Vol. 161
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-04-05
CMOS Low Noise Amplifier Design for Microwave and mmWave Applications (Invited Review)
By
Progress In Electromagnetics Research, Vol. 161, 57-85, 2018
Abstract
This paper reviews recent advances in the design of low noise amplifier (LNA) in complementary metal oxide semiconductor (CMOS) technology for radio transceivers at microwave and millimeter wave (mmWave) frequencies. First, the evolution of wireless communication systems and CMOS technology are briefly revisited to highlight the requirements of an LNA design. Then, key performance parameters and device circuit models are described. Next, we discuss typical LNA topologies, followed by those important design techniques, algorithms and concepts developed specifically for CMOS LNAs. Moreover, reported CMOS LNA designs are summarized, and future design issues are identified. Finally, we conclude the paper and briefly outline our future work on CMOS LNA designs.
Citation
Xue Jun Li, and Yue-Ping Zhang, "CMOS Low Noise Amplifier Design for Microwave and mmWave Applications (Invited Review)," Progress In Electromagnetics Research, Vol. 161, 57-85, 2018.
doi:10.2528/PIER18012410
References

1. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511841224

2. Li, X. J., B.-C. Seet, and P. H. J. Chong, "Multihop cellular networks: Technology and economics," Computer Networks, Vol. 52, 1825-1837, Jun. 2008.
doi:10.1016/j.comnet.2008.01.019        Google Scholar

3. Doan, C. H., S. Emami, A. M. Niknejad, and R. W. Brodersen, "Millimeter-wave CMOS design," IEEE Journal of Solid-State Circuits, Vol. 40, 144-155, 2005.
doi:10.1109/JSSC.2004.837251        Google Scholar

4. Paulraj, A. J., D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of MIMO communications — A key to gigabit wireless," Proceedings of the IEEE, Vol. 92, 198-218, Feb. 2004.
doi:10.1109/JPROC.2003.821915        Google Scholar

5. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813        Google Scholar

6. Cathelin, A., "Fully depleted silicon on insulator devices CMOS: The 28-nm node is the perfect technology for analog, RF, mmW, and mixed-signal system-on-chip integration," IEEE Solid-State Circuits Magazine, Vol. 9, 18-26, Apr. 2017.
doi:10.1109/MSSC.2017.2745738        Google Scholar

7. Kim, H.-S., K. Park, H. Oh, and E. S. Jung, "Effective gate layout methods for RF performance enhancement in MOSFETs," IEEE Electron Device Letters, Vol. 30, 1105-1107, Oct. 2009.        Google Scholar

8. Adabi, E., B. Heydari, M. Bohsali, and A. M. Niknejad, "30 GHz CMOS low noise amplifier," IEEE RFIC’07, 625-628, 2007.        Google Scholar

9. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, 1390-1436, 2011.
doi:10.1109/JPROC.2011.2143650        Google Scholar

10. Niknejad, A. M., D. Chowdhury, and J. Chen, "Design of CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 1784-1796, Jun. 2012.
doi:10.1109/TMTT.2012.2193898        Google Scholar

11. Li, X. J. and Y. P. Zhang, "Flipping the CMOS switch," IEEE Microwave Magazine, Vol. 11, 86-96, Feb. 2010.
doi:10.1109/MMM.2009.935203        Google Scholar

12. Misra, D. K., Radio-frequency and Microwave Communication Circuits: Analysis and Design, John Wiley & Sons, 2004.

13. Lee, T. H., The Design of CMOS Radio-frequency Integrated Circuits, 2nd Ed., Cambridge University Press, 2004.

14. Van der Ziel, A., Noise in Solid State Devices and Circuits, Wiley, 1986.

15. Allstot, D. J., X. Li, and S. Shekhar, "Design considerations for CMOS low-noise amplifiers," IEEE RFIC’04, 97-100, 2004.        Google Scholar

16. Cha, C.-Y. and S.-G. Lee, "A low power, high gain LNA topology," IEEE ICMMT’00, 420-423, Beijing, China, 2000.        Google Scholar

17. Yeh, H. C., Z. Y. Liao, and H. Wang, "Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 3441-3454, Dec. 2011.
doi:10.1109/TMTT.2011.2173350        Google Scholar

18. Nguyen, T.-K., C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, "CMOS low-noise amplifier design optimization techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1433-1442, May 2004.
doi:10.1109/TMTT.2004.827014        Google Scholar

