1. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511841224
2. Li, X. J., B.-C. Seet, and P. H. J. Chong, "Multihop cellular networks: Technology and economics," Computer Networks, Vol. 52, 1825-1837, Jun. 2008.
doi:10.1016/j.comnet.2008.01.019 Google Scholar
3. Doan, C. H., S. Emami, A. M. Niknejad, and R. W. Brodersen, "Millimeter-wave CMOS design," IEEE Journal of Solid-State Circuits, Vol. 40, 144-155, 2005.
doi:10.1109/JSSC.2004.837251 Google Scholar
4. Paulraj, A. J., D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of MIMO communications — A key to gigabit wireless," Proceedings of the IEEE, Vol. 92, 198-218, Feb. 2004.
doi:10.1109/JPROC.2003.821915 Google Scholar
5. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
6. Cathelin, A., "Fully depleted silicon on insulator devices CMOS: The 28-nm node is the perfect technology for analog, RF, mmW, and mixed-signal system-on-chip integration," IEEE Solid-State Circuits Magazine, Vol. 9, 18-26, Apr. 2017.
doi:10.1109/MSSC.2017.2745738 Google Scholar
7. Kim, H.-S., K. Park, H. Oh, and E. S. Jung, "Effective gate layout methods for RF performance enhancement in MOSFETs," IEEE Electron Device Letters, Vol. 30, 1105-1107, Oct. 2009. Google Scholar
8. Adabi, E., B. Heydari, M. Bohsali, and A. M. Niknejad, "30 GHz CMOS low noise amplifier," IEEE RFIC’07, 625-628, 2007. Google Scholar
9. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, 1390-1436, 2011.
doi:10.1109/JPROC.2011.2143650 Google Scholar
10. Niknejad, A. M., D. Chowdhury, and J. Chen, "Design of CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 1784-1796, Jun. 2012.
doi:10.1109/TMTT.2012.2193898 Google Scholar
11. Li, X. J. and Y. P. Zhang, "Flipping the CMOS switch," IEEE Microwave Magazine, Vol. 11, 86-96, Feb. 2010.
doi:10.1109/MMM.2009.935203 Google Scholar
12. Misra, D. K., Radio-frequency and Microwave Communication Circuits: Analysis and Design, John Wiley & Sons, 2004.
13. Lee, T. H., The Design of CMOS Radio-frequency Integrated Circuits, 2nd Ed., Cambridge University Press, 2004.
14. Van der Ziel, A., Noise in Solid State Devices and Circuits, Wiley, 1986.
15. Allstot, D. J., X. Li, and S. Shekhar, "Design considerations for CMOS low-noise amplifiers," IEEE RFIC’04, 97-100, 2004. Google Scholar
16. Cha, C.-Y. and S.-G. Lee, "A low power, high gain LNA topology," IEEE ICMMT’00, 420-423, Beijing, China, 2000. Google Scholar
17. Yeh, H. C., Z. Y. Liao, and H. Wang, "Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 3441-3454, Dec. 2011.
doi:10.1109/TMTT.2011.2173350 Google Scholar
18. Nguyen, T.-K., C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, "CMOS low-noise amplifier design optimization techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1433-1442, May 2004.
doi:10.1109/TMTT.2004.827014 Google Scholar
19. Gramegna, G., A. Magazzu, C. Sclafani, M. Paparo, and P. Erratico, "A 9 mW, 900-MHz CMOS LNA with 1.05 dB-noise-figure," ESSCC’00, 112-115, Stockholm, Sweden, 2000. Google Scholar
20. Im, D., I. Nam, S.-S. Song, H.-T. Kim, and K. Lee, "A CMOS resistive feedback single to differential low noise amplifier with multiple-tuner-outputs for a digital TV tuner," IEEE RFIC’09, 555-558, 2009. Google Scholar
21. Guo, B., J. Chen, L. Li, H. Jin, and G. Yang, "A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations," IEEE Journal of Solid-State Circuits, Vol. 52, 1331-1344, May 2017.
doi:10.1109/JSSC.2017.2657598 Google Scholar
22. Kim, S. J., D. Lee, K. Y. Lee, and S. G. Lee, "A 2.4-GHz super-regenerative transceiver with selectivity-improving dual Q-enhancement architecture and 102-µW all-digital FLL," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 3287-3298, Sep. 2017.
