1. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field in atomically thin carbon films," Science, Vol. 306, No. 5696, 666-669, 2004, https://doi.org/10.1126/science.1102896.
doi:10.1126/science.1102896 Google Scholar
2. Manzeli, S., D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, "2D transition metal dichalcogenides," Nat. Rev. Mater., Vol. 2, Article number: 17033, 2017, https://doi.org/10.1038/natrevmats.2017.33. Google Scholar
3. Bhimanapati, G. R., Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, "Recent advances in two-dimensional materials beyond graphene," ACS Nano, Vol. 9, No. 12, 11509-11539, 2015, https://doi.org/10.1021/acsnano.5b05556.
doi:10.1021/acsnano.5b05556 Google Scholar
4. Dong, N., Y. Li, S. Zhang, X. Zhang, and J. Wang, "Optically induced transparency and extinction in dispersed MoS2, MoSe2, and graphene nanosheets," Adv. Opt. Mater., Vol. 5, No. 19, 1700543, 2017, https://doi.org/10.1002/adom.201700543.
doi:10.1002/adom.201700543 Google Scholar
5. Wang, Q. H., K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., Vol. 7, 699-712, 2012, https://doi.org/10.1038/nnano.2012.193.
doi:10.1038/nnano.2012.193 Google Scholar
6. Liu, T., C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu, "Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer," Adv. Mater., Vol. 26, No. 21, 3433-3440, 2014, https://doi.org/10.1002/adma.201305256.
doi:10.1002/adma.201305256 Google Scholar
7. Gao, W., Y. H. Lee, R. Jiang, J. Wang, T. Liu, and X. Y. Ling, "Localized and continuous tuning of monolayer MoS2 photoluminescence using a single shape-controlled Ag nanoantenna," Adv. Mater., Vol. 28, No. 4, 701-706, 2016, https://doi.org/10.1002/adma.201503905.
doi:10.1002/adma.201503905 Google Scholar
8. Wang, H., B. H. Chen, X. Y. Zhang, S. Liu, B. Q. Zhu, J. Wang, K. Wu, and J. P. Chen, "Ethanol catalytic deposition of MoS2 on tapered fiber," Photonics Res., Vol. 3, No. 3, A102-A107, 2015, https://doi.org/10.1364/prj.3.00a102.
doi:10.1364/PRJ.3.00A102 Google Scholar
9. Guan, G., S. Zhang, S. Liu, Y. Cai, M. Low, C. P. Teng, I. Y. Phang, Y. Cheng, K. L. Duei, B. M. Srinivasan, Y. Zheng, Y. W. Zhang, and M. Y. Han, "Protein induces layer-by-layer exfoliation of transition metal dichalcogenides," J. Am. Chem. Soc., Vol. 137, No. 19, 6152-6155, 2015, https://doi.org/10.1021/jacs.5b02780.
doi:10.1021/jacs.5b02780 Google Scholar
10. Pi, Y., Z. Li, D. Xu, J. Liu, Y. Li, F. Zhang, G. Zhang, W. Peng, and X. Fan, "1T-phase MoS2 nanosheets on TiO2 nanorod arrays: 3D photoanode with extraordinary catalytic performance," ACS Sustain. Chem. Eng., Vol. 5, No. 6, 5175-5182, 2017, https://doi.org/10.1021/acssuschemeng.7b00518.
doi:10.1021/acssuschemeng.7b00518 Google Scholar
11. Mak, K. F., C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: A new direct-gap semiconductor," Phys. Rev. Lett., Vol. 105, 136805, 2010, https://doi.org/10.1103/PhysRevLett.105.136805.
doi:10.1103/PhysRevLett.105.136805 Google Scholar
12. Ou, J. Z., A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, "Iondriven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems," Nano Lett., Vol. 14, No. 2, 857-863, 2014, https://doi.org/10.1021/nl4042356.
doi:10.1021/nl4042356 Google Scholar
13. Wang, N., F. Wei, Y. Qi, H. Li, X. Lu, G. Zhao, and Q. Xu, "Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling," ACS Appl. Mater. Interfaces, Vol. 6, No. 22, 19888-19894, 2014, https://doi.org/10.1021/am505305g.
doi:10.1021/am505305g Google Scholar
14. Li, J. L., H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, "Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy," Angew. Chemie — Int. Ed., Vol. 51, No. 8, 1830-1834, 2012, https://doi.org/10.1002/anie.201106102.
doi:10.1002/anie.201106102 Google Scholar
15. Qian, J., D.Wang, F. H. Cai, W. Xi, L. Peng, Z. F. Zhu, H. He, M. L. Hu, and S. He, "Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in invivo functional bioimaging," Angew. Chemie — Int. Ed., Vol. 51, No. 42, 10570-10575, 2012, https://doi.org/10.1002/anie.201206107.
doi:10.1002/anie.201206107 Google Scholar
16. Zhang, S., N. Dong, N. McEvoy, M. OBrien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, "Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films," ACS Nano, Vol. 9, No. 7, 7142-7150, 2015, https://doi.org/10.1021/acsnano.5b03480.
doi:10.1021/acsnano.5b03480 Google Scholar
17. Shi, L., L. A. Sordillo, A. Rodr´ıguez-Contreras, and R. Alfano, "Transmission in near-infrared optical windows for deep brain imaging," J. Biophotonics, Vol. 9, No. 1–2, 38-43, 2016, https://doi.org/10.1002/jbio.201500192.
doi:10.1002/jbio.201500192 Google Scholar
18. Yin, W., L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, "High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermaltriggered drug delivery for effective cancer therapy," ACS Nano, Vol. 8, No. 7, 6922-6933, 2014, https://doi.org/10.1021/nn501647j.
