Vol. 165
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-05-06
A Reconfigurable Chaotic Cavity with Fluorescent Lamps for Microwave Computational Imaging
By
Progress In Electromagnetics Research, Vol. 165, 1-12, 2019
Abstract
Several computational imaging systems have recently been proposed at microwave and millimeter-wave frequencies enabling a fast and low cost reconstruction of the scattering strength of a scene. The quality of the reconstructed images is directly linked to the degrees of freedom of the system which are the number of uncorrelated radiated patterns that sequentially sample the scene. Frequency diverse antennas such as leaky chaotic cavities and metamaterial apertures take advantage of the spectral decorrelation of transmitted speckle patterns that stems from the reverberation within a medium. We present a reconfigurable chaotic cavity for which the boundary conditions can be tuned by exciting plasma elements, here commercial fluorescent lamps. The interaction of electromagnetic waves with a cold plasma is strongly modified as it is ionized. Instead of being transparent to incident waves, it behaves theoretically as a metallic material. The independent states of the cavity obtained using a differential approach further enhance the degrees of freedom. This relaxes the need of a cavity with a large bandwidth and/or high quality factor. Experimental results validate the use of fluorescent lamps, and its limitations are discussed. Images of various metallic objects are provided to illustrate the potentialities of this promising solution.
Citation
Ariel Christopher Tondo Yoya, Benjamin Fuchs, Cecile Leconte, and Matthieu Davy, "A Reconfigurable Chaotic Cavity with Fluorescent Lamps for Microwave Computational Imaging," Progress In Electromagnetics Research, Vol. 165, 1-12, 2019.
doi:10.2528/PIER19011602
References

1. Duarte, M. F., M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Lett., Vol. 25, 83, 2008.
doi:10.1109/MSP.2007.914730        Google Scholar

2. Chan, W. L., K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Appl. Phys. Lett., Vol. 93, 121105, 2008.
doi:10.1063/1.2989126        Google Scholar

3. Katz, O., Y. Bromberg, and Y. Silberberg, "Compressive ghost imaging," Appl. Phys. Lett., Vol. 95, 131110, 2009.
doi:10.1063/1.3238296        Google Scholar

4. Sun, B., M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, "3D computational imaging with single-pixel detectors," Science, Vol. 340, 844-847, 2013.
doi:10.1126/science.1234454        Google Scholar

5. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, 310-313, 2013.
doi:10.1126/science.1230054        Google Scholar

6. Katz, O., P. Heidmann, M. Fink, and S. Gigan, "Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations," Nat. Photonics, Vol. 8, 784-790, 2014.
doi:10.1038/nphoton.2014.189        Google Scholar

7. Liutkus, A., D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, "Imaging with nature: Compressive imaging using a multiply scattering medium," Sci. Rep., Vol. 4, Article No. 5552, 2014.
doi:10.1038/srep05552        Google Scholar

8. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nat. Photonics, Vol. 8, 605-609, 2014.
doi:10.1038/nphoton.2014.139        Google Scholar

9. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microw. Theory Tech., Vol. 49, 1581-1592, 2001.
doi:10.1109/22.942570        Google Scholar

10. Chen, H.-M., S. Lee, R. M. Rao, M.-A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Process. Mag., Vol. 22, 52-61, 2005.
doi:10.1109/MSP.2005.1406480        Google Scholar

11. Baranoski, E. J., "Through-wall imaging: Historical perspective and future directions," J. Franklin Inst., Vol. 345, 556-569, 2008.
doi:10.1016/j.jfranklin.2008.01.005        Google Scholar

12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, 2002.
doi:10.1109/TBME.2002.800759        Google Scholar

13. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microw. Mag., Vol. 12, 78-94, 2011.
doi:10.1109/MMM.2011.942702        Google Scholar

14. Li, J. and P. Stoica, MIMO Radar Signal Processing, Wiley Online Library, 2008.
doi:10.1002/9780470391488

15. Montaldo, G., D. Palacio, M. Tanter, and M. Fink, "Building three-dimensional images using a time-reversal chaotic cavity," IEEE Trans. Ultrason., Ferroelect., Freq. Control, Vol. 52, 1489-1497, 2005.
doi:10.1109/TUFFC.2005.1516021        Google Scholar

16. Yurduseven, O., V. R. Gowda, J. N. Gollub, and D. R. Smith, "Printed aperiodic cavity for computational and microwave imaging," IEEE Microw. Wirel. Compon. Lett., Vol. 26, 367-369, 2016.
doi:10.1109/LMWC.2016.2548443        Google Scholar

17. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Microwave imaging using a disordered cavity with a dynamically tunable impedance surface," Phys. Rev. Applied, Vol. 6, 054019, 2016.
doi:10.1103/PhysRevApplied.6.054019        Google Scholar

18. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, "Computational imaging using a mode-mixing cavity at microwave frequencies," Appl. Phys. Lett., Vol. 106, 194104, 2015.
doi:10.1063/1.4921081        Google Scholar

19. Tondo Yoya, A. C., B. Fuchs, and M. Davy, "Computational passive imaging of thermal sources with a leaky chaotic cavity," Appl. Phys. Lett., Vol. 111, 193501, Nov. 6, 2017.
doi:10.1063/1.4996964        Google Scholar

20. Zvolensky, T., J. N. Gollub, D. L. Marks, and D. R. Smith, "Design and analysis of a W-band metasurface-based computational imaging system," IEEE Access, 2017.        Google Scholar

21. Gollub, J. N., O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, "Large metasurface aperture for millimeter wave computational imaging at the human-scale," Sci. Rep., Vol. 7, 42650, 2017.
doi:10.1038/srep42650        Google Scholar

22. Fromenteze, T., X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, "Phaseless computational imaging with a radiating metasurface," Opt. Express, Vol. 24, 16760-16776, Jul. 25, 2016.
doi:10.1364/OE.24.016760        Google Scholar

23. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Dynamic metamaterial aperture for microwave imaging," Appl. Phys. Lett., Vol. 107, 204104, Nov. 16, 2015.
doi:10.1063/1.4935941        Google Scholar

24. Yurduseven, O., J. N. Gollub, D. L. Marks, and D. R. Smith, "Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures," Opt. Express, Vol. 24, 8907-8925, Apr. 18, 2016.
doi:10.1364/OE.24.008907        Google Scholar

25. Marks, D. L., J. Gollub, and D. R. Smith, "Spatially resolving antenna arrays using frequency diversity," JOSA A, Vol. 33, 899-912, 2016.
doi:10.1364/JOSAA.33.000899        Google Scholar

26. Yurduseven, O., V. R. Gowda, J. N. Gollub, and D. R. Smith, "Multistatic microwave imaging with arrays of planar cavities," IET Microwaves, Antennas & Propagation, Vol. 10, 1174-1181, 2016.
doi:10.1049/iet-map.2015.0836        Google Scholar

27. Stockmann, H. J., Quantum Chaos: An Introduction, Cambridge University Press, 1999.
doi:10.1017/CBO9780511524622

28. Kuhl, U., O. Legrand, and F. Mortessagne, "Microwave experiments using open chaotic cavities in the realm of the effective Hamiltonian formalism," Fortschritte der Physik, Vol. 61, 404-419, 2013.
doi:10.1002/prop.201200101        Google Scholar

29. Gradoni, G., J.-H. Yeh, B. Xiao, T. M. Antonsen, S. M. Anlage, and E. Ott, "Predicting the statistics of wave transport through chaotic cavities by the random coupling model: A review and recent progress," Wave Motion, Vol. 51, 606-621, 2014.
doi:10.1016/j.wavemoti.2014.02.003        Google Scholar

30. Dietz, B. and A. Richter, "Quantum and wave dynamical chaos in superconducting microwave billiards," Chaos, Vol. 25, 097601, 2015.
doi:10.1063/1.4915527        Google Scholar

31. Gros, J. B., U. Kuhl, O. Legrand, and F. Mortessagne, "Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field," Phys. Rev. E, Vol. 93, 032108, 2016.
doi:10.1103/PhysRevE.93.032108        Google Scholar

32. Fromenteze, T., O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, "Computational polarimetric microwave imaging," Opt. Express, Vol. 25, 27488-27505, 2017.
doi:10.1364/OE.25.027488        Google Scholar

33. Draeger, C. and M. Fink, "One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity," Phys. Rev. Lett., Vol. 79, 407-410, 1997.
doi:10.1103/PhysRevLett.79.407        Google Scholar

34. Besnier, P. and B. Demoulin, Electromagnetic Reverberation Chambers, John Wiley & Sons, 2013.

35. Kaina, N., M. Dupre, M. Fink, and G. Lerosey, "Hybridized resonances to design tunable binary phase metasurface unit cells," Opt. Express, Vol. 22, 18881-18888, Aug. 11, 2014.
doi:10.1364/OE.22.018881        Google Scholar