doi:10.1109/TMTT.2017.2664826 Google Scholar
23. Li, X., S. Shekhar, and D. J. Allstot, "Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-µm CMOS," IEEE Journal of Solid-State Circuits, Vol. 40, 2609-2619, Dec. 2005.
doi:10.1109/JSSC.2005.857426 Google Scholar
24. Chen, X., Q. Feng, and S. Li, "Design of a 2.5 GHz differential CMOS LNA," Progress In Electromagnetics Research Symposium, 203-206, Cambridge, USA, Jul. 2–6, 2008. Google Scholar
25. Haus, H. A., et al., "Representation of noise in linear twoports," Proceedings of the IRE, Vol. 48, 69-74, Jan. 1960.
doi:10.1109/JRPROC.1960.287381 Google Scholar
26. Stubbe, F., S. V. Kishore, C. Hull, and V. D. Torre, "A CMOS RF-receiver front-end for 1 GHz applications," IEEE VLSIC’98, 80-83, 1998. Google Scholar
27. Shaeffer, D. K. and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise amplifier," IEEE Journal of Solid-State Circuits, Vol. 32, 745-758, May 1997.
doi:10.1109/4.568846 Google Scholar
28. Andreani, P. and H. Sjoland, "Noise optimization of an inductively degenerated CMOS low noise amplifier," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 48, 835-841, 2001.
doi:10.1109/82.964996 Google Scholar
29. Zhuo, W., X. Li, S. Shekhar, S. H. K. Embabi, J. P. D. Gyvez, D. J. Allstot, and E. SanchezSinencio, "A capacitor cross-coupled common-gate low-noise amplifier," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 52, 875-879, Dec. 2005.
doi:10.1109/TCSII.2005.853966 Google Scholar
30. Pan, Z., C. Qin, Z. Ye, and Y. Wang, "A low power inductorless wideband LNA with Gm enhancement and noise cancellation," IEEE Microwave and Wireless Components Letters, Vol. 27, 58-60, 2017.
doi:10.1109/LMWC.2016.2629969 Google Scholar
31. Liu, H. J. and Z. F. Zhang, "An ultra-low power CMOS LNA for WPAN applications," IEEE Microwave and Wireless Components Letters, Vol. 27, 174-176, 2017.
doi:10.1109/LMWC.2016.2647382 Google Scholar
32. Fan, X., H. Zhang, and E. Sanchez-Sinencio, "A noise reduction and linearity improvement technique for a differential cascode LNA," IEEE Journal of Solid-State Circuits, Vol. 43, 588-599, 2008.
doi:10.1109/JSSC.2007.916584 Google Scholar
33. Ho, Y.-C., Implementation and improvement for RF low noise amplifier in conventional CMOS technologies, Ph.D dissertation, University of Florida, Gainesville, 2000.
34. Guan, X. and A. Hajimiri, "A 24-GHz CMOS front-end," IEEE Journal of Solid-State Circuits, Vol. 39, 368-373, 2004.
doi:10.1109/JSSC.2003.821783 Google Scholar
35. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 2012.
36. Bowick, C., J. Blyler, and C. Ajluni, RF Circuit Design, Elsevier Inc., 2008.
37. Sivonen, P. and A. Parssinen, "Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1304-1313, 2005.
doi:10.1109/TMTT.2005.845773 Google Scholar
38. Cohen, E., S. Ravid, and D. Ritter, "An ultra low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS process for 60 GHz phase array radio," IEEE RFIC’08, 61-64, 2008. Google Scholar
39. Kunze, J. W., C. Weyers, P. Mayr, A. Bilgic, and J. Hausner, "60 GHz compact low noise amplifier in 65 nm CMOS," Electronics Letters, Vol. 45, 1035-1046, Sep. 2009.
doi:10.1049/el.2009.0518 Google Scholar
40. Marcu, C., D. Chowdhury, C. Thakkar, J. D. Park, L. K. Kong, M. Tabesh, Y. J. Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, E. Alon, and A. M. Niknejad, "A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry," IEEE Journal of Solid-State Circuits, Vol. 44, 3434-3447, Dec. 2009.