doi:10.1021/nn501647j Google Scholar
19. Chou, S. S., B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, "Chemically exfoliated MoS2 as near-infrared photothermal agents," Angew. Chemie — Int. Ed., Vol. 52, No. 15, 4160-4164, 2013, https://doi.org/10.1002/anie.201209229.
doi:10.1002/anie.201209229 Google Scholar
20. Li, Y., N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, and J. Wang, "Giant twophoton absorption in monolayer MoS2," Laser Photonics Rev., Vol. 9, No. 4, 427-434, 2015, https://doi.org/10.1002/lpor.201500052.
doi:10.1002/lpor.201500052 Google Scholar
21. Malard, L. M., T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. De Paula, "Observation of intense second harmonic generation from MoS2 atomic crystals," Phys. Rev. B — Condens. Matter Mater. Phys., Vol. 87, 201401(R), 2013, https://doi.org/10.1103/PhysRevB.87.201401..
doi:10.1103/PhysRevB.87.201401 Google Scholar
22. Zeng, J., M. Yuan, W. Yuan, Q. Dai, H. Fan, S. Lan, and S. Tie, "Enhanced second harmonic generation of MoS2 layers on a thin gold film," Nanoscale, Vol. 7, No. 32, 13547-13553, 2015, https://doi.org/10.1039/C5NR03133H.
doi:10.1039/C5NR03133H Google Scholar
23. Wang, R., H. C. Chien, J. Kumar, N. Kumar, H. Y. Chiu, and H. Zhao, "Third-harmonic generation in ultrathin films of MoS2," ACS Appl. Mater. Interfaces, Vol. 6, No. 1, 314-318, 2014, https://doi.org/10.1021/am4042542.
doi:10.1021/am4042542 Google Scholar
24. Zhang, W., Y. Wang, D. Zhang, S. Yu, W. Zhu, J. Wang, F. Zheng, S. Wang, and J. Wang, "A onestep approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding," Nanoscale, Vol. 7, No. 22, 10210-10217, 2015, https://doi.org/10.1039/c5nr02253c.
doi:10.1039/C5NR02253C Google Scholar
25. Eda, G., H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano Lett., Vol. 11, No. 12, 5111-5116, 2011, https://doi.org/10.1021/nl201874w.
doi:10.1021/nl201874w Google Scholar
26. Bao, H., Y. Pan, Y. Ping, N. G. Sahoo, T.Wu, L. Li, J. Li, and L. H. Gan, "Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery," Small, Vol. 7, No. 11, 1569-1578, 2011, https://doi.org/10.1002/smll.201100191.
doi:10.1002/smll.201100191 Google Scholar
27. Shang, N. G., P. Papakonstantinou, S. Sharma, G. Lubarsky, M. Li, D. W. McNeill, A. J. Quinn, W. Zhou, and R. Blackley, "Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding," Chem. Commun., Vol. 48, No. 13, 1877-1879, 2012, https://doi.org/10.1039/c2cc17185f.
doi:10.1039/c2cc17185f Google Scholar
28. Li, H., Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, "From bulk to monolayer MoS2: Evolution of Raman scattering," Adv. Funct. Mater., Vol. 22, No. 7, 1385-1390, 2012, https://doi.org/10.1002/adfm.201102111.
doi:10.1002/adfm.201102111 Google Scholar
29. Lee, C., H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single- and few-layer MoS2," ACS Nano, Vol. 4, No. 5, 2695-2700, 2010, https://doi.org/10.1021/nn1003937.
doi:10.1021/nn1003937 Google Scholar
30. Li, B. L., H. L. Zou, L. Lu, Y. Yang, J. L. Lei, H. Q. Luo, and N. B. Li, "Size-dependent optical absorption of layered MoS2 and DNA oligonucleotides induced dispersion behavior for label-free detection of single-nucleotide polymorphism," Adv. Funct. Mater., Vol. 25, No. 23, 3541-3550, 2015, https://doi.org/10.1002/adfm.201500180.
doi:10.1002/adfm.201500180 Google Scholar
31. Splendiani, A., L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2," Nano Lett., Vol. 10, No. 4, 1271-1275, 2010, https://doi.org/10.1021/nl903868w.
doi:10.1021/nl903868w Google Scholar
32. Wang, Y., J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. V. Medhekar, M. S. Strano, and K. Kalantar-Zadeh, "Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes," ACS Nano, Vol. 7, No. 11, 10083-10093, 2013, https://doi.org/10.1021/nn4041987.
doi:10.1021/nn4041987 Google Scholar
33. Zhan, Q., J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, "Using 915 nm laser excited Tm3+/Er3+/Ho33+-Doped NaYbF4 upconversion nanoparticles for in Vitro and deeper in Vivo bioimaging without overheating irradiation," ACS Nano, Vol. 5, No. 5, 3744-3757, 2011, https://doi.org/10.1021/nn200110j.
doi:10.1021/nn200110j Google Scholar
34. Wu, S., G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, "Non-blinking and photostable upconverted luminescence from single lanthanidedoped nanocrystals," Journal Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 27, 10917-10921, 2014, https://doi.org/10.1073/pnas.0904792106.
doi:10.1073/pnas.0904792106 Google Scholar
35. Wu, R., Q. Zhan, H. Liu, X. Wen, B. Wang, and S. He, "Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy," Opt. Express, Vol. 23, No. 25, 32401-32412, 2015, https://doi.org/10.1364/OE.23.032401.
doi:10.1364/OE.23.032401 Google Scholar
36. Zhan, Q., H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Agren, and S. He, "Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles," Nat. Commun., Vol. 8, 1-11, 2017. https://doi.org/10.1038/s41467-017-01141-y. Google Scholar