid electric vehicles," Proceedings of IEEE, Vol. 95, No. 4, 821-835, 2007.
doi:10.1109/JPROC.2006.890114 Google Scholar
3. Yang, Z., F. Shang, I. P. Brown, and M. Krishnamurthy, "Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications," IEEE Transactions on Transportation Electrification, Vol. 1, No. 3, 245-254, 2015.
doi:10.1109/TTE.2015.2470092 Google Scholar
4. Chau, K. T. and W. Li, "Overview of electric machines for electric and hybrid vehicles," International Journal of Vehicle Design, Vol. 64, No. 1, 46-71, 2014.
doi:10.1504/IJVD.2014.057775 Google Scholar
5. Liu, C., K. T. Chau, J. Z. Jiang, and S. Niu, "Comparison of stator-permanent-magnet brushless machines," IEEE Transactions on Magnetics, Vol. 44, No. 11, 4405-4408, 2008.
doi:10.1109/TMAG.2008.2002632 Google Scholar
6. Wu, Z., Z. Q. Zhu, and H. Zhan, "Comparative analysis of partitioned stator flux reversal PM machines having fractional-slot nonoverlapping and integer-slot overlapping windings," IEEE Transactions on Energy Conversion, Vol. 31, No. 2, 776-788, 2016.
doi:10.1109/TEC.2016.2525826 Google Scholar
7. Yu, F., M. Cheng, and K. T. Chau, "Controllability and performance of a nine-Phase FSPM motor under severe five open-phase fault conditions," IEEE Transactions on Energy Conversion, Vol. 31, No. 1, 323-332, 2016.
doi:10.1109/TEC.2015.2486521 Google Scholar
8. Jahns, T., "Getting rare-earth magnets out of EV traction machines: A review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains," IEEE Electrification Magazine, Vol. 5, No. 1, 6-18, 2017.
doi:10.1109/MELE.2016.2644280 Google Scholar
9. Lee, C. H. T., K. T. Chau, C. Liu, D. Wu, and S. Gao, "Quantitative comparison and analysis of magnetless machines with reluctance topologies," IEEE Transactions on Magnetics, Vol. 49, No. 7, 3969-3972, 2013.
doi:10.1109/TMAG.2013.2242862 Google Scholar
10. Lee, C. H. T., K. T. Chau, and C. Liu, "Design and analysis of an electronic-geared magnetless machine for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 11, 6705-6714, 2016.
doi:10.1109/TIE.2016.2582793 Google Scholar
11. Li, X., K. T. Chau, and M. Cheng, "Comparative analysis and experimental verification of an effective permanent-magnet vernier machine," IEEE Transactions on Magnetics, Vol. 51, No. 7, 1-9, 8203009, 2015. Google Scholar
12. Li, W., T. W. Ching, and K. T. Chau, "A hybrid-excited vernier permanent-magnet machine using homopolar topology," IEEE Transactions on Magnetics, 10.1109/TMAG.2017.2707141, 2017. Google Scholar
13. Lee, C. H. T., K. T. Chau, C. Liu, T. W. Ching, and F. Li, "A high-torque magnetless axial-flux doubly salient machine for in-wheel direct drive applications," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1-5, 8202405, 2014. Google Scholar
14. Chau, K. T., Electric Vehicle Machines and Drives — Design, Analysis and Application, Wiley IEEE Press, 2015.
doi:10.1002/9781118752555
15. Liu, C., K. T. Chau, and J. Z. Jiang, "A permanent-magnet hybrid brushless integrated startergenerator for hybrid electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, 4055-4064, 2010.
doi:10.1109/TIE.2010.2044128 Google Scholar
16. Lee, C. H. T., C. Liu, and K. T. Chau, "A magnetless axial-flux machine for range-extended electric vehicle," Energies, Vol. 7, No. 3, 1483-1499, 2014.
doi:10.3390/en7031483 Google Scholar
17. Kulan, M. C., N. J. Baker, and J. D. Widmer, "Design and analysis of compressed windings for a permanent magnet integrated starter generator," IEEE Transactions on Industry Applications, Vol. 53, No. 4, 3371-3378, 2017.
doi:10.1109/TIA.2017.2681976 Google Scholar
18. Kamiya, M., "Development of traction drive motors for the Toyota hybrid system," IEEJ Transactions on Industry Applications, Vol. 126, No. 4, 473-479, 2006.