doi:10.1109/JSSC.2009.2032584 Google Scholar
41. Huang, B. J., C. H. Wang, C. C. Chen, M. F. Lei, P. C. Huang, K. Y. Lin, and H. Wang, "Design and analysis for a 60-GHz low-noise amplifier with RF ESD protection," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 298-305, Feb. 2009.
doi:10.1109/TMTT.2008.2011158 Google Scholar
42. Mitomo, T., R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y. Tsutsumi, and I. Seto, "A 60-GHz CMOS receiver front-end with frequency synthesizer," IEEE Journal of SolidState Circuits, Vol. 43, 1030-1037, Apr. 2008.
doi:10.1109/JSSC.2008.917557 Google Scholar
43. Razavi, B., "A 60-GHz CMOS receiver front-end," IEEE Journal of Solid-State Circuits, Vol. 41, 17-22, Jan. 2006.
doi:10.1109/JSSC.2005.858626 Google Scholar
44. Kang, M. S., B. S. Kim, W. J. Byun, K. S. Kim, S. H. Oh, S. Pinel, J. Laskar, and M. S. Song, "PA and LNA for millimeter-wave WPAN using 90 nm CMOS process," Microwave and Optical Technology Letters, Vol. 51, 2029-2032, Sep. 2009.
doi:10.1002/mop.24549 Google Scholar
45. Lin, Y. S. and S. S. Wong, "A 60-GHz low noise amplifier for 60-GHz dual-conversion receiver," Microwave and Optical Technology Letters, Vol. 51, 885-891, Apr. 2009.
doi:10.1002/mop.24200 Google Scholar
46. Kanaya, H., T. Nakamura, K. Kawakami, and K. Yoshida, "Design of coplanar waveguide matching circuit for RF-CMOS front-end," Electronics and Communications in Japan (Part II: Electronics), Vol. 88, 19-26, 2005.
doi:10.1002/ecjb.20161 Google Scholar
47. Haroun, I., H. Yuan-Chia, J. Wight, and C. Plett, "A CMOS low-noise amplifier with VPW matching elements for 60-GHz-band Gbit/s wireless systems," IEEE APMC’09, 473-476, 2009. Google Scholar
48. Severino, R. R., T. Taris, Y. Deval, and J. B. Begueret, "A transformer-based 60 GHz CMOS LNA for low voltage applications," IEEE RFIT’07, 62-65, 2007. Google Scholar
49. Yeh, H. C., C. C. Chiong, S. Aloui, and H. Wang, "Analysis and design of millimeter-wave lowvoltage CMOS cascode LNA with magnetic coupled technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 4066-4079, Dec. 2012.
doi:10.1109/TMTT.2012.2224365 Google Scholar
50. Yu, X. and N. M. Neihart, "Analysis and design of a reconfigurable multimode low-noise amplifier utilizing a multitap transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 1236-1246, Mar. 2013.
doi:10.1109/TMTT.2012.2237037 Google Scholar
51. Wu, L., H. F. Leung, and H. C. Luong, "Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, 1626-1635, 2017.
doi:10.1109/TCSI.2017.2649844 Google Scholar
52. Kim, K. J., S. H. Lee, S. Park, and K. H. Ahn, "60 GHz CMOS gain-boosted LNA with transformer feedbacked neutraliser," Electronics Letters, Vol. 51, 1461-1462, 2015.
doi:10.1049/el.2015.0336 Google Scholar
53. Weyers, C., P. Mayr, J. W. Kunze, and U. Langmann, "A 22.3 dB voltage gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS with differential output," ISSCC’08, 192-606, 2008. Google Scholar
54. Kuo, M.-C., C.-N. Kuo, and T.-C. Chueh, "Wideband LNA compatible for differential and singleended inputs," IEEE Microwave and Wireless Components Letters, Vol. 19, 482-484, Jul. 2009. Google Scholar
55. Terry, Y., M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, Y. Ming-Ta, P. Schvan, and S. P. Voinigescu, "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, Vol. 42, 1044-1057, 2007.
