1. Priolo, F., T. Gregorkiewicz, M. Galli, and T. F. Krauss, "Silicon nanostructures for photonics and photovoltaics," Nature Nanotechnology, Vol. 9, 19, 2014.
doi:10.1038/nnano.2013.271 Google Scholar
2. Chan, C. K., H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "Highperformance lithium battery anodes using silicon nanowires," Nature Nanotechnology, Vol. 3, 31, 2007.
doi:10.1038/nnano.2007.411 Google Scholar
3. Peng, F., Y. Su, Y. Zhong, C. Fan, S.-T. Lee, and Y. He, "Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy," Accounts Chem. Res., Vol. 47, No. 2, 612-623, 2014.
doi:10.1021/ar400221g Google Scholar
4. Liu, J., F. Erogbogbo, K.-T. Yong, L. Ye, J. Liu, R. Hu, H. Chen, Y. Hu, Y. Yang, J. Yang, I. Roy, N. A. Karker, M. T. Swihart, and P. N. Prasad, "Assessing clinical prospects of silicon quantum dots: Studies in mice and monkeys," ACS Nano, 2013. Google Scholar
5. Anglin, E. J., L. Y. Cheng, W. R. Freeman, and M. J. Sailor, "Porous silicon in drug delivery devices and materials," Adv. Drug Deliver Rev., Vol. 60, No. 11, 1266-1277, 2008.
doi:10.1016/j.addr.2008.03.017 Google Scholar
6. Cheng, X., S. B. Lowe, P. J. Reece, and J. J. Gooding, "Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications," Chem. Soc. Rev., Vol. 43, No. 8, 2680-2700, 2014.
doi:10.1039/C3CS60353A Google Scholar
7. McVey, B. F. and R. D. Tilley, "Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals," Acc Chem. Res., Vol. 47, No. 10, 3045-3051, 2014.
doi:10.1021/ar500215v Google Scholar
8. Uhlir, A., "Electrolytic Shaping of Germanium and silicon," Bell Syst. Tech. J., Vol. 35, 333-347, 1956.
doi:10.1002/j.1538-7305.1956.tb02385.x Google Scholar
10. Lin, V. S.-Y., K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous siliconbased optical interferometric biosensor," Science, Vol. 278, No. 5339, 840-843, 1997.
doi:10.1126/science.278.5339.840 Google Scholar
11. Jane, A., R. Dronov, A. Hodges, and N. H. Voelcker, "Porous silicon biosensors on the advance," Trends Biotechnol., Vol. 27, 230-239, 2009.
doi:10.1016/j.tibtech.2008.12.004 Google Scholar
12. Dhanekar, S. and S. Jain, "Porous silicon biosensor: Current status," Biosensors and Bioelectronics, Vol. 41, 54-64, 2013.
doi:10.1016/j.bios.2012.09.045 Google Scholar
13. Harraz, F. A., "Porous silicon chemical sensors and biosensors: A review," Sensors and Actuators B: Chemical, Vol. 202, 897-912, 2014.
doi:10.1016/j.snb.2014.06.048 Google Scholar
14. Shtenberg, G. and E. Segal, "Porous silicon optical biosensors," Handbook of Porous Silicon, L. Canham (ed.), 857-868, Springer, Switzerland, 2014. Google Scholar
15. Fathauer, R. W., T. George, A. Ksendzov, and R. P. Vasquez, "Visible luminescence from silicon wafers subjected to stain etches," Applied Physics Letters, Vol. 60, No. 8, 995-997, 1992.
doi:10.1063/1.106485 Google Scholar
16. Pyatilova, O. V., S. A. Gavrilov, Y. I. Shilyaeva, A. A. Pavlov, Y. P. Shaman, and A. A. Dudin, "Influence of the doping type and level on the morphology of porous Si formed by galvanic etching," Semiconductors, Vol. 51, No. 2, 173-177, 2017.
doi:10.1134/S1063782617020178 Google Scholar
17. Li, X. and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, Vol. 77, No. 16, 2572-2574, 2000.
doi:10.1063/1.1319191 Google Scholar
18. Balderas-Valadez, R. F., V. Agarwal, and C. Pacholski, "Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching," RSC Advances, Vol. 6, No. 26, 21430-21434, 2016.
doi:10.1039/C5RA26816H Google Scholar
19. Zhao, M., R. Balachandran, J. Allred, and M. Keswani, "Synthesis of porous silicon through interfacial reactions and measurement of its electrochemical response using cyclic voltammetry," RSC Advances, Vol. 5, No. 96, 79157-79163, 2015.
doi:10.1039/C5RA14592A Google Scholar
20. Rauscher, M. and H. Spohn, "Porous silicon formation and electropolishing," Physical Review E, Vol. 64, No. 3, 031604, 2001.
