Vol. 161
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-02-28
Design and Implementation of High Efficiency and Broadband Transmission-Type Polarization Converter Based on Diagonal Split-Ring Resonator
By
Progress In Electromagnetics Research, Vol. 161, 1-10, 2018
Abstract
In this paper, the design and implementation of a three-layer linear polarization converter having broadband and asymmetric transmission (AT) properties is demonstrated. A 3.2 mm thick transmission-type polarization converter with two separate operating frequency bands is obtained with a cut-wire sandwiched by two layers of diagonal split-ring resonator (DSRR). The asymmetric transmission property can be realized by rotating the upper and lower DSRR dislocation, and its physical mechanism can be explicated by the Fabry-Pérot-like interference effect. Experimental results are presented and compared to numerical simulations, and they demonstrate that the proposed polarization converter has a significantly polarization conversion ratio over 0.8 in frequency bandwidths 8-11 GHz and 17-21 GHz for the forward and backward incidences. The proposed polarization converter has a great potential to be used as an asymmetric transmission radome or diode-like device in microwave domain.
Citation
Rui Zhao Hai-Yan Chen Linbo Zhang Fengxia Li Peiheng Zhou Jianliang Xie Long-Jiang Deng , "Design and Implementation of High Efficiency and Broadband Transmission-Type Polarization Converter Based on Diagonal Split-Ring Resonator," Progress In Electromagnetics Research, Vol. 161, 1-10, 2018.
doi:10.2528/PIER17110604
http://www.jpier.org/PIER/pier.php?paper=17110604
References

1. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 16, 167401, 2006.
doi:10.1103/PhysRevLett.97.167401

2. Ma, X., C. Huang, M. Pu, Y. Wang, and Z. Zhao, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901, 2012.
doi:10.1063/1.4756901

3. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial," Opt. Express, Vol. 19, No. 15, 14290-14299, 2011.
doi:10.1364/OE.19.014290

4. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.
doi:10.1039/C6NR00058D

5. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104, 2009.
doi:10.1103/PhysRevB.80.153104

6. Ozer, Z., et al., "Asymmetric transmission of linearly polarized light through dynamic chiral metamaterials in a frequency regime of gigahertz-terahertz," Optical Engineering, Vol. 53, No. 7, 075109-075109, 2014.
doi:10.1117/1.OE.53.7.075109

7. Wang, F., A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, "Polarization conversion with elliptical patch nanoantennas," Appl. Phys. Lett., Vol. 101, 023101, 2012.
doi:10.1063/1.4731792

8. Liu, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Elec. Letters, Vol. 38, No. 23, 1414-1416, 2002.
doi:10.1049/el:20020977

9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterialabsorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

10. Kundtz, N. and D. R. Smith, "Extreme-angle broadband metamaterial lens," Nat. Mater., Vol. 9, 129-132, 2010.
doi:10.1038/nmat2610

11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

12. Huang, L., X. Chen, H. M¨uhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Lett., Vol. 12, No. 11, 5750-5755, 2012.
doi:10.1021/nl303031j

13. Altintas, O., et al., "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, Vol. 31, No. 30, 1750274, 2017.
doi:10.1142/S0217984917502748

14. Cheng, Y., et al., "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Applied Physics A, Vol. 111, No. 1, 209-215, 2013.
doi:10.1007/s00339-013-7546-1

15. Cheng, Y., et al., "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501

16. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik-International Journal for Light and Electron Optics, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006

17. Fang, C., et al., "Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface," Optik-International Journal for Light and Electron Optics, Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002

18. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, No. 6, 063908, 2007.
doi:10.1103/PhysRevLett.99.063908

19. Ye, Y. and S. He, "90◦ polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, No. 20, 203501, 2010.
doi:10.1063/1.3429683

20. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

21. Zhu, W., I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, "Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration," J. Opt., Vol. 15, No. 12, 125101, 2013.
doi:10.1088/2040-8978/15/12/125101

22. Serebryannikov, A. E., M. Beruete, M. Mutlu, and E. Ozbay, "Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling," Opt. Express, Vol. 23, No. 10, 13517-13529, 2015.
doi:10.1364/OE.23.013517

23. Markovich, D., A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. Lavrinenko, "Metamaterial polarization converter analysis: limits of performance," Appl. Phys. B, Vol. 112, No. 2, 143-152, 2013.
doi:10.1007/s00340-013-5383-8

24. Serebryannikov, A. E., M. Mutlu, and E. Ozbay, "Dielectric inspired scaling of polarization conversion subwavelength resonances in open ultrathin chiral structures," Appl. Phys. Lett., Vol. 107, No. 22, 221907, 2015.
doi:10.1063/1.4936603

25. Dong, G. X., et al., "Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes," Chinese Physics B, Vol. 25, No. 8, 084202, 2016.
doi:10.1088/1674-1056/25/8/084202

26. Zhao, J. C. and Y. Z. Cheng, "A high-effciency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6

27. Cheng, Y. Z., et al., "Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical," IEEE Photonics Journal, Vol. 8, No. 6, 1-9, 2016.
doi:10.1109/JPHOT.2016.2624559

28. Aieta, F., P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities," Nano Lett., Vol. 12, No. 3, 1702-1706, 2012.
doi:10.1021/nl300204s

29. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Lett., Vol. 8, 2940, 2008.
doi:10.1021/nl801794d

30. Menzel, C., C. Helgert, C. Rockstuhl, E. B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902

31. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907, 2011.
doi:10.1063/1.3664774

32. Stolarek, M., D. Yavorskiy, R. Kotynski, C. J. Zapata Rodrıguez, J. Lusakowski, and T. Szoplik, "Asymmetric transmission of terahertz radiation through a double grating," Opt. Lett., Vol. 38, No. 6, 839-841, 2013.
doi:10.1364/OL.38.000839

33. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, No. 21, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905

34. Zhang, L., P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. li, J. Xie, and L. Deng, "Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K-band," Sci. Reports, Vol. 10, No. 1038, 33826, 2016.
doi:10.1038/srep33826

35. Cheng, Y. Z., R. Z. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for teraherze waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4

36. Kang, M., J. Chen, H. X. Cui, Y. Li, and H. T. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, No. 9, 8347-8356, 2011.
doi:10.1364/OE.19.008347

37. Shi, J. H., X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, No. 19, 191905, 2013.
doi:10.1063/1.4805075

38. Wang, Y. H., J. Shao, J. Li, M. J. Zhu, J. Q. Li, L. Zhou, and Z. G. Dong, "Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials," J. Phys. D: Appl. Phys., Vol. 48, 485306, 2015.
doi:10.1088/0022-3727/48/48/485306

39. Wang, Y. H., et al., "Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure," J. Appl. Phys., Vol. 117, No. 17, 173102-1-173102-7, 2015.

40. Liu, D. J., Z. Y. Xiao, X. L. Ma, and Z. H. Wang, "Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking," Appl. Phys. Express, Vol. 8, No. 5, 052001, 2015.
doi:10.7567/APEX.8.052001