doi:10.1109/JSSC.2007.894325 Google Scholar
56. Kraemer, M., D. Dragomirescu, and R. Plana, "A low-power high-gain LNA for the 60 GHz band in a 65 nm CMOS technology," IEEE APMC’09, 1156-1159, 2009. Google Scholar
57. Im, D., I. Nam, and K. Lee, "A CMOS active feedback balun-LNA with high IIP2 for wideband digital TV receivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 3566-3579, Nov. 2010. Google Scholar
58. Guo, S., T. Xi, P. Gui, D. Huang, Y. Fan, and M. Morgan, "A transformer feedback Gm-boosting technique for gain improvement and noise reduction in mwWave cascode LNAs," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 2080-2090, 2016.
doi:10.1109/TMTT.2016.2564398 Google Scholar
59. Karanicolas, A. N., "A 2.7-V 900-MHz CMOS LNA and mixer," IEEE Journal of Solid-State Circuits, Vol. 31, 1939-1944, 1996.
doi:10.1109/4.545816 Google Scholar
60. Li, Z., C. Wang, Q. Li, and Z. Wang, "60 GHz low-power LNA with high gmxRout transconductor stages in 65 nm CMOS," Electronics Letters, Vol. 53, 279-281, 2017.
doi:10.1049/el.2016.4061 Google Scholar
61. Hsieh, H.-H., J.-H. Wang, and L.-H. Lu, "Gain-enhancement techniques for CMOS folded cascode LNAs at low-voltage operations," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1807-1816, Aug. 2008. Google Scholar
62. Lin, W.-H., J.-H. Tsai, Y.-N. Jen, T.-W. Huang, and H. Wang, "A 0.7-V 60-GHz low-power LNA with forward body bias technique in 90 nm CMOS process," EuMC’09, 393-396, 2009. Google Scholar
63. Parvizi, M., K. Allidina, and M. N. El-Gamal, "Short channel output conductance enhancement through forward body biasing to realize a 0.5 V 250 µW 0.6–4.2 GHz current-reuse CMOS LNA," IEEE Journal of Solid-State Circuits, Vol. 51, 574-586, Mar. 2016. Google Scholar
64. Parvizi, M., K. Allidina, and M. N. El-Gamal, "An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 1843-1853, 2016. Google Scholar
65. Lai, M. T. and H. W. Tsao, "Ultra-low-power cascaded CMOS LNA with positive feedback and bias optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 1934-1945, 2013. Google Scholar
66. Mitola, J. and G. Q. Maguire, "Cognitive radio: Making software radios more personal," IEEE Personal Communications, Vol. 6, 13-18, Aug. 1999. Google Scholar
67. Abidi, A. A., "The path to the software-defined radio receiver," IEEE Journal of Solid-State Circuits, Vol. 42, 954-966, Apr. 2007. Google Scholar
68. Arbabian, A. and A. M. Niknejad, "Design of a CMOS tapered cascaded multistage distributed amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 938-947, Apr. 2009. Google Scholar
69. Feng, G., C. C. Boon, F. Meng, X. Yi, K. Yang, C. Li, and H. C. Luong, "Pole-converging intrastage bandwidth extension technique for wideband amplifiers," IEEE Journal of Solid-State Circuits, Vol. 52, 769-780, 2017. Google Scholar
70. Zhang, F. and P. R. Kinget, "Low-power programmable gain CMOS distributed LNA," IEEE Journal of Solid-State Circuits, Vol. 41, 1333-1343, Jun. 2006. Google Scholar
71. Liao, C. F. and S. I. Liu, "A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers," IEEE Journal of Solid-State Circuits, Vol. 42, 329-339, Feb. 2007. Google Scholar
72. Razavi, B., T. Aytur, C. Lam, F.-R. Yang, K.-Y. Li, R.-H. Yan, H.-C. Kang, C.-C. Hsu, and C.- C. Lee, "A UWB CMOS transceiver," IEEE Journal of Solid-State Circuits, Vol. 40, 2555-2562, Dec. 2005. Google Scholar