19. Gramegna, G., A. Magazzu, C. Sclafani, M. Paparo, and P. Erratico, "A 9 mW, 900-MHz CMOS LNA with 1.05 dB-noise-figure," ESSCC’00, 112-115, Stockholm, Sweden, 2000.        Google Scholar

20. Im, D., I. Nam, S.-S. Song, H.-T. Kim, and K. Lee, "A CMOS resistive feedback single to differential low noise amplifier with multiple-tuner-outputs for a digital TV tuner," IEEE RFIC’09, 555-558, 2009.        Google Scholar

21. Guo, B., J. Chen, L. Li, H. Jin, and G. Yang, "A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations," IEEE Journal of Solid-State Circuits, Vol. 52, 1331-1344, May 2017.
doi:10.1109/JSSC.2017.2657598        Google Scholar

22. Kim, S. J., D. Lee, K. Y. Lee, and S. G. Lee, "A 2.4-GHz super-regenerative transceiver with selectivity-improving dual Q-enhancement architecture and 102-µW all-digital FLL," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 3287-3298, Sep. 2017.
doi:10.1109/TMTT.2017.2664826        Google Scholar

23. Li, X., S. Shekhar, and D. J. Allstot, "Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-µm CMOS," IEEE Journal of Solid-State Circuits, Vol. 40, 2609-2619, Dec. 2005.
doi:10.1109/JSSC.2005.857426        Google Scholar

24. Chen, X., Q. Feng, and S. Li, "Design of a 2.5 GHz differential CMOS LNA," Progress In Electromagnetics Research Symposium, 203-206, Cambridge, USA, Jul. 2–6, 2008.        Google Scholar

25. Haus, H. A., et al., "Representation of noise in linear twoports," Proceedings of the IRE, Vol. 48, 69-74, Jan. 1960.
doi:10.1109/JRPROC.1960.287381        Google Scholar

26. Stubbe, F., S. V. Kishore, C. Hull, and V. D. Torre, "A CMOS RF-receiver front-end for 1 GHz applications," IEEE VLSIC’98, 80-83, 1998.        Google Scholar

27. Shaeffer, D. K. and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise amplifier," IEEE Journal of Solid-State Circuits, Vol. 32, 745-758, May 1997.
doi:10.1109/4.568846        Google Scholar

28. Andreani, P. and H. Sjoland, "Noise optimization of an inductively degenerated CMOS low noise amplifier," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 48, 835-841, 2001.
doi:10.1109/82.964996        Google Scholar

29. Zhuo, W., X. Li, S. Shekhar, S. H. K. Embabi, J. P. D. Gyvez, D. J. Allstot, and E. SanchezSinencio, "A capacitor cross-coupled common-gate low-noise amplifier," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 52, 875-879, Dec. 2005.
doi:10.1109/TCSII.2005.853966        Google Scholar

30. Pan, Z., C. Qin, Z. Ye, and Y. Wang, "A low power inductorless wideband LNA with Gm enhancement and noise cancellation," IEEE Microwave and Wireless Components Letters, Vol. 27, 58-60, 2017.
doi:10.1109/LMWC.2016.2629969        Google Scholar

31. Liu, H. J. and Z. F. Zhang, "An ultra-low power CMOS LNA for WPAN applications," IEEE Microwave and Wireless Components Letters, Vol. 27, 174-176, 2017.
doi:10.1109/LMWC.2016.2647382        Google Scholar

32. Fan, X., H. Zhang, and E. Sanchez-Sinencio, "A noise reduction and linearity improvement technique for a differential cascode LNA," IEEE Journal of Solid-State Circuits, Vol. 43, 588-599, 2008.
doi:10.1109/JSSC.2007.916584        Google Scholar

33. Ho, Y.-C., Implementation and improvement for RF low noise amplifier in conventional CMOS technologies, Ph.D dissertation, University of Florida, Gainesville, 2000.

34. Guan, X. and A. Hajimiri, "A 24-GHz CMOS front-end," IEEE Journal of Solid-State Circuits, Vol. 39, 368-373, 2004.
doi:10.1109/JSSC.2003.821783        Google Scholar

35. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 2012.

