1. Wong, K. L., Compact, and Broadband Microstrip Antennas, 10, Wiley, 2002.
doi:10.1002/0471221112
2. Mao, X. P. and J. W. Mark, "On polarization diversity in mobile communications," 2006 International Conference on Communication Technology, 1-4, Guilin, 2006. Google Scholar
3. Chu, Q. X., Y. Luo, and D. L. Wen, "Three principles of designing base-station antennas," International Symposium on Antennas and Propagation (ISAP), 1-3, Hobart, TAS, 2015. Google Scholar
4. Ding, C., H. Sun, R. W. Ziolkowski, and Y. J. Guo, "Simplified tightly-coupled cross-dipole arrangement for base station applications," IEEE Access, Vol. 5, 27491-27503, 2017.
doi:10.1109/ACCESS.2017.2778229 Google Scholar
5. He, Y., Z. Pan, X. Cheng, Y. He, J. Qiao, and M. M. Tentzeris, "A novel dual-band, dual-polarized, miniaturized, and low-profile base station antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5399-5408, Dec. 2015.
doi:10.1109/TAP.2015.2481488 Google Scholar
6. Seo, I., et al. "Design of dual polarized antenna for DCS, UMTS, WiBro base stations," IEEE International Conference on Wireless Information Technology and Systems, 1-4, HI, 2010. Google Scholar
7. Fhafhiem, N., P. Krachodnok, and R. Wangsan, "Design of a dual polarized resonator antenna for mobile communication system," International Journal of Electrical, Computer, Energetic and Communication Engineering, Vol. 8, No. 7, 2014. Google Scholar
8. Jung, Y. and S. Eom, "A compact multiband and dual-polarized mobile base-station antenna using optimal array structure," International Journal of Antenna and Propagation, Vol. 2015, 11, 2015. Google Scholar
9. Luo, Y., Q. X. Chu, and D. L. Wen, "A plus/minus 45 degree dual-polarized base-station antenna with enhanced cross-polarization discrimination via addition of four parasitic elements placed in a square contour," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1514-1519, Apr. 2016.
doi:10.1109/TAP.2016.2522463 Google Scholar
10. Kaddour, A., S. Bories, A. Bellion, and C. Delaveaud, "3D printed compact dual-polarized wideband antenna," 11th European Conference on Antenna and Propagation (EUCAP), 3452-3454, 2017. Google Scholar
11. Cui, Y. and R. Li, "Analysis and design of a broadband dual-polarized planar antenna for 2G/3G/4G base station," 11th European Conference on Antenna and Propagation, 2152-2156, 2017. Google Scholar
12. Huang, D. H. and Q. X. Chu, "Broadband dual-polarized oval-shaped antenna for base-station applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1859-1860, Fajardo, 2016. Google Scholar
13. Gou, Y., S. Yang, J. Li, and Z. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4392-4395, Aug. 2014.
doi:10.1109/TAP.2014.2327653 Google Scholar
14. Huang, H., Y. Liu, and S. Gong, "A broadband dual-polarized base station antenna with sturdy construction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 665-668, 2017.
doi:10.1109/LAWP.2016.2598181 Google Scholar
15. Zheng, D. Z. and Q. X. Chu, "A multimode wideband ±45◦ dual-polarized antenna with embedded loops," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 633-636, 2017.
doi:10.1109/LAWP.2016.2594240 Google Scholar
16. Zheng, D. Z. and Q. X. Chu, "A wideband dual-polarized antenna with two independently controllable resonant modes and its array for base-station applications," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, 1-1, 2017. Google Scholar
17. Chu, Q. X., D. L. Wen, and Y. Luo, "A broadband ±45◦ dual-polarized antenna with Y-shaped feeding lines," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 483-490, Feb. 2015.
doi:10.1109/TAP.2014.2381238 Google Scholar
18. Ando, A., A. Kondo, and S. Kubota, "A study of radio zone length of dual-polarized omnidirectional antennas mounted on rooftop for personal handy-phone system," IEEE Transactions on Vehicular Technology, Vol. 57, No. 1, 2-10, Jan. 2008.
doi:10.1109/TVT.2007.905432 Google Scholar
19. Li, Y., Z. J. Zhang, J. F. Zheng, and Z. H. Zheng, "Compact azimuthal omnidirectional dual-polarized antenna using highly isolated collocated slots," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4037-4045, 2012.
doi:10.1109/TAP.2012.2207072 Google Scholar
20. Quan, X., R. Li, Y. Fan, and D. E. Anagnostou, "Analysis and design of a 45◦ slant-polarized omnidirectional antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 86-93, Jan. 2014.
doi:10.1109/TAP.2013.2288367 Google Scholar
21. Quan, X. and R. Li, "A broadband dual-polarized omnidirectional antenna for base stations," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 943-947, Feb. 2013.
doi:10.1109/TAP.2012.2223450 Google Scholar
22. Yu, Y., J. Xiong, and R. Wang, "A wideband omnidirectional antenna array with low gain variation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 386-389, Dec. 2016.
doi:10.1109/LAWP.2015.2446757 Google Scholar
23. Jolani, F., Y. Yu, and Z. Chen, "A novel broadband omnidirectional dual-polarized MIMO antenna for 4G LTE applications," 2014 IEEE International Wireless Symposium, 1-4, Xi’an, 2014. Google Scholar
24. Wu, J., S. Yang, Y. Chen, S. Qu, and Z. Nie, "A low profile dual-polarized wideband omnidirectional antenna based on AMC reflector," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 368-374, Jan. 2017.
doi:10.1109/TAP.2016.2631147 Google Scholar
25. Alieldin, A. and Y. Huang, "Design of broadband dual-polarized oval-shaped base station antennas for mobile systems," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 183-184, San Diego, CA, USA, 2017. Google Scholar
26. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, 2005.