1. Pastorino, M., Microwave Imaging, John Wiley & Sons, 2010.
doi:10.1002/9780470602492
2. Costanzo, S., G. Di Massa, M. Pastorino, and A. Randazzo, "Hybrid microwave approach for phaseless imaging of dielectric targets," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 4, 851-854, 2015.
doi:10.1109/LGRS.2014.2364077 Google Scholar
3. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 12, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676 Google Scholar
4. Li, L., W. Zhang, and F. Li, "Tomographic reconstruction using the distorted Rytov iterative method with phaseless data," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 3, 479-483, 2008.
doi:10.1109/LGRS.2008.919818 Google Scholar
5. Li, L., H. Zheng, and F. Li, "Two-dimensional contrast source inversion method with phaseless data: TM case," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1719-1736, 2008. Google Scholar
6. Bermani, E., S. Caorsi, and M. Raffetto, "Microwave detection and dielectric characterization of cylindrical objects from amplitude-only data by means of neural networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1309-1314, 2002.
doi:10.1109/TAP.2002.801274 Google Scholar
7. Alvarez, Y., M. Garcia-Fernandez, L. Poli, C. Garcıa-Gonzalez, P. Rocca, A. Massa, and F. Las- Heras, "Inverse scattering for monochromatic phaseless measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 1, 45-60, 2016.
doi:10.1109/TIM.2016.2615478 Google Scholar
8. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui, "Deepnis: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, 2018.
doi:10.1109/TAP.2017.2768562 Google Scholar
9. Kamilov, U. S., D. Liu, H. Mansour, and P. T. Boufounos, "A recursive born approach to nonlinear inverse scattering," IEEE Signal Processing Letters, Vol. 23, No. 8, 1052-1056, 2016.
doi:10.1109/LSP.2016.2579647 Google Scholar
10. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning, MIT press, 2016.
11. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, 2018. Google Scholar
12. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, Vol. 26, No. 9, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099 Google Scholar
13. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015. Google Scholar
14. Meaney, P. M., T. Zhou, D. Goodwin, A. Golnabi, E. A. Attardo, and K. D. Paulsen, "Bone dielectric property variation as a function of mineralization at microwave frequencies," Journal of Biomedical Imaging, Vol. 7, 2012. Google Scholar
15. Meaney, P. M., D. Goodwin, A. Golnabi, T. Zhou, M. Pallone, S. Geimer, G. Burke, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE transactions on biomedical engineering, Vol. 59, No. 12, 3304-3313, 2012.
doi:10.1109/TBME.2012.2209202 Google Scholar
16. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, January 2010.
doi:10.1016/j.cpc.2009.11.008 Google Scholar
17. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.
18. Arslanagic, S. and O. Breinbjerg, "Electric-line-source illumination of a circular cylinder of lossless double-negative material: An investigation of near field, directivity, and radiation resistance," IEEE Antennas and Propagation Magazine, Vol. 48, No. 3, 38-54, 2006.
doi:10.1109/MAP.2006.1703397 Google Scholar
19. Attardo, E. A., A. Borsic, G. Vecchi, and P. M. Meaney, "Whole-system electromagnetic modeling for microwave tomography," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1618-1621, 2012.
doi:10.1109/LAWP.2013.2237745 Google Scholar
20. Chollet, F., et al. "Keras,", https://github.com/fchollet/keras, 2015. Google Scholar
21. Abadi, M., et al. "TensorFlow: Large-scale machine learning on heterogeneous systems,", 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/. Google Scholar
22. Ruder, S., "An overview of gradient descent optimization algorithms,", arXiv preprint arXiv:1609.04747, 2016. Google Scholar
23. Nair, V. and G. R. Hinton, "Rectified linear units improve restricted boltzmann machines," Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807-814, 2010. Google Scholar
24. Kingma, D. P. and J. Ba, "Adam: A method for stochastic optimization,", arXiv preprint arXiv:1412.6980, 2014. Google Scholar
25. Sihvola, A., "Electromagnetic mixing formulas and applications," IET Electromagnetic Waves Series, Vol. 47, 1999. Google Scholar