Vol. 160
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-01-18
Ultrabroadband Diode-Like Asymmetric Transmission and High-Efficiency Cross-Polarization Conversion Based on Composite Chiral Metamaterial
By
Progress In Electromagnetics Research, Vol. 160, 89-101, 2017
Abstract
In this paper, a three layer composite chiral metamaterial (CCMM) is proposed to achieve diode-like asymmetric transmission and high-efficiency cross-polarization conversion by 90° polarization rotation with ultrabroadband range simultaneously in microwave region, which was verified by simulation and experiment. This CCMM is composed of a disk-split-ring (DSR) structure sandwiched between two twisted sub-wavelength metal grating structures. The simulation agrees well with experiment in principle. The simulation results indicate that the incident y(x)-polarized wave propagation along the -z (+z) direction through the CCMM slab is still linearly polarized wave with high purity, but the polarization direction is rotated by ± 90°, and the polarization conversion ratio (PCR) is greater than 90% in the frequency range of 4.36-14.91 GHz. In addition, in the above frequency range, the asymmetric transmission coefficient (Δlin) and the total transmittance (Tx) for x-polarized wave propagation along the -z axis direction are both over 0.8. Finally, the above experiment and simulation results were further verified by the electric field distribution characteristics of the CCMM unit-cell structure. Our design will provide an important reference for the practical applications of the CCMM for polarization manipulation.
Citation
Yongzhi Cheng, Jing-Cheng Zhao, Xuesong Mao, and Rongzhou Gong, "Ultrabroadband Diode-Like Asymmetric Transmission and High-Efficiency Cross-Polarization Conversion Based on Composite Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 160, 89-101, 2017.
doi:10.2528/PIER17091303
References

1. Lindelli, V., A. Sihvola, S. Tretyakov, et al. Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.

2. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467        Google Scholar

3. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407, 2009.
doi:10.1103/PhysRevB.79.035407        Google Scholar

4. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarize waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904        Google Scholar

5. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.
doi:10.2528/PIER11032601        Google Scholar

6. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.
doi:10.1063/1.3574909        Google Scholar

7. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
doi:10.2528/PIERM12070403        Google Scholar

8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
doi:10.2528/PIER13011202        Google Scholar

9. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 10, 1593-1593, 2010.
doi:10.1364/OL.35.001593        Google Scholar

10. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, No. 16, 11802-11807, 2008.
doi:10.1364/OE.16.011802        Google Scholar

11. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 16, 167401, 2006.
doi:10.1103/PhysRevLett.97.167401        Google Scholar

12. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Lett., Vol. 7, No. 7, 1996-1999, 2007.
doi:10.1021/nl0707961        Google Scholar

13. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104(5), 2009.
doi:10.1103/PhysRevB.80.153104        Google Scholar

14. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Phys. Rev. A, Vol. 82, 053811, 2010.
doi:10.1103/PhysRevA.82.053811        Google Scholar

15. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131        Google Scholar

16. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, 209-215, 2013.
doi:10.1007/s00339-013-7546-1        Google Scholar

17. Cong, L., W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, "A perfect metamaterial polarization rotator," Appl. Phys. Lett., Vol. 103, No. 17, 171107, 2013.
doi:10.1063/1.4826536        Google Scholar

18. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, 1850-1858, 2013.
doi:10.1080/09205071.2013.825891        Google Scholar

19. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 21907-3, 2011.
doi:10.1063/1.3664774        Google Scholar

20. Han, J., H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, "An ultrathin twiststructure polarization transformer based on fish-scale metallic wires," Appl. Phys. Lett., Vol. 98, No. 15, 151908, 2011.
doi:10.1063/1.3580608        Google Scholar

21. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
doi:10.1364/OE.20.016050        Google Scholar

22. Song, K., X. Zhao, Y. Liu, Q. Fu, and C. Luo, "A frequency-tunable 90-polarization rotation device using composite chiral metamaterials," Appl. Phys. Lett., Vol. 103, 101908, 2013.
doi:10.1063/1.4820810        Google Scholar

23. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.
doi:10.2528/PIER13093009        Google Scholar

24. Wu, L., Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, "Circular polarization converters based on bi-layered asymmetrical split ring metamaterials," Appl. Phys. A, Vol. 116, No. 2, 643-648, 2014.
doi:10.1007/s00339-014-8252-3        Google Scholar

25. Yogesh, N. F., T. Lan, and F. Ouyang, "Far-infrared circular polarization and polarization filtering based on Fermat’s spiral chiral metamaterial," IEEE Photonics Journal, Vol. 7, No. 3, 1-12, 2015.
doi:10.1109/JPHOT.2015.2423291        Google Scholar