doi:10.1103/PhysRevE.64.031604 Google Scholar
21. Canham, L., "Porous silicon formation by anodisation," Properties of Porous Silicon, Vol. 1, 12, Halimaoui, A., Ed., IEE, London; L. Canham Ed., 1997. Google Scholar
22. Cullis, A., L. Canham, and P. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys., Vol. 82, 909, 1997.
doi:10.1063/1.366536 Google Scholar
23. Theiss, W., "Optical properties of porous silicon," Surf. Sci. Rep., Vol. 29, 91-192, 1997.
doi:10.1016/S0167-5729(96)00012-X Google Scholar
24. Vincent, G., "Optical properties of porous silicon superlattices," Appl. Phys. Lett., Vol. 64, 2367, 1994.
doi:10.1063/1.111982 Google Scholar
25. Mazzoleni, C. and L. Pavesi, "Application to optical components of dielectric porous silicon multilayers," Appl. Phys. Lett., Vol. 67, No. 20, 2983-2985, 1995.
doi:10.1063/1.114833 Google Scholar
26. Berger, M. G., C. Dieker, M. Thoenissen, L. Vescan, H. Lueth, H. Muender, W. Theiss, M. Wernke, and P. Grosse, "Porosity superlattices: a new class of Si heterostructures," J. Phys. D, Vol. 27, No. 6, 1333, 1994.
doi:10.1088/0022-3727/27/6/035 Google Scholar
27. Berger, M. G., M. Thoenissen, R. Arens-Fischer, H. Munder, H. Luth, M. Arntzen, W. Thei, "Investigation and design of optical properties of porosity superlattices," Thin Solid Films, Vol. 255, No. 1–2, 313-316, 1995.
doi:10.1016/0040-6090(94)05617-M Google Scholar
28. Frohnhoff, S. and M. G. Berger, "Porous silicon superlattices," Adv. Mater., Vol. 6, No. 12, 963-965, 1994.
doi:10.1002/adma.19940061214 Google Scholar
29. Pellegrini, V., A. Tredicucci, C. Mazzoleni, and L. Pavesi, "Enhanced optical properties in porous silicon microcavities," Physical Review B, Vol. 52, No. 20, R14328, 1995.
doi:10.1103/PhysRevB.52.R14328 Google Scholar
30. Pavesi, L., C. Mazzoleni, A. Tredicucci, and V. Pellegrini, "Controlled photon emission in porous silicon microcavities," Appl. Phys. Lett., Vol. 67, No. 22, 3280-3282, 1995.
doi:10.1063/1.115220 Google Scholar
31. Lorenzo, E., C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, "Porous silicon-based rugate filters," Appl. Opt., Vol. 44, No. 26, 5415-5421, 2005.
doi:10.1364/AO.44.005415 Google Scholar
32. Berger, M. G., R. Arens-Fischer, M. Thonissen, M. Kruger, S. Billat, H. Luth, S. Hilbrich, W. Theiß, P. Grosse, "Dielectric filters made of PS: Advanced performance by oxidation and new layer structures," Thin Solid Films, Vol. 297, No. 1–2, 237-240, 1997.
doi:10.1016/S0040-6090(96)09361-3 Google Scholar
33. Arrand, H. F., T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, "The application of porous silicon to optical waveguiding technology," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 6, 975-982, 1998.
doi:10.1109/2944.736088 Google Scholar
34. Loni, A., L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films, Vol. 276, No. 1–2, 143-146, 1996.
doi:10.1016/0040-6090(95)08075-9 Google Scholar
35. Nagata, S., C. Domoto, T. Nishimura, and K. Iwameji, "Single-mode optical waveguide fabricated by oxidization of selectively doped titanium porous silicon," Appl. Phys. Lett., Vol. 72, No. 23, 2945-2947, 1998.
doi:10.1063/1.121502 Google Scholar
36. Ferrand, P., R. Romestain, and J. C. Vial, "Photonic band-gap properties of a porous silicon periodic planar waveguide," Physical Review B, Vol. 63, No. 11, 115106, 2001.
doi:10.1103/PhysRevB.63.115106 Google Scholar
37. Sapienza, R., P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, "Optical analogue of electronic bloch oscillations," Phys. Rev. Lett., Vol. 91, No. 26, 263902, 2003.
doi:10.1103/PhysRevLett.91.263902 Google Scholar
38. Guillermain, E., V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, "Bragg surface wave device based on porous silicon and its application for sensing," Appl. Phys. Lett., Vol. 90, No. 24, 241116-3, 2007.
doi:10.1063/1.2747671 Google Scholar
39. Dal Negro, L., C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of fibonacci quasicrystals," Phys. Rev. Lett., Vol. 90, No. 5, 055501, 2003.
doi:10.1103/PhysRevLett.90.055501 Google Scholar
40. Sailor, M. J. and E. C. Wu, "Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles," Advanced Functional Materials, Vol. 19, No. 20, 3195-3208, 2009.