doi:10.1541/ieejias.126.473 Google Scholar
19. Hoeijmakers, M. and J. Ferreira, "The electric variable transmission," IEEE Transactions on Industry Applications, Vol. 42, No. 4, 1092-1100, 2006.
doi:10.1109/TIA.2006.877736 Google Scholar
20. Mo, L., L. Quan, X. Zhu, Y. Chen, H. Qiu, and K. T. Chau, "Comparison and analysis of fluxswitching permanent-magnet double-rotor machine with 4QT used for HEV," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1-4, 8205804, 2014.
doi:10.1109/TMAG.2014.2331313 Google Scholar
21. Cheng, M., L. Sun, G. Buja, and L. Song, "Advanced electrical machines and machine-based systems for electric and hybrid vehicles," Energies, Vol. 8, No. 9, 9541-9564, 2015.
doi:10.3390/en8099541 Google Scholar
22. Jian, L. and K.-T. Chau, "Design and analysis of a magnetic-geared electronic-continuously variable transmission system using finite element method," Progress In Electromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806 Google Scholar
23. Atallah, K., J. Wang, S. D. Calverley, and S. Duggan, "Design and operation of a magnetic continuously variable transmission," IEEE Transactions on Industry Applications, Vol. 48, No. 4, 1288-1295, 2012.
doi:10.1109/TIA.2012.2199451 Google Scholar
24. Chau, K. T., Energy Systems for Electric and Hybrid Vehicles, The IET, 2016.
25. Wang, C. S., O. H. Stielau, and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, 1308-1314, 2005.
doi:10.1109/TIE.2005.855672 Google Scholar
26. Qiu, C., K. T. Chau, T. W. Ching, and C. Liu, "Overview of wireless charging technologies for electric vehicles," Journal of Asian Electric Vehicles, Vol. 12, No. 1, 1679-1685, 2014.
doi:10.4130/jaev.12.1679 Google Scholar
27. Bi, Z., T. Kan, C. C. Mi, Y. Zhang, Z. Zhao, and G. A. Keoleian, "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Vol. 179, No. 1, 413-425, 2016.
doi:10.1016/j.apenergy.2016.07.003 Google Scholar
28. Zheng, C., J. S. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi, and D. Anderson, "High efficiency contactless power transfer system for electric vehicle battery charging application," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 65-74, 2015.
doi:10.1109/JESTPE.2014.2339279 Google Scholar
29. Qiu, C., K. T. Chau, C. Liu, T. W. Ching, and Z. Zhang, "Modular inductive power transmission system for high misalignment electric vehicle application," Journal of Applied Physics, Vol. 117, No. 17, 1-4, 17B52, 2015. Google Scholar
30. Zaheer, A., H. Hao, G. A. Covic, and D. Kacprzak, "Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging," IEEE Transactions on Power Electronics, Vol. 30, No. 4, 1937-1955, 2015.
doi:10.1109/TPEL.2014.2329693 Google Scholar
31. Liu, C., K. T. Chau, D. Wu, and S. Gao, "Opportunities and challenges of vehicle-to-home, vehicleto-vehicle, and vehicle-to-grid technologies," Proceedings of the IEEE, Vol. 101, No. 11, 2409-2427, 2013.
doi:10.1109/JPROC.2013.2271951 Google Scholar
32. Madawala, U. K. and D. J. Thrimawithana, "A bidirectional inductive power interface for electric vehicles in V2G systems," IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, 4789-4796, 2011.
doi:10.1109/TIE.2011.2114312 Google Scholar
33. Jiang, C., K. T. Chau, C. Liu, and C. H. Lee, "An overview of resonant circuits for wireless power transfer," Energies, Vol. 10, No. 7, 1-20, 894, 2017. Google Scholar
34. Zhou, Y., X. Zhu, W. Lin, and B. Wang, "Study of wireless power and information transmission technology based on the triangular current waveform," IEEE Transactions on Power Electronics, 2017, DOI: 10.1109/TPEL.2017.2678503. Google Scholar
35. Lee, K., Z. Pantic, and S. M. Lukic, "Reflexive field containment in dynamic inductive power transfer systems," IEEE Transactions on Power Electronics, Vol. 29, No. 9, 4592-4602, 2014.
doi:10.1109/TPEL.2013.2287262 Google Scholar
36. Mi, C. C., G. Buja, S. Y. Choi, and C. T. Rim, "Modern advances in wireless power transfer systems for roadway powered electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, 6533-6545, 2016.
doi:10.1109/TIE.2016.2574993 Google Scholar
37. Choi, S. Y., B. W. Gu, S. Y. Jeong, and C. T. Rim, "Advances in wireless power transfer systems for roadway-powered electric vehicles," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 18-36, 2015.
