Vol. 166
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-12-23
Modulation on Silicon for Datacom: Past, Present, and Future (Invited Review)
By
Progress In Electromagnetics Research, Vol. 166, 119-145, 2019
Abstract
Datacenters become an important part of technical infrastructure. The Datacom traffic grows exponentially to satisfy the demands in IT services, storage, communications, and networking to the growing number of networked devices and users. High bandwidth and energy efficient optical interconnects are critical to improve overall productivity and efficiency in data centers. Mega-data centers are expected to address the power consumption and the cost in which optical interconnects contribute quite a large part. Silicon photonics is a promising platform to offer savings in power and potential increase in bandwidth for Datacom. Several modulation techniques are developed in silicon photonics to reduce the optical mode volume or enhance the light matter effectto further improve the modulation efficiency. Many other materials such as III-V and LiNbO3 are integrated on silicon photonics to maximize the optical link performance. This paper reviews several modulation techniques for Datacom, from VCSEL direct modulation to silicon photonics modulators then to hybrid silicon modulators.
Citation
Binhao Wang, Qiangsheng Huang, Kaixuan Chen, Jianhao Zhang, Geza Kurczveil, Di Liang, Samuel Palermo, Michael R. T. Tan, Raymond G. Beausoleil, and Sailing He, "Modulation on Silicon for Datacom: Past, Present, and Future (Invited Review)," Progress In Electromagnetics Research, Vol. 166, 119-145, 2019.
doi:10.2528/PIER19102405
References

1. Amann, M.-C. and W. Hofmann, "InP-based long-wavelength VCSELs and VCSEL arrays," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, 861-868, 2009.
doi:10.1109/JSTQE.2009.2013182        Google Scholar

2. Naoe, K., "High speed InP lasers for 400 GbE," Proc. European Conference on Optical Communication (ECOC), Th1D.1, 2019.        Google Scholar

3. Thomson, D., A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fedeli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, "Roadmap on silicon photonics," Journal of Optics, Vol. 18, No. 7, 073003, 2016.
doi:10.1088/2040-8978/18/7/073003        Google Scholar

4. Komljenovic, T., D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, "Photonic integrated circuits using heterogeneous integration on silicon," Proceedings of the IEEE, Vol. 106, No. 12, 2246-2257, 2018.
doi:10.1109/JPROC.2018.2864668        Google Scholar

5. Samani, A., M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, "A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system," IEEE Photonics Journal, Vol. 7, No. 3, 7901413, 2015.
doi:10.1109/JPHOT.2015.2426875        Google Scholar

6. Manipatruni, S., K. Preston, L. Chen, and M. Lipson, "Ultra-low voltage, ultra-small mode volume silicon microring modulator," Optics Express, Vol. 18, No. 17, 18235-18242, 2010.
doi:10.1364/OE.18.018235        Google Scholar

7. Nguyen, H. C., S. Hashimoto, M. Shinkawa, and T. Baba, "Compact and fast photonic crystal silicon optical modulators," Optics Express, Vol. 20, No. 20, 22465-22474, 2012.
doi:10.1364/OE.20.022465        Google Scholar

8. Melikyan, A., L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, "High-speed plasmonic phase modulators," Nature Photonics, Vol. 8, 229-233, 2014.
doi:10.1038/nphoton.2014.9        Google Scholar

9. Kuo, Y.-H., Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature, Vol. 437, 1334-1336, 2005.
doi:10.1038/nature04204        Google Scholar

10. Wang, C., M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Vol. 562, 101-104, 2018.
doi:10.1038/s41586-018-0551-y        Google Scholar

11. Schow, C. L. and K. Schmidtke, "INTREPID: Developing power efficient analog coherent interconnects to transform data center networks," Optical Fiber Communications Conference and Exhibition (OFC), M4D.9, 2019.        Google Scholar

12. Kerrebrouck, J. V., X. Pang, O. Ozolins, R. Lin, A. Udalcovs, L. Zhang, H. Li, S. Spiga, M.- C. Amann, L. Gan, M. Tang, S. Fu, R. Schatz, G. Jacobsen, S. Popov, D. Liu, W. Tong, G. Torfs, J. Bauwelinck, J. Chen, and X. Yin, "High-speed PAM4-based optical SDM interconnects with directly modulated long-wavelength VCSEL," IEEE/OSA Journal of Lightwave Technology, Vol. 37, No. 2, 356-362, 2019.
doi:10.1109/JLT.2018.2875538        Google Scholar