73. Shekhar, S., J. S. Walling, and D. J. Allstot, "Bandwidth extension techniques for CMOS amplifiers," IEEE Journal of Solid-State Circuits, Vol. 41, 2424-2439, Nov. 2006. Google Scholar
74. Woo, S., W. Kim, C. H. Lee, H. Kim, and J. Laskar, "A wideband low-power CMOS LNA with positive-negative feedback for noise, gain, and linearity optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3169-3178, 2012. Google Scholar
75. Tsai, M. H., S. S. H. Hsu, F. L. Hsueh, C. P. Jou, and T. J. Yeh, "Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 553-561, Jan. 2013. Google Scholar
76. Zhang, Z., A. Dinh, L. Chen, and H. Wang, "Wide range linearity improvement technique for linear wideband LNA," IEICE Electronics Express, Vol. 14, 1-10, 2017. Google Scholar
77. Lu, Y., K. S. Yeo, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, "A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 53, 1683-1692, Aug. 2006. Google Scholar
78. Souza, M. D., A. Mariano, and T. Taris, "Reconfigurable inductorless wideband CMOS LNA for wireless communications," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, 675-685, 2017. Google Scholar
79. Luo, C. K., P. S. Gudem, and J. F. Buckwalter, "A 0.4–6-GHz 17-dBm B1 dB 36-dBm IIP3 channel-selecting low-noise amplifier for SAW-less 3G/4G FDD diversity receivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 1110-1121, Apr. 2016. Google Scholar
80. Tey, Y.-Y., H. Ramiah, N. M. Noh, and U. R. Jagadheswaran, "A 50 MHz~10 GHz, 3.3 dB NF, +6 dBm IIP3 resistive feedback common source amplifier for cognitive radio application," Microelectronics Journal, Vol. 61, 89-94, Jan. 30, 2017. Google Scholar
81. Bagga, S., A. L. Mansano, W. A. Serdijn, J. R. Long, K. V. Hartingsveldt, and K. Philips, "A frequency-selective broadband low-noise amplifier with double-loop transformer feedback," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 61, 1883-1891, 2014. Google Scholar
82. Sakian, P., E. Janssen, A. H. M. V. Roermund, and R. Mahmoudi, "Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 702-713, 2012. Google Scholar
83. Kaukovuori, J., J. Ryynanen, and K. A. I. Halonen, "CMOS low-noise amplifier analysis and optimization for wideband applications," Ph.D RME’06, 445-448, Otranto (Lecce), Italy, 2006. Google Scholar
84. Manstretta, D., "A broadband low-noise single-ended input differential output amplifier with IM2 cancelling," IEEE RFIC’08, 79-82, 2008. Google Scholar
85. Carrillo, T. C., J. G. Macias-Montero, O. Marti Aitor, J. S. Cordoba, and J. M. Lopez-Villegas, "CMOS single-ended-to-differential low-noise amplifier," INTEGRATION, The VLSI Journal, Vol. 42, 304-311, Jun. 2009. Google Scholar
86. Pavageau, C., O. Dupuis, M. Dehan, B. Parvais, G. Carchon, and W. de Raedt, "A 60-GHz LNA and a 92-GHz low-power distributed amplifier in CMOS with above-IC," EuMIC’08, 250-253, 2008. Google Scholar
87. Karaca, D., M. Varonen, D. Parveg, A. Vahdati, and K. A. I. Halonen, "A 53–117 GHz LNA in 28-nm FDSOI CMOS," IEEE Microwave and Wireless Components Letters, Vol. 27, 171-173, 2017. Google Scholar
88. Fakharzadeh, M., M. R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. SafaviNaeini, "CMOS phased array transceiver technology for 60 GHz wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 58, 1093-1104, Apr. 2010. Google Scholar
89. Bozzola, S., D. Guermandi, F. Vecchi, M. Repossi, M. Pozzoni, A. Mazzanti, and F. Svelto, "A sliding IF receiver for mm-wave WLANs in 65 nm CMOS," IEEE CICC’09, 669-672, 2009. Google Scholar