doi:10.1109/JESTPE.2014.2343674 Google Scholar
38. Zhang, Z. and K. T. Chau, "Homogeneous wireless power transfer for move-and-charge," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6213-6220, 2015.
doi:10.1109/TPEL.2015.2414453 Google Scholar
39. Zhang, Z., K. T. Chau, C. Qiu, and C. Liu, "Energy encryption for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 30, No. 9, 5237-5246, 2015.
doi:10.1109/TPEL.2014.2363686 Google Scholar
40. Silva, F. and M. Aragon, "Electromagnetic interferences from electric/hybrid vehicles," URSI General Assembly and Scientific Symposium, 1-4, 2011. Google Scholar
41. Guttowski, S., S. Weber, E. Hoene, W. John, and H. Reichl, "EMC issues in cars with electric drives," IEEE Symposium on Electromagnetic Compatibility, 777-782, 2003. Google Scholar
42. Reuter, M., S. Tenbohlen, and W. Kohler, "The influence of network impedance on conducted disturbances within the high-voltage traction harness of electric vehicles," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 1, 35-43, 2014.
doi:10.1109/TEMC.2013.2273564 Google Scholar
43. Mutoh, N. and M. Kanesaki, "A suitable method for ecovehicles to control surge voltage occurring at motor terminals connected to PWM inverters and to control induced EMI noise," IEEE Transactions on Vehicular Technology, Vol. 57, No. 4, 2089-2098, 2008.
doi:10.1109/TVT.2007.912174 Google Scholar
44. Hamza, D., M. Pahlevaninezhad, and P. K. Jain, "Implementation of a novel digital active EMI technique in a DSP-based DC-DC digital controller used in electric vehicle (EV)," IEEE Transactions on Power Electronics, Vol. 28, No. 7, 3126-3137, 2013.
doi:10.1109/TPEL.2012.2223764 Google Scholar
45. Han, D., C. T. Morris, W. Lee, and B. Sarlioglu, "A case study on common mode electromagnetic interference characteristics of GaN HEMT and Si MOSFET power converters for EV/HEVs," IEEE Transactions on Transportation Electrification, Vol. 3, No. 1, 168-179, 2017.
doi:10.1109/TTE.2016.2622005 Google Scholar
46. Christ, A., M. G. Douglas, J. M. Roman, E. B. Cooper, A. P. Sample, B. H. Waters, J. R. Smith, and N. Kuster, "Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 2, 265-274, 2013. Google Scholar
47. Chen, X., A. E. Umenei, D. W. Baarman, N. Chavannes, V. D. Santis, J. R. Mosig, and N. Kuster, "Human exposure to close-range resonant wireless power transfer systems as a function of design parameters," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 5, 1027-1034, 2014.
doi:10.1109/TEMC.2014.2308013 Google Scholar
48. Ding, P., L. Bernard, L. Pichon, and A. Razek, "Evaluation of electromagnetic fields in human body exposed to wireless inductive charging system," IEEE Transactions on Magnetics, Vol. 50, No. 2, 1-4, 7025704, 2014.
doi:10.1109/TMAG.2013.2273366 Google Scholar
49. Kim, S., H. H. Park, J. Kim, J. Kim, and S. Ahn, "Design and analysis of a resonant reactive shield for a wireless power electric vehicle," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 1057-1066, 2014.
doi:10.1109/TMTT.2014.2305404 Google Scholar
50. Choi, S. Y., B. W. Gu, S. W. Lee, W. Y. Lee, J. Huh, and C. T. Rim, "Generalized active EMF cancel methods for wireless electric vehicles," IEEE Transactions on Power Electronics, Vol. 29, No. 11, 5770-5783, 2014.
doi:10.1109/TPEL.2013.2295094 Google Scholar
51. Hofmann, H. and S. R. Sanders, "Synchronous reluctance motor/alternator for flywheel energy storage systems," IEEE Power Electronics in Transportation Workshop, 199-206, 1996.
doi:10.1109/PET.1996.565929 Google Scholar
52. Tsao, P., M. Senesky, and S. Sanders, "An integrated flywheel energy storage system with homopolar inductor motor/generator and high-frequency drive," IEEE Transactions on Industry Applications, Vol. 39, No. 6, 1710-1725, 2003.