26. Ma, X., Z. Xiao, and D. Liu, "Dual-band cross polarization converter in bi layered complementary chiral metamaterial," Journal of Modern Optics, Vol. 63, No. 10, 937-940, 2016.
doi:10.1080/09500340.2015.1111454        Google Scholar

27. Tang, J., Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, "Cross polarization conversion based on a new chiral spiral slot structure in THz region," Opt. Quant. Electron., Vol. 48, 111, 2016.
doi:10.1007/s11082-016-0407-3        Google Scholar

28. Xu, K.-K., Z.-Y. Xiao, J.-Y. Tang, D.-J. Liu, and Z.-H. Wang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.
doi:10.1016/j.physe.2016.03.015        Google Scholar

29. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902        Google Scholar

30. Kang, M., J. Chen, H. Cui, Y. Li, and H. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, 8347, 2011.
doi:10.1364/OE.19.008347        Google Scholar

31. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial," Opt. Express, Vol. 19, 14290-9, 2011.        Google Scholar

32. Novitsky, A. V., V. M. Galynsky, et al. "Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach," Phys. Rev. B, Vol. 86, No. 7, 075138, 2012.
doi:10.1103/PhysRevB.86.075138        Google Scholar

33. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905        Google Scholar

34. Shi, J. H., X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, 191905, 2013.
doi:10.1063/1.4805075        Google Scholar

35. Xu, Y., Q. Shi, Z. Zhu, and J. Shi, "Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial," Opt. Express, Vol. 22, No. 21, 25679-25688, 2014.
doi:10.1364/OE.22.025679        Google Scholar

36. Han, S., H. Yang, L. Guo, X. Huang, and B. Xiao, "Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials," J. Opt., Vol. 16, No. 3, 035105, 2014.
doi:10.1088/2040-8978/16/3/035105        Google Scholar

37. Zhou, Z. and H. Yang, "Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial," Appl. Phys. A, Vol. 119, No. 1, 115-119, 2015.
doi:10.1007/s00339-015-8983-9        Google Scholar

38. Wang, Y. H., J. Shao, J. Li, Z. Liu, J. Li, Z. G. Dong, and Y. Zhai, "Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure," J. Appl. Phys., Vol. 117, No. 17, 173102, 2015.
doi:10.1063/1.4919752        Google Scholar

39. Liu, D., Z. Xiao, X. Ma, and Z. Wang, "Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking," Appl. Phys. Express, Vol. 8, No. 5, 052001, 2015.
doi:10.7567/APEX.8.052001        Google Scholar

40. Wang, C., D. F. Tang, J. F. Dong, M. H. Li, and W. K. Pan, "Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band," Opt. Express, Vol. 25, No. 10, 11329-11339, 2017.
doi:10.1364/OE.25.011329        Google Scholar

41. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.
doi:10.1039/C6NR00058D        Google Scholar

42. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to fabry-perot-like cavity," Opt. Express, Vol. 22, 11707-11712, 2014.
doi:10.1364/OE.22.011707        Google Scholar

43. Xiao, Z.-Y., D.-J. Liu, X.-L. Ma, and Z.-H. Wang, "Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators," Opt. Express, Vol. 23, No. 6, 7053-7061, 2015.
doi:10.1364/OE.23.007053        Google Scholar

44. Liu, Y., S. Xia, H. Shi, A. Zhang, and Z. Xu, "Efficient dual-band asymmetric transmission of linearly polarized wave using a chiral metamaterial," Progress In Electromagnetics Research C, Vol. 73, 55-64, 2017.
doi:10.2528/PIERC17011602        Google Scholar

45. Shang, X.-J., X. Zhai, L.-L. Wang, M.-D. He, Q. Li, X. Luo, and H.-G. Duan, "Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces," Appl. Phys. Express, Vol. 10, 052602, 2017.
doi:10.7567/APEX.10.052602        Google Scholar

46. Wang, H.-B., X. Zhou, D.-F. Tang, and J.-F. Dong, "Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry-Perot-like resonators," Journal of Modern Optics, Vol. 7, 1-10, 2017.
doi:10.1080/09500340.2016.1200682        Google Scholar

47. Cheng, Y., R. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, 1113-1120, 2016.        Google Scholar

48. Huang, X., B. Xiao, D. Yang, and H. Yang, "Ultra-broadband 90◦ polarization rotator based on bi-anisotropic metamaterial," Optics Communications, Vol. 338, 416-421, Mar. 1, 2015.        Google Scholar

49. Cheng, Y., W. Withayachumnankul, A. Upadhyay, H. Daniel, Y. Nie, R. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra-broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 19, 181111, 2014.
doi:10.1063/1.4901272        Google Scholar

50. Zhao, J. and Y. Cheng, "A high-efficiency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Appl. Phys. B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6        Google Scholar

51. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399        Google Scholar

52. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501        Google Scholar

53. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104        Google Scholar