13. Huynh, T. N., et al. "4×50 Gb/s NRZ shortwave-wavelength division multiplexing VCSEL link over 50m multimode fiber," Optical Fiber Communications Conference and Exhibition (OFC), Tu2B.5, 2017.
doi:10.1364/OFC.2017.Tu2B.5        Google Scholar

14. Lin, C.-K., A. Tandon, K. Djordjev, S.W. Corzine, and M. R. T. Tan, "High-speed 985 nm bottomemitting VCSEL arrays for chip-to-chip parallel optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, 1332-1339, 2007.
doi:10.1109/JSTQE.2007.906794        Google Scholar

15. Tan, M. R. T., P. Rosenberg, W. V. Sorin, B. Wang, S. Mathai, G. Panotopoulos, and G. Rankin, "Universal photonic interconnect for data centers," IEEE/OSA Journal of Lightwave Technology, Vol. 36, 175-180, 2018.
doi:10.1109/JLT.2017.2747501        Google Scholar

16. Hatakeyama, H., T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, and M. Tsuj, "Highly reliable high-speed 1.1-μm-range VCSELs with InGaAs/GaAsP-MQWs," IEEE Journal of Quantum Electronics, Vol. 46, 890-897, 2010.
doi:10.1109/JQE.2010.2040583        Google Scholar

17. Lavrencik, J., S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, "4λ × 100 Gbps VCSEL PAM-4 transmission over 105m of wide band multimode fiber," Optical Fiber Communications Conference and Exhibition (OFC), Tu2B.5, 2017.        Google Scholar

18. Ralph, S. E. and J. Lavrencik, "High capacity VCSEL links," Optical Fiber Communications Conference and Exhibition (OFC), Tu3A.1, 2019.        Google Scholar

19. Horst, F., W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, "Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing," Optics Express, Vol. 21, 11652-11658, 2013.
doi:10.1364/OE.21.011652        Google Scholar

20. Dai, D., J. Wang, S. Chen, S. Wang, and S. He, "Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing," Laser Photonics Review, Vol. 9, 339-344, 2015.
doi:10.1002/lpor.201400446        Google Scholar

21. Pathak, S., P. Dumon, D. van Thourhout, and W. Bogaerts, "Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator," IEEE Photonics Journal, Vol. 6, 1-9, 2014.
doi:10.1109/JPHOT.2014.2361658        Google Scholar

22. Simpanen, E., J. S. Gustavsson, A. Larsson, M. Karlsson, W. V. Sorin, S. Mathai, M. R. Tan, and S. R. Bickham, "1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects," IEEE/OSA Journal of Lightwave Technology, Vol. 37, 2963-2969, 2019.
doi:10.1109/JLT.2019.2908249        Google Scholar

23. Tan, M. R. T., B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, "50 Gb/s PAM4 modulated 1065 nm single-mode VCSELs using SMF-28 for mega-data centers," IEEE Photonics Technology Letters, Vol. 29, 1128-1131, 2017.
doi:10.1109/LPT.2017.2707058        Google Scholar

24. Karinou, F., N. Stojanovic, A. Daly, C. Neumeyr, and M. Ortsiefer, "1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks," IEEE/OSA Journal of Lightwave Technology, Vol. 34, 2897-2904, 2016.
doi:10.1109/JLT.2015.2505359        Google Scholar

25. Malacarne, A., F. Falconi, C. Neumeyr, W. Soenen, C. Porzi, T. Aalto, J. Rosskopf., M. Chiesa, J. Bauwelinck, and A. Bogon, "Low-power 1.3-μm VCSEL transmitter for data center interconnects and beyond," Proc. European Conference on Optical Communication (ECOC), M.2.C.5, 2017.        Google Scholar

26. Kapon, E. and A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer," Nature Photonics, Vol. 3, 27-29, 2009.
doi:10.1038/nphoton.2008.266        Google Scholar

27. Tansu, N., N. J. Kirsch, and L. J. Mawst, "Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers," Applied Physics Letters, Vol. 81, No. 14, 2523, 2002.
doi:10.1063/1.1511290        Google Scholar

28. Liu, A., R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, Vol. 427, 615-618, 2004.
doi:10.1038/nature02310        Google Scholar

29. Sun, C., et al. "Single-chip microprocessor that communicates directly using light," Nature, Vol. 528, 534-538, 2015.
doi:10.1038/nature16454        Google Scholar

30. Atabaki, A. H., et al. "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Vol. 556, 349-354, 2018.
doi:10.1038/s41586-018-0028-z        Google Scholar

31. Idjadi, M. H. and F. Aflatouni, "Integrated Pound-Drever-Hall laser stabilization system in silicon," Nature Communications, Vol. 8, 1209, 2017.
doi:10.1038/s41467-017-01303-y        Google Scholar

