1. Duarte, M. F., M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Lett., Vol. 25, 83, 2008.
doi:10.1109/MSP.2007.914730 Google Scholar
2. Chan, W. L., K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Appl. Phys. Lett., Vol. 93, 121105, 2008.
doi:10.1063/1.2989126 Google Scholar
3. Katz, O., Y. Bromberg, and Y. Silberberg, "Compressive ghost imaging," Appl. Phys. Lett., Vol. 95, 131110, 2009.
doi:10.1063/1.3238296 Google Scholar
4. Sun, B., M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, "3D computational imaging with single-pixel detectors," Science, Vol. 340, 844-847, 2013.
doi:10.1126/science.1234454 Google Scholar
5. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, 310-313, 2013.
doi:10.1126/science.1230054 Google Scholar
6. Katz, O., P. Heidmann, M. Fink, and S. Gigan, "Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations," Nat. Photonics, Vol. 8, 784-790, 2014.
doi:10.1038/nphoton.2014.189 Google Scholar
7. Liutkus, A., D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, "Imaging with nature: Compressive imaging using a multiply scattering medium," Sci. Rep., Vol. 4, Article No. 5552, 2014.
doi:10.1038/srep05552 Google Scholar
8. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nat. Photonics, Vol. 8, 605-609, 2014.
doi:10.1038/nphoton.2014.139 Google Scholar
9. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microw. Theory Tech., Vol. 49, 1581-1592, 2001.
doi:10.1109/22.942570 Google Scholar
10. Chen, H.-M., S. Lee, R. M. Rao, M.-A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Process. Mag., Vol. 22, 52-61, 2005.
doi:10.1109/MSP.2005.1406480 Google Scholar
11. Baranoski, E. J., "Through-wall imaging: Historical perspective and future directions," J. Franklin Inst., Vol. 345, 556-569, 2008.
doi:10.1016/j.jfranklin.2008.01.005 Google Scholar
12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
13. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microw. Mag., Vol. 12, 78-94, 2011.
doi:10.1109/MMM.2011.942702 Google Scholar
14. Li, J. and P. Stoica, MIMO Radar Signal Processing, Wiley Online Library, 2008.
doi:10.1002/9780470391488
15. Montaldo, G., D. Palacio, M. Tanter, and M. Fink, "Building three-dimensional images using a time-reversal chaotic cavity," IEEE Trans. Ultrason., Ferroelect., Freq. Control, Vol. 52, 1489-1497, 2005.
doi:10.1109/TUFFC.2005.1516021 Google Scholar
16. Yurduseven, O., V. R. Gowda, J. N. Gollub, and D. R. Smith, "Printed aperiodic cavity for computational and microwave imaging," IEEE Microw. Wirel. Compon. Lett., Vol. 26, 367-369, 2016.
doi:10.1109/LMWC.2016.2548443 Google Scholar
17. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Microwave imaging using a disordered cavity with a dynamically tunable impedance surface," Phys. Rev. Applied, Vol. 6, 054019, 2016.
doi:10.1103/PhysRevApplied.6.054019 Google Scholar
18. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, "Computational imaging using a mode-mixing cavity at microwave frequencies," Appl. Phys. Lett., Vol. 106, 194104, 2015.
doi:10.1063/1.4921081 Google Scholar
19. Tondo Yoya, A. C., B. Fuchs, and M. Davy, "Computational passive imaging of thermal sources with a leaky chaotic cavity," Appl. Phys. Lett., Vol. 111, 193501, Nov. 6, 2017.
doi:10.1063/1.4996964 Google Scholar
20. Zvolensky, T., J. N. Gollub, D. L. Marks, and D. R. Smith, "Design and analysis of a W-band metasurface-based computational imaging system," IEEE Access, 2017. Google Scholar
21. Gollub, J. N., O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, "Large metasurface aperture for millimeter wave computational imaging at the human-scale," Sci. Rep., Vol. 7, 42650, 2017.