doi:10.1002/adfm.200900535 Google Scholar
41. Spanier, J. E. and I. P. Herman, "Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films," Physical Review B, Vol. 61, No. 15, 10437, 2000.
doi:10.1103/PhysRevB.61.10437 Google Scholar
42. Syshchyk, O., V. A. Skryshevsky, O. O. Soldatkin, and A. P. Soldatkin, "Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals," Biosensors and Bioelectronics, Vol. 66, 89-94, 2015.
doi:10.1016/j.bios.2014.10.075 Google Scholar
43. Melnyk, Y., K. Pavlova, V. Myndrul, R. Viter, V. Smyntyna, and I. Iatsunskyi, "Porous silicon photoluminescence biosensor for rapid and sensitive detection of toxins," SPIE Organic Photonics+ Electronics, 6, SPIE, 2017. Google Scholar
44. Myndrul, V., R. Viter, M. Savchuk, M. Koval, N. Starodub, V. Silamikelis, V. Smyntyna, A. Ramanavicius, and I. Iatsunskyi, "Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1," Talanta, Vol. 175, 297-304, 2017.
doi:10.1016/j.talanta.2017.07.054 Google Scholar
45. Park, J.-H., L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, "Biodegradable luminescent porous silicon nanoparticles for in vivo applications," Nat. Mater., Vol. 8, No. 4, 331-336, 2009.
doi:10.1038/nmat2398 Google Scholar
46. Gu, L., D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, "In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles," Nature Communication, Vol. 4, 2326, 2013. Google Scholar
47. Kim, D., J. Kang, T. Wang, H. G. Ryu, J. M. Zuidema, J. Joo, M. Kim, Y. Huh, J. Jung, K. H. Ahn, K. H. Kim, and M. J. Sailor, "Two-photon in vivo imaging with porous silicon nanoparticles," Adv. Mater., Vol. 29, No. 39, 1703309, 2017.
doi:10.1002/adma.201703309 Google Scholar
48. Chen, X., F. Wo, Y. Jin, J. Tan, Y. Lai, and J. Wu, "Drug-porous silicon dual luminescent system for monitoring and inhibition of wound infection," ACS Nano, Vol. 11, No. 8, 7938-7949, 2017.
doi:10.1021/acsnano.7b02471 Google Scholar
49. Song, S., L. Wang, J. Li, C. Fan, and J. Zhao, "Aptamer-based biosensors," TrAC Trends in Analytical Chemistry, Vol. 27, No. 2, 108-117, 2008.
doi:10.1016/j.trac.2007.12.004 Google Scholar
50. Urmann, K., J.-G. Walter, T. Scheper, and E. Segal, "Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds," Analytical Chemistry, Vol. 87, No. 3, 1999-2006, 2015.
doi:10.1021/ac504487g Google Scholar
51. Hamula, C. L. A., H. Zhang, F. Li, Z. Wang, X. Chris Le, and X.-F. Li, "Selection and analytical applications of aptamers binding microbial pathogens," TrAC Trends in Analytical Chemistry, Vol. 30, No. 10, 1587-1597, 2011.
doi:10.1016/j.trac.2011.08.006 Google Scholar
52. Urmann, K., S. Arshavsky-Graham, J. G. Walter, T. Scheper, and E. Segal, "Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors," Analyst, Vol. 141, No. 18, 5432-5440, 2016.
doi:10.1039/C6AN00810K Google Scholar
53. Tombelli, S., M. Minunni, and M. Mascini, "Analytical applications of aptamers," Biosensors and Bioelectronics, Vol. 20, No. 12, 2424-2434, 2005.
doi:10.1016/j.bios.2004.11.006 Google Scholar
54. Mairal, T., V. Cengiz Ozalp, P. Lozano Sanchez, M. Mir, I. Katakis, and C. K. O’Sullivan, "Aptamers: Molecular tools for analytical applications," Analytical and Bioanalytical Chemistry, Vol. 390, No. 4, 989-1007, 2008.
doi:10.1007/s00216-007-1346-4 Google Scholar
55. Kirsch, J., C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, "Biosensor technology: Recent advances in threat agent detection and medicine," Chemical Society Reviews, Vol. 42, No. 22, 8733-8768, 2013.
doi:10.1039/c3cs60141b Google Scholar
56. Chhasatia, R., M. J. Sweetman, F. J. Harding, M. Waibel, T. Kay, H. Thomas, T. Loudovaris, and N. H. Voelcker, "Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor," Biosensors and Bioelectronics, Vol. 91, 515-522, 2017.
doi:10.1016/j.bios.2017.01.004 Google Scholar
57. Urmann, K., P. Reich, J.-G. Walter, D. Beckmann, E. Segal, and T. Scheper, "Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures," Journal of Biotechnology, Vol. 257, 171-177, 2017.
