1. Duarte, M. F., M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Lett., Vol. 25, 83, 2008.
doi:10.1109/MSP.2007.914730
2. Chan, W. L., K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Appl. Phys. Lett., Vol. 93, 121105, 2008.
doi:10.1063/1.2989126
3. Katz, O., Y. Bromberg, and Y. Silberberg, "Compressive ghost imaging," Appl. Phys. Lett., Vol. 95, 131110, 2009.
doi:10.1063/1.3238296
4. Sun, B., M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, "3D computational imaging with single-pixel detectors," Science, Vol. 340, 844-847, 2013.
doi:10.1126/science.1234454
5. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, 310-313, 2013.
doi:10.1126/science.1230054
6. Katz, O., P. Heidmann, M. Fink, and S. Gigan, "Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations," Nat. Photonics, Vol. 8, 784-790, 2014.
doi:10.1038/nphoton.2014.189
7. Liutkus, A., D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, "Imaging with nature: Compressive imaging using a multiply scattering medium," Sci. Rep., Vol. 4, Article No. 5552, 2014.
doi:10.1038/srep05552
8. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nat. Photonics, Vol. 8, 605-609, 2014.
doi:10.1038/nphoton.2014.139
9. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microw. Theory Tech., Vol. 49, 1581-1592, 2001.
doi:10.1109/22.942570
10. Chen, H.-M., S. Lee, R. M. Rao, M.-A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Process. Mag., Vol. 22, 52-61, 2005.
doi:10.1109/MSP.2005.1406480
11. Baranoski, E. J., "Through-wall imaging: Historical perspective and future directions," J. Franklin Inst., Vol. 345, 556-569, 2008.
doi:10.1016/j.jfranklin.2008.01.005
12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, 2002.
doi:10.1109/TBME.2002.800759
13. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microw. Mag., Vol. 12, 78-94, 2011.
doi:10.1109/MMM.2011.942702
14. Li, J. and P. Stoica, MIMO Radar Signal Processing, Wiley Online Library, 2008.
doi:10.1002/9780470391488
15. Montaldo, G., D. Palacio, M. Tanter, and M. Fink, "Building three-dimensional images using a time-reversal chaotic cavity," IEEE Trans. Ultrason., Ferroelect., Freq. Control, Vol. 52, 1489-1497, 2005.
doi:10.1109/TUFFC.2005.1516021
16. Yurduseven, O., V. R. Gowda, J. N. Gollub, and D. R. Smith, "Printed aperiodic cavity for computational and microwave imaging," IEEE Microw. Wirel. Compon. Lett., Vol. 26, 367-369, 2016.
doi:10.1109/LMWC.2016.2548443
17. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Microwave imaging using a disordered cavity with a dynamically tunable impedance surface," Phys. Rev. Applied, Vol. 6, 054019, 2016.
doi:10.1103/PhysRevApplied.6.054019
18. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, "Computational imaging using a mode-mixing cavity at microwave frequencies," Appl. Phys. Lett., Vol. 106, 194104, 2015.
doi:10.1063/1.4921081
19. Tondo Yoya, A. C., B. Fuchs, and M. Davy, "Computational passive imaging of thermal sources with a leaky chaotic cavity," Appl. Phys. Lett., Vol. 111, 193501, Nov. 6, 2017.
doi:10.1063/1.4996964
20. Zvolensky, T., J. N. Gollub, D. L. Marks, and D. R. Smith, "Design and analysis of a W-band metasurface-based computational imaging system," IEEE Access, 2017.
21. Gollub, J. N., O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, "Large metasurface aperture for millimeter wave computational imaging at the human-scale," Sci. Rep., Vol. 7, 42650, 2017.
doi:10.1038/srep42650
22. Fromenteze, T., X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, "Phaseless computational imaging with a radiating metasurface," Opt. Express, Vol. 24, 16760-16776, Jul. 25, 2016.
doi:10.1364/OE.24.016760
23. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Dynamic metamaterial aperture for microwave imaging," Appl. Phys. Lett., Vol. 107, 204104, Nov. 16, 2015.
doi:10.1063/1.4935941
24. Yurduseven, O., J. N. Gollub, D. L. Marks, and D. R. Smith, "Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures," Opt. Express, Vol. 24, 8907-8925, Apr. 18, 2016.
doi:10.1364/OE.24.008907
25. Marks, D. L., J. Gollub, and D. R. Smith, "Spatially resolving antenna arrays using frequency diversity," JOSA A, Vol. 33, 899-912, 2016.
doi:10.1364/JOSAA.33.000899
26. Yurduseven, O., V. R. Gowda, J. N. Gollub, and D. R. Smith, "Multistatic microwave imaging with arrays of planar cavities," IET Microwaves, Antennas & Propagation, Vol. 10, 1174-1181, 2016.
doi:10.1049/iet-map.2015.0836
27. Stockmann, H. J., Quantum Chaos: An Introduction, Cambridge University Press, 1999.
doi:10.1017/CBO9780511524622
28. Kuhl, U., O. Legrand, and F. Mortessagne, "Microwave experiments using open chaotic cavities in the realm of the effective Hamiltonian formalism," Fortschritte der Physik, Vol. 61, 404-419, 2013.
doi:10.1002/prop.201200101
29. Gradoni, G., J.-H. Yeh, B. Xiao, T. M. Antonsen, S. M. Anlage, and E. Ott, "Predicting the statistics of wave transport through chaotic cavities by the random coupling model: A review and recent progress," Wave Motion, Vol. 51, 606-621, 2014.