36. Bowick, C., J. Blyler, and C. Ajluni, RF Circuit Design, Elsevier Inc., 2008.

37. Sivonen, P. and A. Parssinen, "Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1304-1313, 2005.
doi:10.1109/TMTT.2005.845773        Google Scholar

38. Cohen, E., S. Ravid, and D. Ritter, "An ultra low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS process for 60 GHz phase array radio," IEEE RFIC’08, 61-64, 2008.        Google Scholar

39. Kunze, J. W., C. Weyers, P. Mayr, A. Bilgic, and J. Hausner, "60 GHz compact low noise amplifier in 65 nm CMOS," Electronics Letters, Vol. 45, 1035-1046, Sep. 2009.
doi:10.1049/el.2009.0518        Google Scholar

40. Marcu, C., D. Chowdhury, C. Thakkar, J. D. Park, L. K. Kong, M. Tabesh, Y. J. Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, E. Alon, and A. M. Niknejad, "A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry," IEEE Journal of Solid-State Circuits, Vol. 44, 3434-3447, Dec. 2009.
doi:10.1109/JSSC.2009.2032584        Google Scholar

41. Huang, B. J., C. H. Wang, C. C. Chen, M. F. Lei, P. C. Huang, K. Y. Lin, and H. Wang, "Design and analysis for a 60-GHz low-noise amplifier with RF ESD protection," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 298-305, Feb. 2009.
doi:10.1109/TMTT.2008.2011158        Google Scholar

42. Mitomo, T., R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y. Tsutsumi, and I. Seto, "A 60-GHz CMOS receiver front-end with frequency synthesizer," IEEE Journal of SolidState Circuits, Vol. 43, 1030-1037, Apr. 2008.
doi:10.1109/JSSC.2008.917557        Google Scholar

43. Razavi, B., "A 60-GHz CMOS receiver front-end," IEEE Journal of Solid-State Circuits, Vol. 41, 17-22, Jan. 2006.
doi:10.1109/JSSC.2005.858626        Google Scholar

44. Kang, M. S., B. S. Kim, W. J. Byun, K. S. Kim, S. H. Oh, S. Pinel, J. Laskar, and M. S. Song, "PA and LNA for millimeter-wave WPAN using 90 nm CMOS process," Microwave and Optical Technology Letters, Vol. 51, 2029-2032, Sep. 2009.
doi:10.1002/mop.24549        Google Scholar

45. Lin, Y. S. and S. S. Wong, "A 60-GHz low noise amplifier for 60-GHz dual-conversion receiver," Microwave and Optical Technology Letters, Vol. 51, 885-891, Apr. 2009.
doi:10.1002/mop.24200        Google Scholar

46. Kanaya, H., T. Nakamura, K. Kawakami, and K. Yoshida, "Design of coplanar waveguide matching circuit for RF-CMOS front-end," Electronics and Communications in Japan (Part II: Electronics), Vol. 88, 19-26, 2005.
doi:10.1002/ecjb.20161        Google Scholar

47. Haroun, I., H. Yuan-Chia, J. Wight, and C. Plett, "A CMOS low-noise amplifier with VPW matching elements for 60-GHz-band Gbit/s wireless systems," IEEE APMC’09, 473-476, 2009.        Google Scholar

48. Severino, R. R., T. Taris, Y. Deval, and J. B. Begueret, "A transformer-based 60 GHz CMOS LNA for low voltage applications," IEEE RFIT’07, 62-65, 2007.        Google Scholar

49. Yeh, H. C., C. C. Chiong, S. Aloui, and H. Wang, "Analysis and design of millimeter-wave lowvoltage CMOS cascode LNA with magnetic coupled technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 4066-4079, Dec. 2012.
doi:10.1109/TMTT.2012.2224365        Google Scholar

50. Yu, X. and N. M. Neihart, "Analysis and design of a reconfigurable multimode low-noise amplifier utilizing a multitap transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 1236-1246, Mar. 2013.
doi:10.1109/TMTT.2012.2237037        Google Scholar

51. Wu, L., H. F. Leung, and H. C. Luong, "Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, 1626-1635, 2017.
doi:10.1109/TCSI.2017.2649844        Google Scholar

52. Kim, K. J., S. H. Lee, S. Park, and K. H. Ahn, "60 GHz CMOS gain-boosted LNA with transformer feedbacked neutraliser," Electronics Letters, Vol. 51, 1461-1462, 2015.
doi:10.1049/el.2015.0336        Google Scholar