doi:10.1016/j.jbiotec.2017.01.005 Google Scholar
58. Tenenbaum, E. and E. Segal, "Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound," Analyst, Vol. 140, No. 22, 7726-7733, 2015.
doi:10.1039/C5AN01717C Google Scholar
59. Naveas, N., J. Hernandez-Montelongo, R. Pulido, V. Torres-Costa, R. Villanueva-Guerrero, J. P. Garcıa Ruiz, and M. Manso-Silva, "Fabrication and characterization of a chemically oxidized-nanostructured porous silicon based biosensor implementing orienting protein A," Colloids and Surfaces B: Biointerfaces, Vol. 115, 310-316, 2014.
doi:10.1016/j.colsurfb.2013.11.026 Google Scholar
60. Mariani, S., L. M. Strambini, and G. Barillaro, "Femtomole detection of proteins using a label-free nanostructured porous silicon interferometer for perspective ultrasensitive biosensing," Analytical Chemistry, Vol. 88, No. 17, 8502-8509, 2016.
doi:10.1021/acs.analchem.6b01228 Google Scholar
61. Mariani, S., L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, "10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors," ACS Sensors, Vol. 1, No. 12, 1471-1479, 2016.
doi:10.1021/acssensors.6b00634 Google Scholar
62. Mariani, S., L. M. Strambini, L. Tedeschi, and G. Barillaro, "Interferogram average over wavelength spectroscopy: An ultrasensitive technique for biosensing with porous silicon interferometers," ECS Transactions, Vol. 77, No. 11, 1815-1823, 2017.
doi:10.1149/07711.1815ecst Google Scholar
63. Vilensky, R., M. Bercovici, and E. Segal, "Oxidized porous silicon nanostructures enabling electrokinetic transport for enhanced DNA detection," Adv. Funct. Mater., Vol. 25, No. 43, 6725-6732, 2015.
doi:10.1002/adfm.201502859 Google Scholar
64. Arshavsky-Graham, S., R. Vilenski, F. Faratore, M. Bercovici, and E. Segal, "1,000-fold sensitivity enhancement of porous Si-based optical biosensors for nucleic acid and proteins detection," Optics in the Life Sciences Congress, Optical Society of America, , , OmM4D.6, 2017.
doi:10.1364/OMP.2017.OmM4D.6 Google Scholar
65. Nair, P. R. and M. A. Alam, "Performance limits of nanobiosensors," Applied Physics Letters, Vol. 88, No. 23, 233120, 2006.
doi:10.1063/1.2211310 Google Scholar
66. Sheehan, P. E. and L. J. Whitman, "Detection limits for nanoscale biosensors," Nano Letters, Vol. 5, No. 4, 803-807, 2005.
doi:10.1021/nl050298x Google Scholar
67. Kumar, N., E. Froner, R. Guider, M. Scarpa, and P. Bettotti, "Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors," Analyst, Vol. 139, No. 6, 1345-1349, 2014.
doi:10.1039/c3an01996a Google Scholar
68. Zhao, Y., G. Gaur, S. T. Retterer, P. E. Laibinis, and S. M. Weiss, "Flow-through porous silicon membranes for real-time label-free biosensing," Analytical Chemistry, Vol. 88, No. 22, 10940-10948, 2016.
doi:10.1021/acs.analchem.6b02521 Google Scholar
69. Gupta, B., K. Mai, S. B. Lowe, D. Wakefield, N. Di Girolamo, K. Gaus, P. J. Reece, and J. J. Gooding, "Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals," Analytical Chemistry, Vol. 87, No. 19, 9946-9953, 2015.
doi:10.1021/acs.analchem.5b02529 Google Scholar
70. Soeriyadi, A. H., B. Gupta, P. J. Reece, and J. J. Gooding, "Optimising the enzyme response of a porous silicon photonic crystal via the modular design of enzyme sensitive polymers," Polymer Chemistry, Vol. 5, No. 7, 2333-2341, 2014.
doi:10.1039/C3PY01638B Google Scholar
71. Rong, G., J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, "Label-free porous silicon membrane waveguide for DNA sensing," Applied Physics Letters, Vol. 93, No. 16, 161109, 2008.
doi:10.1063/1.3005620 Google Scholar
72. Rong, G., A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguide for label-free DNA sensing," Biosensors and Bioelectronics, Vol. 23, No. 10, 1572-1576, 2008.
doi:10.1016/j.bios.2008.01.017 Google Scholar
73. Wei, X., C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, "Grating couplers on porous silicon planar waveguides for sensing applications," J. Appl. Phys., Vol. 104, No. 12, 123113, 2008.
doi:10.1063/1.3043579 Google Scholar
74. Wei, X. and S. M. Weiss, "Guided mode biosensor based on grating coupled porous silicon waveguide," Opt. Express, Vol. 19, 2011.