doi:10.1016/j.wavemoti.2014.02.003
30. Dietz, B. and A. Richter, "Quantum and wave dynamical chaos in superconducting microwave billiards," Chaos, Vol. 25, 097601, 2015.
doi:10.1063/1.4915527
31. Gros, J. B., U. Kuhl, O. Legrand, and F. Mortessagne, "Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field," Phys. Rev. E, Vol. 93, 032108, 2016.
doi:10.1103/PhysRevE.93.032108
32. Fromenteze, T., O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, "Computational polarimetric microwave imaging," Opt. Express, Vol. 25, 27488-27505, 2017.
doi:10.1364/OE.25.027488
33. Draeger, C. and M. Fink, "One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity," Phys. Rev. Lett., Vol. 79, 407-410, 1997.
doi:10.1103/PhysRevLett.79.407
34. Besnier, P. and B. Demoulin, Electromagnetic Reverberation Chambers, John Wiley & Sons, 2013.
35. Kaina, N., M. Dupre, M. Fink, and G. Lerosey, "Hybridized resonances to design tunable binary phase metasurface unit cells," Opt. Express, Vol. 22, 18881-18888, Aug. 11, 2014.
doi:10.1364/OE.22.018881
36. Kaina, N., M. Dupre, G. Lerosey, and M. Fink, "Shaping complex microwave fields in reverberating media with binary tunable metasurfaces," Sci. Rep., Vol. 4, 6693, 2014.
doi:10.1038/srep06693
37. Dupre, M., P. del Hougne, M. Fink, F. Lemoult, and G. Lerosey, "Wave-field shaping in cavities: Waves trapped in a box with controllable boundaries," Phys. Rev. Lett., Vol. 115, 017701, 2015.
doi:10.1103/PhysRevLett.115.017701
38. Lieberman, M. A. and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.
doi:10.1002/0471724254
39. Sokoloff, J., O. Pascal, T. Callegari, R. Pascaud, F. Pizarro, L. Liard, J. Lo, and A. Kallel, "Non-thermal plasma potentialities for microwave device reconfigurability," C. R. Phys., Vol. 15, 468-478, May 1, 2014.
doi:10.1016/j.crhy.2014.02.006
40. Borg, G. G., J. H. Harris, D. G. Miljak, and N. M. Martin, "Application of plasma columns to radiofrequency antennas," Appl. Phys. Lett., Vol. 74, 3272-3274, May 31, 1999.
doi:10.1063/1.123317
41. Osamu, S. and T. Kunihide, "Plasmas as metamaterials: A review," Plasma Sources Sci. Technol., Vol. 21, 013001, 2012.
doi:10.1088/0963-0252/21/1/013001
42. Lo, J., J. Sokoloff, T. Callegari, and J. P. Boeuf, "Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect," Appl. Phys. Lett., Vol. 96, 251501, Jun. 21, 2010.
doi:10.1063/1.3454778
43. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Ant. Prop., Vol. 55, 13-25, 2007.
doi:10.1109/TAP.2006.888401
44. Bahl, I. and K. Gupta, "A leaky-wave antenna using an artificial dielectric medium," IEEE Trans. Ant. Prop., Vol. 22, 119-122, 1974.
doi:10.1109/TAP.1974.1140715
45. Lovat, G., P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Trans. Ant. Prop., Vol. 54, 1017-1030, 2006.
doi:10.1109/TAP.2006.869925
46. Laquerbe, V., R. Pascaud, T. Callegari, L. Liard, and O. Pascal, "Frequency-agile microstrip resonator using DC plasma discharge," Electron. Lett., Vol. 53, 415-417, 2017.
doi:10.1049/el.2017.0261
47. Barro, O. A., O. Lafond, and H. Himdi, "Reconfigurable antennas radiations using plasma Faraday cage," 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), 545-548, 2015.
doi:10.1109/ICEAA.2015.7297175
48. Arnaut, L. R., "Statistics of the quality factor of a rectangular reverberation chamber," IEEE Trans. Elec. Comp., Vol. 45, 61-76, 2003.
49. Davy, M., Z. Shi, and A. Z. Genack, "Focusing through random media: Eigenchannel participation number and intensity correlation," Phys. Rev. B, Vol. 85, 035105, 2012.
doi:10.1103/PhysRevB.85.035105
50. Davy, M., Z. Shi, J. Wang, and A. Z. Genack, "Transmission statistics and focusing in single disordered samples," Opt. Express, Vol. 21, 10367-10375, 2013.
doi:10.1364/OE.21.010367
51. Hsu, C. W., S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, "Correlation-enhanced control of wave focusing in disordered media," Nat. Phys., Vol. 13, 497, 2017.
doi:10.1038/nphys4036
52. Del Hougne, P., M. F. Imani, M. Fink, D. R. Smith, and G. Lerosey, "Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping," Phys. Rev. Lett., Vol. 121, 063901, 2018.
doi:10.1103/PhysRevLett.121.063901
53. Rudin, L. I., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D, Vol. 60, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F
54. Cooper, K. B. and G. Chattopadhyay, "Submillimeter-wave radar: Solid-state system design and applications," IEEE Microw. Mag., Vol. 15, 51-67, 2014.
doi:10.1109/MMM.2014.2356092
55. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
doi:10.2528/PIER14113002