53. Weyers, C., P. Mayr, J. W. Kunze, and U. Langmann, "A 22.3 dB voltage gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS with differential output," ISSCC’08, 192-606, 2008.        Google Scholar

54. Kuo, M.-C., C.-N. Kuo, and T.-C. Chueh, "Wideband LNA compatible for differential and singleended inputs," IEEE Microwave and Wireless Components Letters, Vol. 19, 482-484, Jul. 2009.        Google Scholar

55. Terry, Y., M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, Y. Ming-Ta, P. Schvan, and S. P. Voinigescu, "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, Vol. 42, 1044-1057, 2007.
doi:10.1109/JSSC.2007.894325        Google Scholar

56. Kraemer, M., D. Dragomirescu, and R. Plana, "A low-power high-gain LNA for the 60 GHz band in a 65 nm CMOS technology," IEEE APMC’09, 1156-1159, 2009.        Google Scholar

57. Im, D., I. Nam, and K. Lee, "A CMOS active feedback balun-LNA with high IIP2 for wideband digital TV receivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 3566-3579, Nov. 2010.        Google Scholar

58. Guo, S., T. Xi, P. Gui, D. Huang, Y. Fan, and M. Morgan, "A transformer feedback Gm-boosting technique for gain improvement and noise reduction in mwWave cascode LNAs," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 2080-2090, 2016.
doi:10.1109/TMTT.2016.2564398        Google Scholar

59. Karanicolas, A. N., "A 2.7-V 900-MHz CMOS LNA and mixer," IEEE Journal of Solid-State Circuits, Vol. 31, 1939-1944, 1996.
doi:10.1109/4.545816        Google Scholar

60. Li, Z., C. Wang, Q. Li, and Z. Wang, "60 GHz low-power LNA with high gmxRout transconductor stages in 65 nm CMOS," Electronics Letters, Vol. 53, 279-281, 2017.
doi:10.1049/el.2016.4061        Google Scholar

61. Hsieh, H.-H., J.-H. Wang, and L.-H. Lu, "Gain-enhancement techniques for CMOS folded cascode LNAs at low-voltage operations," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1807-1816, Aug. 2008.        Google Scholar

62. Lin, W.-H., J.-H. Tsai, Y.-N. Jen, T.-W. Huang, and H. Wang, "A 0.7-V 60-GHz low-power LNA with forward body bias technique in 90 nm CMOS process," EuMC’09, 393-396, 2009.        Google Scholar

63. Parvizi, M., K. Allidina, and M. N. El-Gamal, "Short channel output conductance enhancement through forward body biasing to realize a 0.5 V 250 µW 0.6–4.2 GHz current-reuse CMOS LNA," IEEE Journal of Solid-State Circuits, Vol. 51, 574-586, Mar. 2016.        Google Scholar

64. Parvizi, M., K. Allidina, and M. N. El-Gamal, "An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 1843-1853, 2016.        Google Scholar

65. Lai, M. T. and H. W. Tsao, "Ultra-low-power cascaded CMOS LNA with positive feedback and bias optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 1934-1945, 2013.        Google Scholar

66. Mitola, J. and G. Q. Maguire, "Cognitive radio: Making software radios more personal," IEEE Personal Communications, Vol. 6, 13-18, Aug. 1999.        Google Scholar

67. Abidi, A. A., "The path to the software-defined radio receiver," IEEE Journal of Solid-State Circuits, Vol. 42, 954-966, Apr. 2007.        Google Scholar

68. Arbabian, A. and A. M. Niknejad, "Design of a CMOS tapered cascaded multistage distributed amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 938-947, Apr. 2009.        Google Scholar

69. Feng, G., C. C. Boon, F. Meng, X. Yi, K. Yang, C. Li, and H. C. Luong, "Pole-converging intrastage bandwidth extension technique for wideband amplifiers," IEEE Journal of Solid-State Circuits, Vol. 52, 769-780, 2017.        Google Scholar

70. Zhang, F. and P. R. Kinget, "Low-power programmable gain CMOS distributed LNA," IEEE Journal of Solid-State Circuits, Vol. 41, 1333-1343, Jun. 2006.        Google Scholar

71. Liao, C. F. and S. I. Liu, "A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers," IEEE Journal of Solid-State Circuits, Vol. 42, 329-339, Feb. 2007.        Google Scholar

