1. Lindelli, V., A. Sihvola, S. Tretyakov, et al. Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.
2. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467
3. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407, 2009.
doi:10.1103/PhysRevB.79.035407
4. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarize waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904
5. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.
doi:10.2528/PIER11032601
6. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.
doi:10.1063/1.3574909
7. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
doi:10.2528/PIERM12070403
8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
doi:10.2528/PIER13011202
9. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 10, 1593-1593, 2010.
doi:10.1364/OL.35.001593
10. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, No. 16, 11802-11807, 2008.
doi:10.1364/OE.16.011802
11. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 16, 167401, 2006.
doi:10.1103/PhysRevLett.97.167401
12. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Lett., Vol. 7, No. 7, 1996-1999, 2007.
doi:10.1021/nl0707961
13. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104(5), 2009.
doi:10.1103/PhysRevB.80.153104
14. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Phys. Rev. A, Vol. 82, 053811, 2010.
doi:10.1103/PhysRevA.82.053811
15. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131
16. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, 209-215, 2013.
doi:10.1007/s00339-013-7546-1
17. Cong, L., W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, "A perfect metamaterial polarization rotator," Appl. Phys. Lett., Vol. 103, No. 17, 171107, 2013.
doi:10.1063/1.4826536
18. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, 1850-1858, 2013.
doi:10.1080/09205071.2013.825891
19. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 21907-3, 2011.
doi:10.1063/1.3664774
20. Han, J., H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, "An ultrathin twiststructure polarization transformer based on fish-scale metallic wires," Appl. Phys. Lett., Vol. 98, No. 15, 151908, 2011.
doi:10.1063/1.3580608
21. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
doi:10.1364/OE.20.016050
22. Song, K., X. Zhao, Y. Liu, Q. Fu, and C. Luo, "A frequency-tunable 90-polarization rotation device using composite chiral metamaterials," Appl. Phys. Lett., Vol. 103, 101908, 2013.
doi:10.1063/1.4820810
23. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.
doi:10.2528/PIER13093009
24. Wu, L., Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, "Circular polarization converters based on bi-layered asymmetrical split ring metamaterials," Appl. Phys. A, Vol. 116, No. 2, 643-648, 2014.
doi:10.1007/s00339-014-8252-3
25. Yogesh, N. F., T. Lan, and F. Ouyang, "Far-infrared circular polarization and polarization filtering based on Fermat’s spiral chiral metamaterial," IEEE Photonics Journal, Vol. 7, No. 3, 1-12, 2015.
doi:10.1109/JPHOT.2015.2423291
26. Ma, X., Z. Xiao, and D. Liu, "Dual-band cross polarization converter in bi layered complementary chiral metamaterial," Journal of Modern Optics, Vol. 63, No. 10, 937-940, 2016.
doi:10.1080/09500340.2015.1111454
27. Tang, J., Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, "Cross polarization conversion based on a new chiral spiral slot structure in THz region," Opt. Quant. Electron., Vol. 48, 111, 2016.
doi:10.1007/s11082-016-0407-3
28. Xu, K.-K., Z.-Y. Xiao, J.-Y. Tang, D.-J. Liu, and Z.-H. Wang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.
doi:10.1016/j.physe.2016.03.015
29. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902
30. Kang, M., J. Chen, H. Cui, Y. Li, and H. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, 8347, 2011.
doi:10.1364/OE.19.008347
31. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial," Opt. Express, Vol. 19, 14290-9, 2011.
32. Novitsky, A. V., V. M. Galynsky, et al. "Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach," Phys. Rev. B, Vol. 86, No. 7, 075138, 2012.
doi:10.1103/PhysRevB.86.075138
33. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905
34. Shi, J. H., X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, 191905, 2013.
doi:10.1063/1.4805075
35. Xu, Y., Q. Shi, Z. Zhu, and J. Shi, "Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial," Opt. Express, Vol. 22, No. 21, 25679-25688, 2014.
doi:10.1364/OE.22.025679
36. Han, S., H. Yang, L. Guo, X. Huang, and B. Xiao, "Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials," J. Opt., Vol. 16, No. 3, 035105, 2014.
doi:10.1088/2040-8978/16/3/035105
37. Zhou, Z. and H. Yang, "Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial," Appl. Phys. A, Vol. 119, No. 1, 115-119, 2015.
doi:10.1007/s00339-015-8983-9
38. Wang, Y. H., J. Shao, J. Li, Z. Liu, J. Li, Z. G. Dong, and Y. Zhai, "Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure," J. Appl. Phys., Vol. 117, No. 17, 173102, 2015.
doi:10.1063/1.4919752
39. Liu, D., Z. Xiao, X. Ma, and Z. Wang, "Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking," Appl. Phys. Express, Vol. 8, No. 5, 052001, 2015.
doi:10.7567/APEX.8.052001
40. Wang, C., D. F. Tang, J. F. Dong, M. H. Li, and W. K. Pan, "Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band," Opt. Express, Vol. 25, No. 10, 11329-11339, 2017.
doi:10.1364/OE.25.011329
41. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.
doi:10.1039/C6NR00058D
42. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to fabry-perot-like cavity," Opt. Express, Vol. 22, 11707-11712, 2014.
doi:10.1364/OE.22.011707
43. Xiao, Z.-Y., D.-J. Liu, X.-L. Ma, and Z.-H. Wang, "Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators," Opt. Express, Vol. 23, No. 6, 7053-7061, 2015.
doi:10.1364/OE.23.007053
44. Liu, Y., S. Xia, H. Shi, A. Zhang, and Z. Xu, "Efficient dual-band asymmetric transmission of linearly polarized wave using a chiral metamaterial," Progress In Electromagnetics Research C, Vol. 73, 55-64, 2017.
doi:10.2528/PIERC17011602
45. Shang, X.-J., X. Zhai, L.-L. Wang, M.-D. He, Q. Li, X. Luo, and H.-G. Duan, "Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces," Appl. Phys. Express, Vol. 10, 052602, 2017.
doi:10.7567/APEX.10.052602
46. Wang, H.-B., X. Zhou, D.-F. Tang, and J.-F. Dong, "Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry-Perot-like resonators," Journal of Modern Optics, Vol. 7, 1-10, 2017.
doi:10.1080/09500340.2016.1200682
47. Cheng, Y., R. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, 1113-1120, 2016.
48. Huang, X., B. Xiao, D. Yang, and H. Yang, "Ultra-broadband 90◦ polarization rotator based on bi-anisotropic metamaterial," Optics Communications, Vol. 338, 416-421, Mar. 1, 2015.
49. Cheng, Y., W. Withayachumnankul, A. Upadhyay, H. Daniel, Y. Nie, R. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra-broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 19, 181111, 2014.
doi:10.1063/1.4901272
50. Zhao, J. and Y. Cheng, "A high-efficiency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Appl. Phys. B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6
51. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399
52. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501
53. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104