1. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254 Google Scholar
2. Imura, T. and Y. Hori, "Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula," IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, 4746-4752, 2011.
doi:10.1109/TIE.2011.2112317 Google Scholar
3. Sample, A. P., D. T. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002 Google Scholar
4. Zargham, M. and P. G. Gulak, "Maximum achievable efficiency in near-field coupled power-transfer systems," IEEE Transactions on Biomedical Circuits & Systems, Vol. 6, No. 3, 228-245, 2012.
doi:10.1109/TBCAS.2011.2174794 Google Scholar
5. Dionigi, M., M. Mongiardo, and R. Perfetti, "Rigorous network and full-wave electromagnetic modeling of wireless power transfer links," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 1, 65-75, Jan. 2015.
doi:10.1109/TMTT.2014.2376555 Google Scholar
6. Monti, G., W. Che, Q. Wang, A. Costanzo, M. Dionigi, F. Mastri, M. Mongiardo, R. Perfetti, L. Tarricone, and Y. Chang, "Wireless power transfer with three-ports networks: Optimal analytical solutions," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, No. 2, 494-503, Feb. 2017.
doi:10.1109/TCSI.2016.2603187 Google Scholar
7. Kim, J., D. H. Kim, and Y. J. Park, "Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices," IEEE Transactions on Industrial Electronics, Vol. 62, No. 5, 2807-2813, 2015.
doi:10.1109/TIE.2014.2365751 Google Scholar
8. Kim, N. Y., K. Y. Kim, J. Choi, and C. W. Kim, "Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer," Electronics Letters, Vol. 48, No. 8, 452-454, 2012.
doi:10.1049/el.2012.0580 Google Scholar
9. Mastri, F., A. Costanzo, and M. Mongiardo, "Coupling-independent wireless power transfer," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 3, 222-225, 2016.
doi:10.1109/LMWC.2016.2524560 Google Scholar
10. Yang, Y., Y. Luo, S. Chen, and X. Wen, "A frequency-tracking and impedance-matching combined system for robust wireless power transfer," International Journal of Antennas and Propagation, 1-13, 2017. Google Scholar
11. Lee, J., Y. Lim, H. Ahn, J.-D. Yu, and S.-O. Lim, "Impedance-matched wireless power transfer systems using an arbitrary number of coils with exible coil positioning," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1207-1210, 2014. Google Scholar
12. Hoang, H., S. Lee, Y. Kim, Y. Choi, and F. Bien, "An adaptive technique to improve wireless power transfer for consumer electronics," IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, 327-332, 2012.
doi:10.1109/TCE.2012.6227430 Google Scholar
13. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, 2009.
doi:10.1109/TPEL.2009.2017195 Google Scholar
14. Xue, R.-F., K.-W. Cheng, and M. Je, "High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 4, 867-874, 2013.
doi:10.1109/TCSI.2012.2209297 Google Scholar
15. Beh, T. C., T. Imura, M. Kato, and Y. Hori, "Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching," 2010 IEEE International Symposium on Industrial Electronics (ISIE), 2011-2016, IEEE, 2010. Google Scholar
16. Beh, T. C., M. Kato, T. Imura, S. Oh, and Y. Hori, "Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling," IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, 3689-3698, 2013.
doi:10.1109/TIE.2012.2206337 Google Scholar
17. Lim, Y., H. Tang, S. Lim, and J. Park, "An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 29, No. 8, 4403-4413, 2014.
doi:10.1109/TPEL.2013.2292596 Google Scholar
18. Waters, B. H., A. P. Sample, and J. R. Smith, "Adaptive impedance matching for magnetically coupled resonators," PIERS Proceedings, 701, Moscow, Russia, Aug. 19–23, 2012. Google Scholar
19. Kiani, M., U.-M. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 6, 579-591, 2011.
doi:10.1109/TBCAS.2011.2158431 Google Scholar
20. Nikoletseas, S., Y. Yang, and A. Georgiadis, Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, Springer, 2016.
21. Mastri, F., M. Mongiardo, G. Monti, M. Dionigi, and L. Tarricone, "Gain expressions for resonant inductive wireless power transfer links with one relay element," Wireless Power Transfer, 2017. Google Scholar
22. Mastri, F., M. Mongiardo, G. Monti, and L. Tarricone, "Characterization of wireless power transfer links by network invariants," International Conference on Electromagnetics in Advanced Applications, 590-593, 2017. Google Scholar
23. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, 1992.
24. Kurokawa, K., "Power waves and the scattering matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 13, No. 2, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964 Google Scholar
25. Roberts, S., "Conjugate-image impedances," Proceedings of the IRE, Vol. 34, No. 4, 198-204, 1946.
doi:10.1109/JRPROC.1946.234242 Google Scholar
26. Frickey, D. A., "Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 205-211, Feb. 1994.
doi:10.1109/22.275248 Google Scholar
27. Niu, W.-Q., J.-X. Chu, W. Gu, and A.-D. Shen, "Exact analysis of frequency splitting phenomena of contactless power transfer systems," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 6, 1670-1677, 2013.
doi:10.1109/TCSI.2012.2221172 Google Scholar
28. Costanzo, A., W. Che, M. Dionigi, F. Mastri, M. Mongiardo, G. Monti, L. Tarricone, and Q. Wang, "Matched resonant inductive WPT using the coupling-independent regime: Theory and experiments," Proc. of the European Microwave Conference (EuMC), 204-207, 2017. Google Scholar
29. Monti, G., A. Costanzo, F. Mastri, M. Mongiardo, and L. Tarricone, "Rigorous design of matched wireless power transfer links based on inductive coupling," Radio Science, Vol. 51, No. 6, 858-867, Jun. 2016.
doi:10.1002/2016RS006043 Google Scholar
30. Bowick, C., RF Circuit Design, Sams, 1982.
31. Van Bezooijen, A., M. A. de Jongh, F. van Straten, R. Mahmoudi, and A. H. M. van Roermund, "Adaptive impedance-matching techniques for controlling L networks," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 2, 495-505, 2010.
doi:10.1109/TCSI.2009.2023764 Google Scholar