72. Razavi, B., T. Aytur, C. Lam, F.-R. Yang, K.-Y. Li, R.-H. Yan, H.-C. Kang, C.-C. Hsu, and C.- C. Lee, "A UWB CMOS transceiver," IEEE Journal of Solid-State Circuits, Vol. 40, 2555-2562, Dec. 2005.        Google Scholar

73. Shekhar, S., J. S. Walling, and D. J. Allstot, "Bandwidth extension techniques for CMOS amplifiers," IEEE Journal of Solid-State Circuits, Vol. 41, 2424-2439, Nov. 2006.        Google Scholar

74. Woo, S., W. Kim, C. H. Lee, H. Kim, and J. Laskar, "A wideband low-power CMOS LNA with positive-negative feedback for noise, gain, and linearity optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3169-3178, 2012.        Google Scholar

75. Tsai, M. H., S. S. H. Hsu, F. L. Hsueh, C. P. Jou, and T. J. Yeh, "Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 553-561, Jan. 2013.        Google Scholar

76. Zhang, Z., A. Dinh, L. Chen, and H. Wang, "Wide range linearity improvement technique for linear wideband LNA," IEICE Electronics Express, Vol. 14, 1-10, 2017.        Google Scholar

77. Lu, Y., K. S. Yeo, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, "A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 53, 1683-1692, Aug. 2006.        Google Scholar

78. Souza, M. D., A. Mariano, and T. Taris, "Reconfigurable inductorless wideband CMOS LNA for wireless communications," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, 675-685, 2017.        Google Scholar

79. Luo, C. K., P. S. Gudem, and J. F. Buckwalter, "A 0.4–6-GHz 17-dBm B1 dB 36-dBm IIP3 channel-selecting low-noise amplifier for SAW-less 3G/4G FDD diversity receivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 1110-1121, Apr. 2016.        Google Scholar

80. Tey, Y.-Y., H. Ramiah, N. M. Noh, and U. R. Jagadheswaran, "A 50 MHz~10 GHz, 3.3 dB NF, +6 dBm IIP3 resistive feedback common source amplifier for cognitive radio application," Microelectronics Journal, Vol. 61, 89-94, Jan. 30, 2017.        Google Scholar

81. Bagga, S., A. L. Mansano, W. A. Serdijn, J. R. Long, K. V. Hartingsveldt, and K. Philips, "A frequency-selective broadband low-noise amplifier with double-loop transformer feedback," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 61, 1883-1891, 2014.        Google Scholar

82. Sakian, P., E. Janssen, A. H. M. V. Roermund, and R. Mahmoudi, "Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 702-713, 2012.        Google Scholar

83. Kaukovuori, J., J. Ryynanen, and K. A. I. Halonen, "CMOS low-noise amplifier analysis and optimization for wideband applications," Ph.D RME’06, 445-448, Otranto (Lecce), Italy, 2006.        Google Scholar

84. Manstretta, D., "A broadband low-noise single-ended input differential output amplifier with IM2 cancelling," IEEE RFIC’08, 79-82, 2008.        Google Scholar

85. Carrillo, T. C., J. G. Macias-Montero, O. Marti Aitor, J. S. Cordoba, and J. M. Lopez-Villegas, "CMOS single-ended-to-differential low-noise amplifier," INTEGRATION, The VLSI Journal, Vol. 42, 304-311, Jun. 2009.        Google Scholar

86. Pavageau, C., O. Dupuis, M. Dehan, B. Parvais, G. Carchon, and W. de Raedt, "A 60-GHz LNA and a 92-GHz low-power distributed amplifier in CMOS with above-IC," EuMIC’08, 250-253, 2008.        Google Scholar

87. Karaca, D., M. Varonen, D. Parveg, A. Vahdati, and K. A. I. Halonen, "A 53–117 GHz LNA in 28-nm FDSOI CMOS," IEEE Microwave and Wireless Components Letters, Vol. 27, 171-173, 2017.        Google Scholar

88. Fakharzadeh, M., M. R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. SafaviNaeini, "CMOS phased array transceiver technology for 60 GHz wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 58, 1093-1104, Apr. 2010.        Google Scholar

89. Bozzola, S., D. Guermandi, F. Vecchi, M. Repossi, M. Pozzoni, A. Mazzanti, and F. Svelto, "A sliding IF receiver for mm-wave WLANs in 65 nm CMOS," IEEE CICC’09, 669-672, 2009.        Google Scholar