doi:10.1364/OE.19.011330 Google Scholar
75. Wei, X., J. W. Mares, Y. D. Gao, D. Li, and S. M. Weiss, "Biomolecule kinetics measurements in flow cell integrated porous silicon waveguides," Biomed. Opt. Express, Vol. 3, 2012. Google Scholar
76. Qiao, H., A. H. Soeriyadi, B. Guan, P. J. Reece, and J. J. Gooding, "The analytical performance of a porous silicon Bloch surface wave biosensors as protease biosensor," Sensors and Actuators B: Chemical, Vol. 211, No. Supplement C, 469-475, 2015.
doi:10.1016/j.snb.2015.01.098 Google Scholar
77. Zhao, Y., G. A. Rodriguez, Y. M. Graham, T. Cao, G. Gaur, and S. M. Weiss, "Resonant photonic structures in porous silicon for biosensing," SPIE BiOS, 10, 2017. Google Scholar
78. Rodriguez, G. A., J. D. Ryckman, Y. Jiao, and S. M. Weiss, "A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor," Biosensors and Bioelectronics, Vol. 53, 486-493, 2014.
doi:10.1016/j.bios.2013.10.028 Google Scholar
79. Rodriguez, G. A., J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, "Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules," Nanoscale Research Letters, Vol. 9, No. 1, 383, 2014.
doi:10.1186/1556-276X-9-383 Google Scholar
80. Rodriguez, G. A., S. Hu, and S. M. Weiss, "Porous silicon ring resonator for compact, high sensitivity biosensing applications," Opt. Express, Vol. 23, No. 6, 7111-7119, 2015.
doi:10.1364/OE.23.007111 Google Scholar
81. Krismastuti, F. S. H., S. Pace, and N. H. Voelcker, "Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection," Advanced Functional Materials, Vol. 24, No. 23, 3639-3650, 2014.
doi:10.1002/adfm.201304053 Google Scholar
82. Jenie, S. N. A., Z. Du, S. J. P. McInnes, P. Ung, B. Graham, S. E. Plush, and N. H. Voelcker, "Biomolecule detection in porous silicon based microcavities via europium luminescence enhancement," Journal of Materials Chemistry B, Vol. 2, No. 44, 7694-7703, 2014.
doi:10.1039/C4TB01409J Google Scholar
83. Jenie, S. N. A., B. Prieto-Simon, and N. H. Voelcker, "Development of l-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers," Biosensors and Bioelectronics, Vol. 74, 637-643, 2015.
doi:10.1016/j.bios.2015.07.025 Google Scholar
84. Krismastuti, F. S. H., A. Cavallaro, B. Prieto-Simon, and N. H. Voelcker, "Toward multiplexing detection of wound healing biomarkers on porous silicon resonant microcavities," Advanced Science, Vol. 3, No. 6, 1500383, 2016.
doi:10.1002/advs.201500383 Google Scholar
85. Jenie, S. N. A., S. E. Plush, and N. H. Voelcker, "Recent advances on luminescent enhancement-based porous silicon biosensors," Pharmaceutical Research, Vol. 33, No. 10, 2314-2336, 2016.
doi:10.1007/s11095-016-1889-1 Google Scholar
86. Li, Y., Z. Jia, G. Lv, H. Wen, P. Li, H. Zhang, and J. Wang, "Detection of Echinococcus granulosus antigen by a quantum dot/porous silicon optical biosensor," Biomed. Opt. Express, Vol. 8, No. 7, 3458-3469, 2017.
doi:10.1364/BOE.8.003458 Google Scholar
87. Alivisatos, A. P., "Perspectives on the physical chemistry of semiconductor nanocrystals," J. Phys. Chem.-Us, Vol. 100, No. 31, 13226-13239, 1996.
doi:10.1021/jp9535506 Google Scholar
88. Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science, Vol. 281, No. 5385, 2013-2016, 1998.
doi:10.1126/science.281.5385.2013 Google Scholar
89. Dasog, M., J. Kehrle, B. Rieger, and J. G. C. Veinot, "Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications," Angewandte Chemie International Edition, Vol. 55, No. 7, 2322-2339, 2016.
doi:10.1002/anie.201506065 Google Scholar
90. Gonzalez, C. M. and J. G. C. Veinot, "Silicon nanocrystals for the development of sensing platforms," J. Mater. Chem. C, Vol. 4, No. 22, 4836-4846, 2016.
doi:10.1039/C6TC01159D Google Scholar
91. Su, Y., X. Ji, and Y. He, "Water-dispersible fluorescent silicon nanoparticles and their optical applications," Adv. Mater., Vol. 28, No. 47, 10567-10574, 2016.