doi:10.1038/srep42650 Google Scholar
22. Fromenteze, T., X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, "Phaseless computational imaging with a radiating metasurface," Opt. Express, Vol. 24, 16760-16776, Jul. 25, 2016.
doi:10.1364/OE.24.016760 Google Scholar
23. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Dynamic metamaterial aperture for microwave imaging," Appl. Phys. Lett., Vol. 107, 204104, Nov. 16, 2015.
doi:10.1063/1.4935941 Google Scholar
24. Yurduseven, O., J. N. Gollub, D. L. Marks, and D. R. Smith, "Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures," Opt. Express, Vol. 24, 8907-8925, Apr. 18, 2016.
doi:10.1364/OE.24.008907 Google Scholar
25. Marks, D. L., J. Gollub, and D. R. Smith, "Spatially resolving antenna arrays using frequency diversity," JOSA A, Vol. 33, 899-912, 2016.
doi:10.1364/JOSAA.33.000899 Google Scholar
26. Yurduseven, O., V. R. Gowda, J. N. Gollub, and D. R. Smith, "Multistatic microwave imaging with arrays of planar cavities," IET Microwaves, Antennas & Propagation, Vol. 10, 1174-1181, 2016.
doi:10.1049/iet-map.2015.0836 Google Scholar
27. Stockmann, H. J., Quantum Chaos: An Introduction, Cambridge University Press, 1999.
doi:10.1017/CBO9780511524622
28. Kuhl, U., O. Legrand, and F. Mortessagne, "Microwave experiments using open chaotic cavities in the realm of the effective Hamiltonian formalism," Fortschritte der Physik, Vol. 61, 404-419, 2013.
doi:10.1002/prop.201200101 Google Scholar
29. Gradoni, G., J.-H. Yeh, B. Xiao, T. M. Antonsen, S. M. Anlage, and E. Ott, "Predicting the statistics of wave transport through chaotic cavities by the random coupling model: A review and recent progress," Wave Motion, Vol. 51, 606-621, 2014.
doi:10.1016/j.wavemoti.2014.02.003 Google Scholar
30. Dietz, B. and A. Richter, "Quantum and wave dynamical chaos in superconducting microwave billiards," Chaos, Vol. 25, 097601, 2015.
doi:10.1063/1.4915527 Google Scholar
31. Gros, J. B., U. Kuhl, O. Legrand, and F. Mortessagne, "Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field," Phys. Rev. E, Vol. 93, 032108, 2016.
doi:10.1103/PhysRevE.93.032108 Google Scholar
32. Fromenteze, T., O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, "Computational polarimetric microwave imaging," Opt. Express, Vol. 25, 27488-27505, 2017.
doi:10.1364/OE.25.027488 Google Scholar
33. Draeger, C. and M. Fink, "One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity," Phys. Rev. Lett., Vol. 79, 407-410, 1997.
doi:10.1103/PhysRevLett.79.407 Google Scholar
34. Besnier, P. and B. Demoulin, Electromagnetic Reverberation Chambers, John Wiley & Sons, 2013.
35. Kaina, N., M. Dupre, M. Fink, and G. Lerosey, "Hybridized resonances to design tunable binary phase metasurface unit cells," Opt. Express, Vol. 22, 18881-18888, Aug. 11, 2014.
doi:10.1364/OE.22.018881 Google Scholar
36. Kaina, N., M. Dupre, G. Lerosey, and M. Fink, "Shaping complex microwave fields in reverberating media with binary tunable metasurfaces," Sci. Rep., Vol. 4, 6693, 2014.
doi:10.1038/srep06693 Google Scholar
37. Dupre, M., P. del Hougne, M. Fink, F. Lemoult, and G. Lerosey, "Wave-field shaping in cavities: Waves trapped in a box with controllable boundaries," Phys. Rev. Lett., Vol. 115, 017701, 2015.