doi:10.1109/TIA.2003.818992 Google Scholar
53. Severson, E., R. Nilssen, T. Undeland, and N. Mohan, "Outer-rotor AC homopolar motors for flywheel energy storage," IET International Conference on Power Electronics, Machines and Drives, 1-6, 2014. Google Scholar
54. Bachovchin, K. D., J. F. Hoburg, and R. F. Post, "Stable levitation of a passive magnetic bearing," IEEE Transactions on Magnetics, Vol. 49, No. 1, 609-617, 2013.
doi:10.1109/TMAG.2012.2209123 Google Scholar
55. Khoo, W. K. S., K. Kalita, S. D. Garvey, R. J. Hill-Cottingham, D. Rodger, and J. F. Eastham, "Active axial-magnetomotive force parallel-airgap serial flux magnetic bearings," IEEE Transactions on Magnetics, Vol. 46, No. 7, 2596-2602, 2010.
doi:10.1109/TMAG.2010.2042456 Google Scholar
56. Sun, B., T. Dragicevic, F. D. Freijedo, J. C. Vasquez, and J. M. Guerrero, "A control algorithm for electric vehicle fast charging stations equipped with flywheel energy storage systems," IEEE Transactions on Power Electronics, Vol. 31, No. 9, 6674-6685, 2016.
doi:10.1109/TPEL.2015.2500962 Google Scholar
57. Li, W., K. T. Chau, T. W. Ching, Y. Wang, and M. Chen, "Design of a high-speed superconducting bearingless machine for flywheel energy storage systems," IEEE Transactions on Applied Superconductivity, Vol. 25, No. 3, 1-4, 5700204, 2015. Google Scholar
58. Mukoyama, S., K. Nakao, H. Sakamoto, T. Matsuoka, K. Nagashima, M. Ogata, T. Yamashita, Y. Miyazaki, K. Miyazaki, T. Maeda, and H. Shimizu, "Development of superconducting magnetic bearing for 300 kW flywheel energy storage system," IEEE Transactions on Applied Superconductivity, Vol. 27, No. 4, 1-4, 3600804, 2017.
doi:10.1109/TASC.2017.2652327 Google Scholar
59. Lenz, J. and S. Edelstein, "Magnetic sensors and their applications," IEEE Sensors Journal, Vol. 6, No. 3, 631-649, 2006.
doi:10.1109/JSEN.2006.874493 Google Scholar
60. Cheung, S. Y., S. Coleri, B. Dundar, S. Ganesh, C. W. Tan, and P. Varaiya, "Traffic measurement and vehicle classification with a single magnetic sensor," California PATH Program, University of California, Berkeley, UCB-ITS-PWP-2004-7, 2004. Google Scholar
61. Zhu, H. and F. Yu, "A cross-correlation technique for vehicle detections in wireless magnetic sensor network roadside sensors for vehicle counting, classification, and speed measurement," IEEE Sensors Journal, Vol. 16, No. 11, 4484-4494, 2016.
doi:10.1109/JSEN.2016.2523601 Google Scholar
62. Sifuentes, E., O. Casas, and R. Pallas-Areny, "Wireless magnetic sensor node for vehicle detection with optical wake-up," IEEE Sensors Journal, Vol. 11, No. 8, 1669-1676, 2011.
doi:10.1109/JSEN.2010.2103937 Google Scholar
63. Wei, Q. and B. Yang, "Adaptable vehicle detection and speed estimation for changeable urban traffic with anisotropic magnetoresistive sensors," IEEE Sensors Journal, Vol. 17, No. 7, 2021-2028, 2017.
doi:10.1109/JSEN.2017.2654501 Google Scholar
64. Brauhn, T. J., M. Sheng, B. A. Dow, H. Nogawa, and R. D. Lorenz, "Module-integrated GMRbased current sensing for closed-loop control of a motor drive," IEEE Transactions on Industry Applications, Vol. 53, No. 1, 222-231, 2017.
doi:10.1109/TIA.2016.2614771 Google Scholar
65. Niu, H. and R. D. Lorenz, "Sensing power MOSFET junction temperature using gate drive turn-on current transient properties," IEEE Transactions on Industry Applications, Vol. 52, No. 2, 1677-1687, 2016.
doi:10.1109/TIA.2015.2497202 Google Scholar
66. Liu, Z., G. Tian, W. Cao, X. Dai, B. Shaw, and R. Lambert, "Non-invasive load monitoring of induction motor drives using magnetic flux sensors," IET Power Electronics, Vol. 16, No. 2, 189-195, 2017.
doi:10.1049/iet-pel.2016.0304 Google Scholar