doi:10.1002/adma.201601173 Google Scholar
92. Peng, X., L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature, Vol. 404, No. 6773, 59-61, 2000.
doi:10.1038/35003535 Google Scholar
93. McVey, B. F. P., J. Butkus, J. E. Halpert, J. M. Hodgkiss, and R. D. Tilley, "Solution synthesis and optical properties of transition-metal-doped silicon nanocrystals," The Journal of Physical Chemistry Letters, Vol. 6, No. 9, 1573-1576, 2015.
doi:10.1021/acs.jpclett.5b00589 Google Scholar
94. Kramer, N. J., K. S. Schramke, and U. R. Kortshagen, "Plasmonic properties of silicon nanocrystals doped with boron and phosphorus," Nano Letters, Vol. 15, No. 8, 5597-5603, 2015.
doi:10.1021/acs.nanolett.5b02287 Google Scholar
95. Dasog, M., G. B. De los Reyes, L. V. Titova, F. A. Hegmann, and J. G. Veinot, "Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups," ACS Nano, Vol. 8, No. 9, 9636-9648, 2014.
doi:10.1021/nn504109a Google Scholar
96. Sinelnikov, R., M. Dasog, J. Beamish, A. Meldrum, and J. G. C. Veinot, "Revisiting an ongoing debate: What role do surface groups play in silicon nanocrystal photoluminescence?," ACS Photonics, Vol. 4, No. 8, 1920-1929, 2017.
doi:10.1021/acsphotonics.7b00102 Google Scholar
97. Herman, F., "The electronic energy band structure of silicon and germanium," Proceedings of the IRE, Vol. 43, No. 12, 1703-1732, 1955.
doi:10.1109/JRPROC.1955.278039 Google Scholar
98. Heath, J. R., "A liquid-solution-phase synthesis of crystalline silicon," Science, Vol. 258, No. 5085, 1131-1133, 1992.
doi:10.1126/science.258.5085.1131 Google Scholar
99. Jurbergs, D., E. Rogojina, L. Mangolini, and U. Kortshagen, "Silicon nanocrystals with ensemble quantum yields exceeding 60%," Appl. Phys. Lett., Vol. 88, No. 23, 2006.
doi:10.1063/1.2210788 Google Scholar
100. Kelly, J. A., A. M. Shukaliak, M. D. Fleischauer, and J. G. Veinot, "Size-dependent reactivity in hydrosilylation of silicon nanocrystals," J. Am Chem. Soc., Vol. 133, No. 24, 9564-9571, 2011.
doi:10.1021/ja2025189 Google Scholar
101. Cheng, X., R. Gondosiswanto, S. Ciampi, P. J. Reece, and J. J. Gooding, "One-pot synthesis of colloidal silicon quantum dots and surface functionalization via thiol-ene click chemistry," Chem. Commun. (Camb), Vol. 48, No. 97, 11874-11876, 2012. Google Scholar
102. Hessel, C. M., D. Reid, M. G. Panthani, M. R. Rasch, B. W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, and B. A. Korgel, "Synthesis of ligand-stabilized silicon nanocrystals with sizedependent photoluminescence spanning visible to near-infrared wavelengths," Chem. Mater., Vol. 24, No. 2, 393-401, 2012. Google Scholar
103. Locritani, M., Y. Yu, G. Bergamini, M. Baroncini, J. K. Molloy, B. A. Korgel, and P. Ceroni, "Silicon nanocrystals functionalized with pyrene units: efficient light-harvesting antennae with bright near-infrared emission," J. Phys. Chem. Lett., Vol. 5, No. 19, 3325-3329, 2014. Google Scholar
104. Yu, Y., C. M. Hessel, T. D. Bogart, M. G. Panthani, M. R. Rasch, and B. A. Korgel, "Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes," Langmuir, Vol. 29, No. 5, 1533-1540, 2013. Google Scholar
105. Kang, Z., C. H. A. Tsang, Z. Zhang, M. Zhang, N.-B. Wong, J. A. Zapien, Y. Shan, and S.-T. Lee, "A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: From quantum dots to nanowires," Journal of the American Chemical Society, Vol. 129, No. 17, 5326-5327, 2007. Google Scholar
106. Kang, Z. H., C. H. A. Tsang, N. B. Wong, Z. D. Zhang, and S. T. Lee, "Silicon quantum dots: A general photocatalyst for reduction, decomposition, and selective oxidation reactions," Journal of the American Chemical Society, Vol. 129, No. 40, 12090-12090+, 2007. Google Scholar
107. Hong, G., A. L. Antaris, and H. Dai, "Near-infrared fluorophores for biomedical imaging," Nature Biomedical Engineering, Vol. 1, 0010, 2017. Google Scholar
108. Zhong, Y., F. Peng, X. Wei, Y. Zhou, J. Wang, X. Jiang, Y. Su, S. Su, S.-T. Lee, and Y. He, "Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands," Angewandte Chemie International Edition, Vol. 51, No. 34, 8485-8489, 2012. Google Scholar