90. Parsa, A. and B. Razavi, "A 60 GHz CMOS receiver using a 30 GHz LO," ISSCC’08, 190-606, 2008. Google Scholar
91. Yu, Y. K., P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher, and A. H. M. van Roermund, "A 60 GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems," IEEE Journal of Solid-State Circuits, Vol. 45, 1697-1709, Sept. 2010. Google Scholar
92. Fritsche, D., G. Tretter, C. Carta, and F. Ellinger, "Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1910-1922, 2015. Google Scholar
93. Feng, G., C. C. Boon, F. Meng, X. Yi, and C. Li, "An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications," IEEE Microwave and Wireless Components Letters, Vol. 26, 134-136, 2016. Google Scholar
94. Lin, W.-H., Y.-N. Jen, J.-H. Tsai, H.-C. Lu, and T.-W. Huang, "V-band fully-integrated CMOS LNA and DAT PA for 60 GHz WPAN applications," EuMC’10, 284-287, 2010. Google Scholar
95. Li, N., K. Bunsen, N. Takayama, Q. Bu, T. Suzuki, M. Sato, T. Hirose, K. Okada, and A. Matsuzawa, "A 24 dB gain 51–68 GHz CMOS low noise amplifier using asymmetric-layout transistors," ESSCIRC’10, 342-345, 2010. Google Scholar
96. Kang, K., J. Brinkhoff, and F. J. Lin, "A 60-GHz LNA with 18.6-dB gain and 5.7-dB NF in 90-nm CMOS," Microwave and Optical Technology Letters, Vol. 52, 2056-2059, Sep. 2010. Google Scholar
97. Tsai, J. H., "A 55–64 GHz fully-integrated sub-harmonic wideband transceiver in 130 nm CMOS process," IEEE Microwave and Wireless Components Letters, Vol. 19, 758-760, Nov. 2009. Google Scholar
98. Kang, K., F. J. Lin, D. D. Pham, J. Brinkhoff, C. H. Heng, Y. X. Guo, and X. J. Yuan, "A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 45, 1720-1731, Sep. 2010. Google Scholar
99. Varonen, M., M. Kaltiokallio, V. Saari, O. Viitala, M. Karkkainen, S. Lindfors, J. Ryynanen, and K. A. I. Halonen, "A 60-GHz CMOS receiver with an on-chip ADC," IEEE RFIC’09, 445-448, 2009. Google Scholar
100. Tanomura, M., Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi, and H. Shimawaki, "TX and RX front-ends for 60 GHz band in 90 nm standard bulk CMOS," ISSCC’08, 558-635, 2008. Google Scholar
101. Pinel, S., S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, and J. Laskar, "A 90 nm CMOS 60 GHz radio," ISSCC’08, 130-601, 2008. Google Scholar
102. Heydari, B., M. Bohsali, E. Adabi, and A. M. Niknejad, "Low-power mm-wave components up to 104 GHz in 90 nm CMOS," ISSCC’07, 200-597, 2007. Google Scholar
103. Lin, Y. S., T. H. Chang, C. Z. Chen, C. C. Chen, H. Y. Yang, and S. S. Wong, "Low-power 48- GHz CMOS VCO and 60-GHz CMOS LNA for 60-GHz dual-conversion receiver," VLSI-DAT’09, 88-91, 2009. Google Scholar
104. Pellerano, S., Y. Palaskas, and K. Soumyanath, "A 64 GHz 6.5 dB NF 15.5 dB gain LNA in 90 nm CMOS," ESSCIRC’07, 352-355, 2007. Google Scholar
105. Kim, K. J., K. H. Ahn, T. H. Lim, H. C. Park, and J. W. Yu, "A 60 GHz wideband phasedarray LNA with short-stub passive vector generator," IEEE Microwave and Wireless Components Letters, Vol. 20, 628-630, 2010. Google Scholar
106. Janssen, E., R. Mahmoudi, E. van der Heijden, P. Sakian, A. de Graauw, R. Pijper, and A. van Roermund, "Fully balanced 60 GHz LNA with 37% bandwidth, 3.8 dB NF, 10 dB gain and constant group delay over 6 GHz bandwidth," SiRF’10, 124-127, New Orleans, LA, 2010. Google Scholar
