1. Rong, A. and A. C. Cangellaris, "Interconnect transient simulation in the presence of layout and routing uncertainty," 2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems, 157-160, Oct. 2011. Google Scholar
2. Prasad, A. K., M. Ahadi, B. S. Thakur, and S. Roy, "Accurate polynomial chaos expansion for variability analysis using optimal design of experiments," 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, Aug. 2015. Google Scholar
3. Ginste, D. V., D. D. Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, and F. Canavero, "Stochastic modeling-based variability analysis of on-chip interconnects," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 7, 1182-1192, Jul. 2012.
doi:10.1109/TCPMT.2012.2192274 Google Scholar
4. Biondi, A., P. Manfredi, D. V. Ginste, D. D. Zutter, and F. G. Canavero, "Variability analysis of interconnect structures including general nonlinear elements in spice-type framework," Electronics Letters, Vol. 50, No. 4, 263-265, Feb. 2014.
doi:10.1049/el.2013.3191 Google Scholar
5. Pham, T. A., E. Gad, M. S. Nakhla, and R. Achar, "Decoupled polynomial chaos and its applications to statistical analysis of high-speed interconnects," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 10, 1634-1647, Oct. 2014.
doi:10.1109/TCPMT.2014.2340815 Google Scholar
6. Prasad, A. K. and S. Roy, "Global sensitivity based dimension reduction for fast variability analysis of nonlinear circuits," 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), 97-100, Oct. 2015. Google Scholar
7. Zhang, Z., T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, "Calculation of generalized polynomialchaos basis functions and gauss quadrature rules in hierarchical uncertainty quantification," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 33, No. 5, 728-740, May 2014.
doi:10.1109/TCAD.2013.2295818 Google Scholar
8. Zhang, Z., T. W. Weng, and L. Daniel, "Big-data tensor recovery for high-dimensional uncertainty quantification of process variations," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 5, 687-697, May 2017.
doi:10.1109/TCPMT.2016.2628703 Google Scholar
9. Prasad, A. K. and S. Roy, "Accurate reduced dimensional polynomial chaos for efficient uncertainty quantification of microwave/RF networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3697-3708, 2017.
doi:10.1109/TMTT.2017.2689742 Google Scholar
10. Blatman, G. and B. Sudret, "Adaptive sparse polynomial chaos expansion based on least angle regression," Journal of Computational Physics, Vol. 230, No. 6, 2345-2367, 2011.
doi:10.1016/j.jcp.2010.12.021 Google Scholar
11. Larbi, M., I. S. Stievano, F. G. Canavero, and P. Besnier, "Variability impact of many design parameters: The case of a realistic electronic link," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 34-41, Feb. 2018.
doi:10.1109/TEMC.2017.2727961 Google Scholar
12. Soize, C. and R. Ghanem, "Physical systems with random uncertainties: Chaos representations with arbitrary probability measure," SIAM Journal on Scientific Computing, Vol. 26, No. 2, 395-410, 2004.
doi:10.1137/S1064827503424505 Google Scholar
13. Berveiller, M., B. Sudret, and M. Lemaire, "Stochastic finite element: A non intrusive approach by regression," European Journal of Computational Mechanics, Vol. 15, No. 1-3, 81-92, 2006.
doi:10.3166/remn.15.81-92 Google Scholar
14. Montgomery, D. C., Design and Analysis of Experiments, John Wiley & Sons, 2004.
15. Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," The Annals of Statistics, Vol. 32, No. 2, 407-499, 2004.
doi:10.1214/009053604000000067 Google Scholar
16. Sobol, I. M., "Sensitivity estimates for nonlinear mathematical models," Mathematical Modelling and Computational Experiments, Vol. 1, No. 4, 407-414, 1993. Google Scholar
17. Sudret, B., "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering & System Safety, Vol. 93, No. 7, 964-979, 2008.
doi:10.1016/j.ress.2007.04.002 Google Scholar
18. Tang, T. K. and M. S. Nakhla, "Analysis of high-speed VLSI interconnects using the asymptotic waveform evaluation technique," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 11, No. 3, 341-352, Mar. 1992.
doi:10.1109/43.124421 Google Scholar
19. Marelli, S. and B. Sudret, "UQLab: A framework for uncertainty quantification in matlab," Proc. 2nd Int. Conf. on Vulnerability Risk Analysis and Management, 2554-2563, Liverpool, 2014. Google Scholar
20. McKay, M. D., R. J. Beckman, and W. J. Conover, "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code," Technometrics, Vol. 42, No. 1, 55-61, 2000.
doi:10.1080/00401706.2000.10485979 Google Scholar