109. Zhong, Y., F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, and Y. He, "Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes," Journal of the American Chemical Society, Vol. 135, No. 22, 8350-8356, 2013. Google Scholar
110. He, Y., Y. L. Zhong, F. Peng, X. P. Wei, Y. Y. Su, Y. M. Lu, S. Su, W. Gu, L. S. Liao, and S. T. Lee, "One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots," Journal of the American Chemical Society, Vol. 133, No. 36, 14192-14195, 2011. Google Scholar
111. Hua, F., M. T. Swihart, and E. Ruckenstein, "Efficient surface grafting of luminescent silicon," Langmuir, Vol. 21, No. 13, 6054-6062, 2005. Google Scholar
112. Zhong, Y., F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, and Y. He, "Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes," Journal of the American Chemical Society, 2013. Google Scholar
113. Tilley, R. D. and K. Yamamoto, "The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals," Adv. Mater., Vol. 18, No. 15, 2053-2056, 2006. Google Scholar
114. Yang, C.-S., R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, and G. R. Delgado, "Synthesis of alkyl-terminated silicon nanoclusters by a solution route," Journal of the American Chemical Society, Vol. 121, No. 22, 5191-5195, 1999. Google Scholar
115. Bley, R. A. and S. M. Kauzlarich, "A low-temperature solution phase route for the synthesis of silicon nanoclusters," Journal of the American Chemical Society, Vol. 118, No. 49, 12461-12462, 1996. Google Scholar
116. Mayeri, D., B. L. Phillips, M. P. Augustine, and S. M. Kauzlarich, "NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi," Chem. Mater., Vol. 13, No. 3, 765-770, 2001. Google Scholar
117. Prabakar, S., A. Shiohara, S. Hanada, K. Fujioka, K. Yamamoto, and R. D. Tilley, "Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications," Chem. Mater., Vol. 22, No. 2, 482-486, 2010. Google Scholar
118. Shiohara, A., S. Prabakar, A. Faramus, C. Y. Hsu, P. S. Lai, P. T. Northcote, and R. D. Tilley, "Sized controlled synthesis, purification, and cell studies with silicon quantum dots," Nanoscale, Vol. 3, No. 8, 3364-3370, 2011. Google Scholar
119. Cheng, X., S. B. Lowe, S. Ciampi, A. Magenau, K. Gaus, P. J. Reece, and J. J. Gooding, "Versatile ‘click chemistry’ approach to functionalizing silicon quantum dots: Applications toward fluorescent cellular imaging," Langmuir, Vol. 30, No. 18, 5209-5216, 2014. Google Scholar
120. Cheng, X., E. Hinde, D.M. Owen, S. B. Lowe, P. J. Reece, K. Gaus, and J. J. Gooding, "Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: Application to silicon quantum dots (SiQDs)," Adv. Mater., Vol. 27, No. 40, 6144-6150, 2015. Google Scholar
121. Dasog, M., Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, and J. G. Veinot, "Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals," ACS Nano, Vol. 7, No. 3, 2676-2685, 2013. Google Scholar
122. Li, Q., Y. He, J. Chang, L. Wang, H. Chen, Y. W. Tan, H. Wang, and Z. Shao, "Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature," J. Am. Chem. Soc., Vol. 135, No. 40, 14924-14927, 2013. Google Scholar
123. Wang, L., Q. Li, H.-Y. Wang, J.-C. Huang, R. Zhang, Q.-D. Chen, H.-L. Xu, W. Han, Z.- Z. Shao, and H.-B. Sun, "Ultrafast optical spectroscopy of surface-modified silicon quantum dots: Unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence," Light: Science & Applications, Vol. 4, No. 1, e245, 2015. Google Scholar
124. Li, Q., T.-Y. Luo, M. Zhou, H. Abroshan, J. Huang, H. J. Kim, N. L. Rosi, Z. Shao, and R. Jin, "Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law," ACS Nano, Vol. 10, No. 9, 8385-8393, 2016. Google Scholar
125. Mangolini, L., E. Thimsen, and U. Kortshagen, "High-yield synthesis of luminescent silicon quantum dots in a continuous flow non-thermal plasma reactor," Amorphous and Nanocrystalline Silicon Science and Technology-2005, Vol. 862, 307-312, R.W. Collins, P. C. Taylor, M. Kondo, R. Carius, R. Biswas, Eds., 2005. Google Scholar
126. Mangolini, L. and U. Kortshagen, "Plasma-assisted synthesis of silicon nanocrystal inks," Adv. Mater., Vol. 19, No. 18, 2513-+, 2007. Google Scholar
127. Zhou, S., Z. Ni, Y. Ding, M. Sugaya, X. Pi, and T. Nozaki, "Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron," ACS Photonics, Vol. 3, No. 3, 415-422, 2016. Google Scholar