32. El-Fiky, E., A. Samani, M. S. Alam, M. Sowailem, O. Carpentier, M. Jacques, L. Guenin, D. Patel, and D. V. Plant, "A 4-lane 400 Gb/s silicon photonic transceiver for intra-datacenter optical interconnects," Optical Fiber Communications Conference and Exhibition (OFC), Th3A.3, 2019.        Google Scholar

33. Shi, T., T. Su, N. Zhang, C. Hong, and D. Pan, "Silicon photonics platform for 400G data center applications," Optical Fiber Communications Conference and Exhibition (OFC), M3F.4, 2018.
doi:10.1364/OFC.2018.M3F.4        Google Scholar

34. Nagarajan, R., M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, "Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects," Journal of Optical Communications and Networking, Vol. 10, No. 7, B25-B36, 2018.
doi:10.1364/JOCN.10.000B25        Google Scholar

35. Harris, N. C., Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, "Efficient, compact and low loss thermo-optic phase shifter in silicon," Optics Express, Vol. 22, No. 9, 10487-10493, 2014.
doi:10.1364/OE.22.010487        Google Scholar

36. Doylend, J. K., M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, "Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator," Optics Express, Vol. 19, No. 22, 21595-21604, 2011.
doi:10.1364/OE.19.021595        Google Scholar

37. Soref, R. and B. Bennett, "Electrooptical effects in silicon," IEEE Journal of Quantum Electronics, Vol. 23, 123-129, 1987.
doi:10.1109/JQE.1987.1073206        Google Scholar

38. Reed, G. T., G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, Vol. 4, 518-526, 2010.
doi:10.1038/nphoton.2010.179        Google Scholar

39. Debnath, K., D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M. K. Husain, K. Ibukuro, F. Y. Gardes, G. T. Reed, and S. Saito, "All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor," Photonics Research, Vol. 6, 373-379, 2018.        Google Scholar

40. Webster, M., C. Appel, P. Gothoskar, S. Sunder, B. Dama, and K. Shastri, "Silicon photonic modulator based on a MOS-capacitor and a CMOS driver," IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2014.        Google Scholar

41. Milivojevic, B., S. Wiese, J. Whiteaway, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. P. Anderson, B. Dama, and K. ShastrI, "Silicon high speed modulator for advanced modulation: Device structures and exemplary modulator performance," Proc. Silicon Photonics IX, Vol. 8990, 899013, 2014.        Google Scholar

42. Titriku, A., C. Li, A. Shafik, and S. Palermo, "Efficiency modeling of tuning techniques for silicon carrier injection ring resonators," IEEE Optical Interconnects Conference (OI), 13-14, 2014.        Google Scholar

43. Chen, C. H., C. Li, A. Shafik, M. Fiorentino, P. Chiang, S. Palermo, and R. Beausoleil, "A WDM silicon photonic transmitter based on carrier-injection microring modulators," IEEE Optical Interconnects Conference (OI), 121-122, 2014.        Google Scholar

44. Xu, Q., S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Optics Express, Vol. 15, 430-436, 2007.        Google Scholar

45. Li, M., L. Wang, X. Li, X. Xiao, and S. Yu, "Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications," Photonics Research, Vol. 6, No. 2, 109-116, 2018.        Google Scholar

46. Miller, D. A. B., "Energy consumption in optical modulators for interconnects," Optics Express, Vol. 20, No. 102, 293-308, 2012.        Google Scholar

47. Liu, A., L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Optics Express, Vol. 15, No. 2, 660-668, 2007.        Google Scholar

48. Sharif Azadeh, S., S. Romero-Garc´ıa, F. Merget, A. Moscoso-M´artir, N. von den Driesch, D. Buca, and J. Witzens, "Epitaxially grown vertical junction phase shifters for improved modulation efficiency in silicon depletion-type modulators," Proc. SPIE Integrated Optics: Physics and Simulations II, Vol. 9516, 95160T, May 2015.        Google Scholar

49. Azadeh, S. S., F. Merget, S. Romero-Garc´ıa, A. Moscoso-M´artir, N. von den Driesch, J. M¨uller, S. Mantl, D. Buca, and J. Witzens, "Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters," Optics Express, Vol. 23, No. 18, 23526-23550, 2015.        Google Scholar

50. Dong, P., L. Chen, and Y.-K. Chen, "High-speed low-voltage single-drive push-pull silicon Mach- Zehnder modulators," Optics Express, Vol. 20, No. 6, 6163-6169, 2012.        Google Scholar

