1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
4. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
doi:10.2307/j.ctvcm4gz9
5. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Phys. Rev. Lett., Vol. 114, No. 11, 114301, 2015.
doi:10.1103/PhysRevLett.114.114301 Google Scholar
6. Haldane, F. D. M., "Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ``parity anomaly''," Phys. Rev. Lett., Vol. 61, No. 18, 2015-2018, 1988.
doi:10.1103/PhysRevLett.61.2015 Google Scholar
7. Tsang, L., K.-H. Ding, and S. Tan, "Broadband point source Green’s function in a onedimensional infinite periodic lossless medium based on BBGFL with modal method," Progress In Electromagnetics Research, Vol. 163, 51-77, 2018.
doi:10.2528/PIER18071802 Google Scholar
8. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, Vol. 48, No. 11, 7767-7771, 1993.
doi:10.1103/PhysRevB.48.7767 Google Scholar
9. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901 Google Scholar
10. Kohn, W. and N. Rostoker, "Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium," Physical Review, Vol. 94, 1111-1120, 1954.
doi:10.1103/PhysRev.94.1111 Google Scholar
11. Silveirinha, M. and C. A. Fernandes, "A new method with exponential convergence to evaluate the periodic Green’s function," Proc. IEEE APS/URSI Symp., Vol. 2, 805-808, Columbus, OH, Jun. 2003. Google Scholar
12. Ewald, P. P., "Die berechnug optischer und elekrostatischen gitterpotential," Ann. Phys., Vol. 64, 253-268, 1921.
doi:10.1002/andp.19213690304 Google Scholar
13. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numericalevaluation of the Green’s functionfor the Helmholtzoperator on periodic structures," J. Comp. Phys., Vol. 63, 222-235, 1986.
doi:10.1016/0021-9991(86)90093-8 Google Scholar
14. Mathis, A. W. and A. F. Peterson, "A comparisonof acceleration procedures for the two-dimensional periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 44, 567-571, Apr. 1996.
doi:10.1109/8.489309 Google Scholar
15. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2, Numerical Simulations, Wiley-Interscience, 2001.
doi:10.1002/0471224308
16. Tan, S., Multiple volume scattering in random media and periodic structures with applications in microwave remote sensing and wave functional materials, Ph.D. Thesis, University of Michigan, https://deepblue.lib.umich.edu/handle/2027.42/137141, 2016.
17. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBGFL)," Opt. Express, Vol. 24, 945-965, 2016.
doi:10.1364/OE.24.000945 Google Scholar
18. Tan, S. and L. Tsang, "Green’s functions, including scatterers, for photonic crystals and metamaterials," J. Opt. Soc. Am. B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450 Google Scholar
19. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173 Google Scholar
20. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green’s function," Opt. Lett., Vol. 42, 4667-4670, 2017.
doi:10.1364/OL.42.004667 Google Scholar
21. Tan, S. and L. Tsang, "Effects of localized defects/sources in a periodic lattice using Green’s function of periodic scatterers," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Boston, MA, USA, 2018. Google Scholar
22. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free space periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 38, No. 12, 1958-1962, 1990.
doi:10.1109/8.60985 Google Scholar
23. Ivanishin, M. M. and S. P. Skobelev, "A modification of the Kummer’s method for efficient computation of the Green’s function for doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2794-2798, 2009.
doi:10.1109/TAP.2009.2027188 Google Scholar
24. Lifshitz, E. M., "The theory of molecular attractive forces between solids," Soviet Physics, Vol. 2, No. 1, 73-83, 1956. Google Scholar
25. Simpson, W. M. and U. Leonhardt, Forces of the Quantum Vacuum: An Introduction to Casimir Physics, World Scientific Publishing Company, 2015.
doi:10.1142/9383
26. Tsang, L., K. H. Ding, T. H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green’s function with higher order low wavenumber extractions," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 16-25, Feb. 2018.
doi:10.1109/TEMC.2017.2727958 Google Scholar