90. Parsa, A. and B. Razavi, "A 60 GHz CMOS receiver using a 30 GHz LO," ISSCC’08, 190-606, 2008.        Google Scholar

91. Yu, Y. K., P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher, and A. H. M. van Roermund, "A 60 GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems," IEEE Journal of Solid-State Circuits, Vol. 45, 1697-1709, Sept. 2010.        Google Scholar

92. Fritsche, D., G. Tretter, C. Carta, and F. Ellinger, "Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1910-1922, 2015.        Google Scholar

93. Feng, G., C. C. Boon, F. Meng, X. Yi, and C. Li, "An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications," IEEE Microwave and Wireless Components Letters, Vol. 26, 134-136, 2016.        Google Scholar

94. Lin, W.-H., Y.-N. Jen, J.-H. Tsai, H.-C. Lu, and T.-W. Huang, "V-band fully-integrated CMOS LNA and DAT PA for 60 GHz WPAN applications," EuMC’10, 284-287, 2010.        Google Scholar

95. Li, N., K. Bunsen, N. Takayama, Q. Bu, T. Suzuki, M. Sato, T. Hirose, K. Okada, and A. Matsuzawa, "A 24 dB gain 51–68 GHz CMOS low noise amplifier using asymmetric-layout transistors," ESSCIRC’10, 342-345, 2010.        Google Scholar

96. Kang, K., J. Brinkhoff, and F. J. Lin, "A 60-GHz LNA with 18.6-dB gain and 5.7-dB NF in 90-nm CMOS," Microwave and Optical Technology Letters, Vol. 52, 2056-2059, Sep. 2010.        Google Scholar

97. Tsai, J. H., "A 55–64 GHz fully-integrated sub-harmonic wideband transceiver in 130 nm CMOS process," IEEE Microwave and Wireless Components Letters, Vol. 19, 758-760, Nov. 2009.        Google Scholar

98. Kang, K., F. J. Lin, D. D. Pham, J. Brinkhoff, C. H. Heng, Y. X. Guo, and X. J. Yuan, "A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 45, 1720-1731, Sep. 2010.        Google Scholar

99. Varonen, M., M. Kaltiokallio, V. Saari, O. Viitala, M. Karkkainen, S. Lindfors, J. Ryynanen, and K. A. I. Halonen, "A 60-GHz CMOS receiver with an on-chip ADC," IEEE RFIC’09, 445-448, 2009.        Google Scholar

100. Tanomura, M., Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi, and H. Shimawaki, "TX and RX front-ends for 60 GHz band in 90 nm standard bulk CMOS," ISSCC’08, 558-635, 2008.        Google Scholar

101. Pinel, S., S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, and J. Laskar, "A 90 nm CMOS 60 GHz radio," ISSCC’08, 130-601, 2008.        Google Scholar

102. Heydari, B., M. Bohsali, E. Adabi, and A. M. Niknejad, "Low-power mm-wave components up to 104 GHz in 90 nm CMOS," ISSCC’07, 200-597, 2007.        Google Scholar

103. Lin, Y. S., T. H. Chang, C. Z. Chen, C. C. Chen, H. Y. Yang, and S. S. Wong, "Low-power 48- GHz CMOS VCO and 60-GHz CMOS LNA for 60-GHz dual-conversion receiver," VLSI-DAT’09, 88-91, 2009.        Google Scholar

104. Pellerano, S., Y. Palaskas, and K. Soumyanath, "A 64 GHz 6.5 dB NF 15.5 dB gain LNA in 90 nm CMOS," ESSCIRC’07, 352-355, 2007.        Google Scholar

105. Kim, K. J., K. H. Ahn, T. H. Lim, H. C. Park, and J. W. Yu, "A 60 GHz wideband phasedarray LNA with short-stub passive vector generator," IEEE Microwave and Wireless Components Letters, Vol. 20, 628-630, 2010.        Google Scholar

106. Janssen, E., R. Mahmoudi, E. van der Heijden, P. Sakian, A. de Graauw, R. Pijper, and A. van Roermund, "Fully balanced 60 GHz LNA with 37% bandwidth, 3.8 dB NF, 10 dB gain and constant group delay over 6 GHz bandwidth," SiRF’10, 124-127, New Orleans, LA, 2010.        Google Scholar