51. Streshinsky, M., R. Ding, Y. Liu, et al. "Low power 50Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm," Optics Express, Vol. 21, No. 25, 30350-30357, 2013.        Google Scholar

52. Li, Z.-Y., D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J.-Z. Yu, "Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions," Optics Express, Vol. 17, No. 18, 15947-15958, 2009.        Google Scholar

53. Xiao, X., H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, "25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions," Optics Express, Vol. 20, 2507-2515, 2012.        Google Scholar

54. Rosenberg, J. C., W. M. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, "A 25Gbps silicon microring modulator based on an interleaved junction," Optics Express, Vol. 20, 26411-26423, 2012.        Google Scholar

55. Thomson, D. J., F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, "50-Gb/s silicon optical modulator," IEEE Photonics Technology Letters, Vol. 24, No. 4, 234-236, 2012.        Google Scholar

56. Xiao, X., H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, "High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization," Optics Express, Vol. 21, No. 4, 4116-4125, 2013.        Google Scholar

57. Ziebell, M., D. Marris-Morini, G. Rasigade, J.-M. F´ed´eli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, "40 Gbit/s low-loss silicon optical modulator based on a pipin diode," Optics Express, Vol. 20, No. 10, 10591-10596, 2012.        Google Scholar

58. Tu, X., T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, "50 Gb/s silicon optical modulator with traveling-wave electrodes," Optics Express, Vol. 21, No. 10, 12776-12782, 2013.        Google Scholar

59. Gardes, F. Y., D. J. Thomson, N. G. Emerson, and G. T. Reed, "40 Gb/s silicon photonics modulator for TE and TM polarisations," Optics Express, Vol. 19, No. 12, 11804-11814, 2011.        Google Scholar

60. Yong, Z., W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, "U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band," Optics Express, Vol. 25, No. 7, 8425-8439, 2017.        Google Scholar

61. Gardes, F. Y., A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martı, "High-speed modulation of a compact silicon ring resonator based on a reverse-biased PN diode," Optics Express, Vol. 17, No. 24, 21986-21991, 2009.        Google Scholar

62. Xiao, X., H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, "60 Gbit/s silicon modulators with enhanced electro-optical efficiency," Optical Fiber Communications Conference and Exhibition (OFC), W4J.3, 2013.        Google Scholar

63. Yang, Y., Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, "High-efficiency Si optical modulator using Cu travelling-wave electrode," Optics Express, Vol. 22, 29978-29985, 2014.        Google Scholar

64. Xu, H., X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, "High speed silicon Mach-Zehnder modulator based on interleaved PN junctions," Optics Express, Vol. 20, 15093-15099, 2012.        Google Scholar

65. Pantouvaki, M., P. Verheyen, J. De Coster, G. Lepage, P. Absil, and J. van Campenhout, "56 Gb/s ring modulator on a 300 mm silicon photonics platform," European Conference on Optical Communication (ECOC), 2015.        Google Scholar

66. Pitris, S., M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. de Heyn, J. van Campenhout, and N. Pleros, "A 4×40 Gb/s O-band WDM silicon photonic transmitter based on micro-ring modulators," Optical Fiber Communications Conference and Exhibition (OFC), W3E.2, 2019.        Google Scholar

67. Dube-Demers, R., S. LaRochelle, and W. Shi, "Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator," Optica, Vol. 3, No. 6, 622-627, 2016.        Google Scholar

68. Liu, K., C. R. Ye, S. Khan, and V. J. Sorger, "Review and perspective on ultrafast wavelength-size electro-optic modulators," Lasers & Photonics Reviews, Vol. 9, No. 2, 172-194, 2015.        Google Scholar

69. Wang, B., C. Li, C.-H. Chen, K. Yu, M. Fiorentino, R. G. Beausoleil, and S. Palermo, "A compact Verilog-A model of silicon carrier-injection ring modulators for optical interconnect transceiver circuit design," IEEE/OSA Journal of Lightwave Technology, Vol. 34, 2996-3005, 2016.        Google Scholar

70. Chen, C. H., C. Li, A. Shafik, M. Fiorentino, P. Chiang, S. Palermo, and R. Beausoleil, "A WDM silicon photonic transmitter based on carrier-injection microring modulators," IEEE Optical Interconnects Conference (OI), 121-122, 2014.        Google Scholar

71. Li, C., R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, "Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 49, 1419-1436, 2014.        Google Scholar