128. Ni, Z., L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z.Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, "Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors," ACS Nano, Vol. 11, No. 10, 9854-9862, 2017. Google Scholar
129. Yu, T., F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, "Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors," Advanced Materials, Vol. 28, No. 24, 4912-4919, 2016. Google Scholar
130. Rowe, D. J., J. S. Jeong, K. A. Mkhoyan, and U. R. Kortshagen, "Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance," Nano Letters, Vol. 13, No. 3, 1317-1322, 2013. Google Scholar
131. Howes, P. D., R. Chandrawati, and M. M. Stevens, "Colloidal nanoparticles as advanced biological sensors," Science, Vol. 346, No. 6205, 2014. Google Scholar
132. Ma, Y., Y. Yamamoto, P. R. Nicovich, J. Goyette, J. Rossy, J. J. Gooding, and K. Gaus, "A FRET sensor enables quantitative measurements of membrane charges in live cells," Nat. Biotech., Vol. 35, No. 4, 363-370, 2017. Google Scholar
133. Zhang, C. Y., H. C. Yeh, M. T. Kuroki, and T. H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater., Vol. 4, No. 11, 826-831, 2005. Google Scholar
134. Medintz, I. L., A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, "Self-assembled nanoscale biosensors based on quantum dot FRET donors," Nat. Mater., Vol. 2, No. 9, 630-638, 2003. Google Scholar
135. Ban, R., F. Zheng, and J. Zhang, "A highly sensitive fluorescence assay for 2,4,6-trinitrotoluene using amine-capped silicon quantum dots as a probe," Analytical Methods, Vol. 7, No. 5, 1732-1737, 2015. Google Scholar
136. Zhang, X., X. Chen, S. Kai, H.-Y. Wang, J. Yang, F.-G. Wu, and Z. Chen, "Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles," Analytical Chemistry, Vol. 87, No. 6, 3360-3365, 2015. Google Scholar
137. Zhang, J. and S.-H. Yu, "Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions," Nanoscale, Vol. 6, No. 8, 4096-4101, 2014. Google Scholar
138. Cheng, X., B. F. P. McVey, A. B. Robinson, G. Longatte, P. B. O’Mara, V. T. G. Tan, P. Thordarson, R. D. Tilley, K. Gaus, and J. Justin Gooding, "Protease sensing using nontoxic silicon quantum dots," BIOMEDO, Vol. 22, No. 8, 2017. Google Scholar
139. Ruizendaal, L., S. P. Pujari, V. Gevaerts, J. M. Paulusse, and H. Zuilhof, "Biofunctional silicon nanoparticles by means of thiol-ene click chemistry," Chem. Asian J., Vol. 6, No. 10, 2776-2786, 2011. Google Scholar
140. Cheng, X., B. F. P. McVey, A. B. Robinson, L. Guillaume, P. B. O’Mara, V. T. G. Tan, T. Pall, R. D. Tilley, G. Katharina, and G. John Justin, "Protease sensing using nontoxic silicon quantum dots," Journal of Biomedical Optics, Vol. 22, No. 8, 1, 2017. Google Scholar
141. Medintz, I. L., H. T. Uyeda, E. R. Goldman, and H. Mattoussi, "Quantum dot bioconjugates for imaging, labelling and sensing," Nat. Mater., Vol. 4, No. 6, 435-446, 2005. Google Scholar
142. Diaz, S. A., A. P. Malonoski, K. Susumu, R. V. Hofele, E. Oh, and I. L. Medintz, "Probing the kinetics of quantum dot-based proteolytic sensors," Anal. Bioanal. Chem., Vol. 407, No. 24, 7307-7318, 2015. Google Scholar
143. Ji, X., F. Peng, Y. Zhong, Y. Su, X. Jiang, C. Song, L. Yang, B. Chu, S.-T. Lee, and Y. He, "Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy," Advanced Materials, Vol. 27, No. 6, 1029-1034, 2015. Google Scholar
144. Song, C., Y. Zhong, X. Jiang, F. Peng, Y. Lu, X. Ji, Y. Su, and Y. He, "Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells," Anal. Chem., Vol. 87, No. 13, 6718-6723, 2015. Google Scholar
145. Jiang, A., B. Song, X. Ji, F. Peng, H. Wang, Y. Su, and Y. He, "Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency," Nano Res., 2017. Google Scholar
146. Ji, X., F. Peng, Y. Zhong, Y. Su, X. Jiang, C. Song, L. Yang, B. Chu, S. T. Lee, and Y. He, "Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy," Adv. Mater., Vol. 27, No. 6, 1029-1034, 2015. Google Scholar
147. Hinde, E., K. Thammasiraphop, H. T. T. Duong, J. Yeow, B. Karagoz, C. Boyer, J. J. Gooding, and K. Gaus, "Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release," Nature Nanotechnology, Vol. 12, 81, 2016. Google Scholar