107. Heller, T., E. Cohen, and E. Socher, "A 102–129-GHz 39-dB gain 8.4-dB noise fighure I/Q receiver frontend in 28-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 1535-1543, 2016.        Google Scholar

108. Haroun, I., J. Wight, C. Plett, A. Fathy, and Y. C. Hsu, "A V-band 90-nm CMOS low-noise amplifier with modified CPW transmission lines for UWB systems," SiRF’10, 160-163, New Orleans, LA, 2010.        Google Scholar

109. Pepe, D. and D. Zito, "32 dB gain 28 nm bulk CMOS W-band LNA," IEEE Microwave and Wireless Components Letters, Vol. 25, 55-57, 2015.        Google Scholar

110. Parveg, D., M. Varonen, D. Karaca, A. Vahdati, M. Kantanen, and K. A. I. Halonen, "Design of a D-band CMOS amplifier utilizing coupled slow-wave coplanar waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. PP, 1-15, 2017.        Google Scholar

111. Vecchi, F., S. Bozzola, M. Pozzoni, D. Guermandi, E. Temporiti, M. Repossi, U. Decanis, A. Mazzanti, and F. Svelto, "A 60 GHz receiver with 13 GHz bandwidth for Gbit/s wireless links in 65 nm CMOS," ICICDT’10, 228-231, 2010.        Google Scholar

112. Medra, A., D. Guermandi, K. Vaesen, S. Brebels, A. Bourdoux, W. V. Thillo, P. Wambacq, and V. Giannini, "An 80 GHz low-noise amplifier resilient to the TX spillover in phase-modulated continuous-wave radars," IEEE Journal of Solid-State Circuits, Vol. 51, 1141-1153, 2016.        Google Scholar

113. Chen, C.-C., Y.-S. Lin, P.-L. Huang, J.-F. Fang, and S.-S. Lu, "A 4.9-dB NF 53.5–62-GHz micromachined CMOS wideband LNA with small group-delay-variation," IEEE MTT’10, 489-492, 2010.        Google Scholar

114. Wang, C. S., J. W. Huang, K. D. Chu, and C. K. Wang, "A 60-GHz phased array receiver front-end in 0.13-µm CMOS technology," IEEE Transactions on Circuits and Systems I — Regular Papers, Vol. 56, 2341-2352, Oct. 2009.        Google Scholar

115. Wang, C.-S., J.-W. Huang, K.-D. Chu, and C.-K. Wang, "A 0.13 µm CMOS fully differential receiver with on-chip baluns for 60 GHz broadband wireless communications," IEEE CICC’08, 479-482, 2008.        Google Scholar

116. Lee, J. H., C. C. Chen, and Y. S. Lin, "A 60-GHz CMOS receiver front-end with integrated 180 degrees out-of-phase Wilkinson power divider," Microwave and Optical Technology Letters, Vol. 52, 2688-2694, Dec. 2010.        Google Scholar

117. Rashtian, H., C. Majek, S. Mirabbasi, T. Taris, Y. Deval, and J. Begueret, "On the use of body biasing to control gain, linearity, and noise figure of a mm-wave CMOS LNA," IEEE NEWCAS’10, 333-336, 2010.        Google Scholar

118. Natarajan, A., S. Nicolson, T. Ming-Da, and B. Floyd, "A 60 GHz variable-gain LNA in 65 nm CMOS," IEEE A-SSCC’08, 117-120, Fukuoka, Japan, 2008.        Google Scholar

119. Borremans, J., K. Raczkowski, and P. Wambacq, "A digitally controlled compact 57-to-66 GHz front-end in 45 nm digital CMOS," ISSCC’09, 492-493, 2009.        Google Scholar

120. Lee, J., Y. S. Chen, and Y. L. Huang, "A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly," IEEE Journal of Solid-State Circuits, Vol. 45, 264-275, Feb. 2010.        Google Scholar

121. Siligaris, A., C. Mounet, B. Reig, P. Vincent, and A. Michel, "CMOS SOI technology for WPAN application to 60 GHz LNA," IEEE ICICDT’08, 17-20, 2008.        Google Scholar

122. Al-Ameri, T., V. P. Georgiev, F. Adamu-Lema, and A. Asenov, "Simulation study of vertically stacked lateral Si nanowires transistors for 5-nm CMOS applications," IEEE Journal of the Electron Devices Society, Vol. 5, 466-472, Nov. 2017.        Google Scholar