72. Li, H., Z. Xuan, A. Titriku, C. Li, K. Yu, B. Wang, A. Shafik, N. Qi, Y. Liu, R. Ding, T. Baehr- Jones, M. Fiorentino, M. Hochberg, S. Palermo, and P. Y. Chiang, "A 25 Gb/s, 4.4 V-Swing, ACcoupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid State Circuits, Vol. 50, 3145-3159, 2015.        Google Scholar

73. Wang, B., K. Yu, H. Li, P. Y. Chiang, and S. Palermo, "Energy efficiency comparisons of NRZ and PAM4 modulation for ring-resonator-based silicon photonic links," IEEE International Midwest Symposium on Circuits and Systems, 2015.        Google Scholar

74. Roshan-Zamir, A., B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, "A 40Gb/s PAM4 silicon microring resonator modulator transmitter in 65 nm CMOS," IEEE Optical Interconnects Conference (OI), 8-9, 2016.        Google Scholar

75. Roshan-Zamir, A., B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, "A two-segment optical DAC 40 Gbps PAM4 silicon microring resonator modulator transmitter," IEEE Optical Interconnects Conference (OI), 5-6, 2017.        Google Scholar

76. Sun, J., M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, "A 128Gb/s PAM4 silicon microring modulator," Optical Fiber Communications Conference and Exhibition (OFC), Th4A.7, 2018.        Google Scholar

77. Li, H., G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, "A 112 Gb/s PAM4 transmitter with silicon photonics microring modulator and CMOS driver," Optical Fiber Communications Conference and Exhibition (OFC), Th4A.7, 2019.        Google Scholar

78. Xu, Q., B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature, Vol. 435, 325-327, 2005.        Google Scholar

79. Liu, A., R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nico-laescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, Vol. 427, 615-618, 2004.        Google Scholar

80. Sugawara, M. and M. Usami, "Quantum dot devices handling the heat," Nature Photonics, Vol. 3, 30-31, 2009.        Google Scholar

81. Ortner, G., C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, "External cavity InAs/InP quantum dot laser with a tuning range of 166 nm," Apply Physics Letters, Vol. 88, 121119, 2006.        Google Scholar

82. Capua, A., L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, "Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser," Optics Express, Vol. 15, 5388-5393, 2007.        Google Scholar

83. Azouigui, S., D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, "Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3-μm DFB quantum-dot lasers," IEEE Photonics Technology Letters, Vol. 23, 582-584, 2011.        Google Scholar

84. Liang, D. and J. E. Bowers, "Highly efficient vertical outgassing channels for low-temperature InPto- silicon direct wafer bonding on the silicon-on-insulator substrate," Journal of Vacuum Science & Technology B, Vol. 26, 1560, 2008.        Google Scholar

85. Kurczveil, G., D. Liang, M. Fiorentino, and R. G. Beausoleil, "Robust hybrid quantum dot laser for integrated silicon photonics," Optics Express, Vol. 24, 16167-16174, 2016.        Google Scholar

86. Kurczveil, G., C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, "On-chip hybrid silicon quantum dot comb laser with 14 error-free channels," Proc. IEEE International Semiconductor Laser Conference (ISLC), 1-2, 2018.        Google Scholar

87. Nguyen, H. C., Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, "10Gb/s operation of photonic crystal silicon optical modulators," Optics Express, Vol. 19, No. 14, 13000-13007, 2011.        Google Scholar

88. Terada, Y., K. Kondo, R. Abe, and T. Baba, "Full C-band Si photonic crystal waveguide modulator," Optics Letters, Vol. 42, No. 24, 5110-5112, 2017.        Google Scholar

89. Shakoor, A., K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, "Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy," Optics Express, Vol. 22, No. 23, 28623-28634, 2014.        Google Scholar

90. Zhang, J., X. Leroux, E. Dur´an-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. He, and E. Cassan, "Generating Fano resonances in a single-waveguide silicon nanobeam cavity for efficient electro-optical modulation," ACS Photonics, Vol. 5, No. 11, 4229-4237, 2018.        Google Scholar

91. Marshall, O., M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. van Thourhout, "Heterogeneous integration on silicon photonics," Proceedings of the IEEE, Vol. 106, No. 12, 2258-2269, 2018.        Google Scholar

92. Heck, M. J., H.-W. Chen, A.-W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, "Hybrid silicon photonics for optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 2, 333-346, 2010.        Google Scholar

93. Alloatti, L., R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, and C. Koos, "100 GHz silicon-organic hybrid modulator," Light: Science & Applications, Vol. 3, No. 5, e173, 2014.        Google Scholar

94. Hu, Y., M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. van Thourhout, "Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon," Laser & Photonics Reviews, Vol. 10, No. 2, 307-316, 2016.        Google Scholar