doi:10.1103/PhysRevLett.115.017701 Google Scholar
38. Lieberman, M. A. and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.
doi:10.1002/0471724254
39. Sokoloff, J., O. Pascal, T. Callegari, R. Pascaud, F. Pizarro, L. Liard, J. Lo, and A. Kallel, "Non-thermal plasma potentialities for microwave device reconfigurability," C. R. Phys., Vol. 15, 468-478, May 1, 2014.
doi:10.1016/j.crhy.2014.02.006 Google Scholar
40. Borg, G. G., J. H. Harris, D. G. Miljak, and N. M. Martin, "Application of plasma columns to radiofrequency antennas," Appl. Phys. Lett., Vol. 74, 3272-3274, May 31, 1999.
doi:10.1063/1.123317 Google Scholar
41. Osamu, S. and T. Kunihide, "Plasmas as metamaterials: A review," Plasma Sources Sci. Technol., Vol. 21, 013001, 2012.
doi:10.1088/0963-0252/21/1/013001 Google Scholar
42. Lo, J., J. Sokoloff, T. Callegari, and J. P. Boeuf, "Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect," Appl. Phys. Lett., Vol. 96, 251501, Jun. 21, 2010.
doi:10.1063/1.3454778 Google Scholar
43. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Ant. Prop., Vol. 55, 13-25, 2007.
doi:10.1109/TAP.2006.888401 Google Scholar
44. Bahl, I. and K. Gupta, "A leaky-wave antenna using an artificial dielectric medium," IEEE Trans. Ant. Prop., Vol. 22, 119-122, 1974.
doi:10.1109/TAP.1974.1140715 Google Scholar
45. Lovat, G., P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Trans. Ant. Prop., Vol. 54, 1017-1030, 2006.
doi:10.1109/TAP.2006.869925 Google Scholar
46. Laquerbe, V., R. Pascaud, T. Callegari, L. Liard, and O. Pascal, "Frequency-agile microstrip resonator using DC plasma discharge," Electron. Lett., Vol. 53, 415-417, 2017.
doi:10.1049/el.2017.0261 Google Scholar
47. Barro, O. A., O. Lafond, and H. Himdi, "Reconfigurable antennas radiations using plasma Faraday cage," 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), 545-548, 2015.
doi:10.1109/ICEAA.2015.7297175 Google Scholar
48. Arnaut, L. R., "Statistics of the quality factor of a rectangular reverberation chamber," IEEE Trans. Elec. Comp., Vol. 45, 61-76, 2003. Google Scholar
49. Davy, M., Z. Shi, and A. Z. Genack, "Focusing through random media: Eigenchannel participation number and intensity correlation," Phys. Rev. B, Vol. 85, 035105, 2012.
doi:10.1103/PhysRevB.85.035105 Google Scholar
50. Davy, M., Z. Shi, J. Wang, and A. Z. Genack, "Transmission statistics and focusing in single disordered samples," Opt. Express, Vol. 21, 10367-10375, 2013.
doi:10.1364/OE.21.010367 Google Scholar
51. Hsu, C. W., S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, "Correlation-enhanced control of wave focusing in disordered media," Nat. Phys., Vol. 13, 497, 2017.
doi:10.1038/nphys4036 Google Scholar
52. Del Hougne, P., M. F. Imani, M. Fink, D. R. Smith, and G. Lerosey, "Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping," Phys. Rev. Lett., Vol. 121, 063901, 2018.
doi:10.1103/PhysRevLett.121.063901 Google Scholar
53. Rudin, L. I., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D, Vol. 60, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F Google Scholar
54. Cooper, K. B. and G. Chattopadhyay, "Submillimeter-wave radar: Solid-state system design and applications," IEEE Microw. Mag., Vol. 15, 51-67, 2014.
doi:10.1109/MMM.2014.2356092 Google Scholar
55. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
doi:10.2528/PIER14113002 Google Scholar