36. Kaina, N., M. Dupre, G. Lerosey, and M. Fink, "Shaping complex microwave fields in reverberating media with binary tunable metasurfaces," Sci. Rep., Vol. 4, 6693, 2014.
doi:10.1038/srep06693        Google Scholar

37. Dupre, M., P. del Hougne, M. Fink, F. Lemoult, and G. Lerosey, "Wave-field shaping in cavities: Waves trapped in a box with controllable boundaries," Phys. Rev. Lett., Vol. 115, 017701, 2015.
doi:10.1103/PhysRevLett.115.017701        Google Scholar

38. Lieberman, M. A. and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.
doi:10.1002/0471724254

39. Sokoloff, J., O. Pascal, T. Callegari, R. Pascaud, F. Pizarro, L. Liard, J. Lo, and A. Kallel, "Non-thermal plasma potentialities for microwave device reconfigurability," C. R. Phys., Vol. 15, 468-478, May 1, 2014.
doi:10.1016/j.crhy.2014.02.006        Google Scholar

40. Borg, G. G., J. H. Harris, D. G. Miljak, and N. M. Martin, "Application of plasma columns to radiofrequency antennas," Appl. Phys. Lett., Vol. 74, 3272-3274, May 31, 1999.
doi:10.1063/1.123317        Google Scholar

41. Osamu, S. and T. Kunihide, "Plasmas as metamaterials: A review," Plasma Sources Sci. Technol., Vol. 21, 013001, 2012.
doi:10.1088/0963-0252/21/1/013001        Google Scholar

42. Lo, J., J. Sokoloff, T. Callegari, and J. P. Boeuf, "Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect," Appl. Phys. Lett., Vol. 96, 251501, Jun. 21, 2010.
doi:10.1063/1.3454778        Google Scholar

43. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Ant. Prop., Vol. 55, 13-25, 2007.
doi:10.1109/TAP.2006.888401        Google Scholar

44. Bahl, I. and K. Gupta, "A leaky-wave antenna using an artificial dielectric medium," IEEE Trans. Ant. Prop., Vol. 22, 119-122, 1974.
doi:10.1109/TAP.1974.1140715        Google Scholar

45. Lovat, G., P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Trans. Ant. Prop., Vol. 54, 1017-1030, 2006.
doi:10.1109/TAP.2006.869925        Google Scholar

46. Laquerbe, V., R. Pascaud, T. Callegari, L. Liard, and O. Pascal, "Frequency-agile microstrip resonator using DC plasma discharge," Electron. Lett., Vol. 53, 415-417, 2017.
doi:10.1049/el.2017.0261        Google Scholar

47. Barro, O. A., O. Lafond, and H. Himdi, "Reconfigurable antennas radiations using plasma Faraday cage," 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), 545-548, 2015.
doi:10.1109/ICEAA.2015.7297175        Google Scholar

48. Arnaut, L. R., "Statistics of the quality factor of a rectangular reverberation chamber," IEEE Trans. Elec. Comp., Vol. 45, 61-76, 2003.        Google Scholar

49. Davy, M., Z. Shi, and A. Z. Genack, "Focusing through random media: Eigenchannel participation number and intensity correlation," Phys. Rev. B, Vol. 85, 035105, 2012.
doi:10.1103/PhysRevB.85.035105        Google Scholar

50. Davy, M., Z. Shi, J. Wang, and A. Z. Genack, "Transmission statistics and focusing in single disordered samples," Opt. Express, Vol. 21, 10367-10375, 2013.
doi:10.1364/OE.21.010367        Google Scholar

51. Hsu, C. W., S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, "Correlation-enhanced control of wave focusing in disordered media," Nat. Phys., Vol. 13, 497, 2017.
doi:10.1038/nphys4036        Google Scholar

52. Del Hougne, P., M. F. Imani, M. Fink, D. R. Smith, and G. Lerosey, "Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping," Phys. Rev. Lett., Vol. 121, 063901, 2018.
doi:10.1103/PhysRevLett.121.063901        Google Scholar

53. Rudin, L. I., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D, Vol. 60, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F        Google Scholar

54. Cooper, K. B. and G. Chattopadhyay, "Submillimeter-wave radar: Solid-state system design and applications," IEEE Microw. Mag., Vol. 15, 51-67, 2014.
doi:10.1109/MMM.2014.2356092        Google Scholar

55. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
doi:10.2528/PIER14113002        Google Scholar