107. Heller, T., E. Cohen, and E. Socher, "A 102–129-GHz 39-dB gain 8.4-dB noise fighure I/Q receiver frontend in 28-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 1535-1543, 2016. Google Scholar
108. Haroun, I., J. Wight, C. Plett, A. Fathy, and Y. C. Hsu, "A V-band 90-nm CMOS low-noise amplifier with modified CPW transmission lines for UWB systems," SiRF’10, 160-163, New Orleans, LA, 2010. Google Scholar
109. Pepe, D. and D. Zito, "32 dB gain 28 nm bulk CMOS W-band LNA," IEEE Microwave and Wireless Components Letters, Vol. 25, 55-57, 2015. Google Scholar
110. Parveg, D., M. Varonen, D. Karaca, A. Vahdati, M. Kantanen, and K. A. I. Halonen, "Design of a D-band CMOS amplifier utilizing coupled slow-wave coplanar waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. PP, 1-15, 2017. Google Scholar
111. Vecchi, F., S. Bozzola, M. Pozzoni, D. Guermandi, E. Temporiti, M. Repossi, U. Decanis, A. Mazzanti, and F. Svelto, "A 60 GHz receiver with 13 GHz bandwidth for Gbit/s wireless links in 65 nm CMOS," ICICDT’10, 228-231, 2010. Google Scholar
112. Medra, A., D. Guermandi, K. Vaesen, S. Brebels, A. Bourdoux, W. V. Thillo, P. Wambacq, and V. Giannini, "An 80 GHz low-noise amplifier resilient to the TX spillover in phase-modulated continuous-wave radars," IEEE Journal of Solid-State Circuits, Vol. 51, 1141-1153, 2016. Google Scholar
113. Chen, C.-C., Y.-S. Lin, P.-L. Huang, J.-F. Fang, and S.-S. Lu, "A 4.9-dB NF 53.5–62-GHz micromachined CMOS wideband LNA with small group-delay-variation," IEEE MTT’10, 489-492, 2010. Google Scholar
114. Wang, C. S., J. W. Huang, K. D. Chu, and C. K. Wang, "A 60-GHz phased array receiver front-end in 0.13-µm CMOS technology," IEEE Transactions on Circuits and Systems I — Regular Papers, Vol. 56, 2341-2352, Oct. 2009. Google Scholar
115. Wang, C.-S., J.-W. Huang, K.-D. Chu, and C.-K. Wang, "A 0.13 µm CMOS fully differential receiver with on-chip baluns for 60 GHz broadband wireless communications," IEEE CICC’08, 479-482, 2008. Google Scholar
116. Lee, J. H., C. C. Chen, and Y. S. Lin, "A 60-GHz CMOS receiver front-end with integrated 180 degrees out-of-phase Wilkinson power divider," Microwave and Optical Technology Letters, Vol. 52, 2688-2694, Dec. 2010. Google Scholar
117. Rashtian, H., C. Majek, S. Mirabbasi, T. Taris, Y. Deval, and J. Begueret, "On the use of body biasing to control gain, linearity, and noise figure of a mm-wave CMOS LNA," IEEE NEWCAS’10, 333-336, 2010. Google Scholar
118. Natarajan, A., S. Nicolson, T. Ming-Da, and B. Floyd, "A 60 GHz variable-gain LNA in 65 nm CMOS," IEEE A-SSCC’08, 117-120, Fukuoka, Japan, 2008. Google Scholar
119. Borremans, J., K. Raczkowski, and P. Wambacq, "A digitally controlled compact 57-to-66 GHz front-end in 45 nm digital CMOS," ISSCC’09, 492-493, 2009. Google Scholar
120. Lee, J., Y. S. Chen, and Y. L. Huang, "A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly," IEEE Journal of Solid-State Circuits, Vol. 45, 264-275, Feb. 2010. Google Scholar
121. Siligaris, A., C. Mounet, B. Reig, P. Vincent, and A. Michel, "CMOS SOI technology for WPAN application to 60 GHz LNA," IEEE ICICDT’08, 17-20, 2008. Google Scholar
122. Al-Ameri, T., V. P. Georgiev, F. Adamu-Lema, and A. Asenov, "Simulation study of vertically stacked lateral Si nanowires transistors for 5-nm CMOS applications," IEEE Journal of the Electron Devices Society, Vol. 5, 466-472, Nov. 2017. Google Scholar