Center for Optical and Electromagnetic Research
Zhejiang University
China
HomepageZhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, East Building No.5, Zijingang Campus
Zhejiang University
China
HomepageDepartment of Electrical and Computer Engineering
Texas A&M University
USA
Homepage1. Amann, M.-C. and W. Hofmann, "InP-based long-wavelength VCSELs and VCSEL arrays," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, 861-868, 2009.
doi:10.1109/JSTQE.2009.2013182 Google Scholar
2. Naoe, K., "High speed InP lasers for 400 GbE," Proc. European Conference on Optical Communication (ECOC), Th1D.1, 2019. Google Scholar
3. Thomson, D., A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fedeli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, "Roadmap on silicon photonics," Journal of Optics, Vol. 18, No. 7, 073003, 2016.
doi:10.1088/2040-8978/18/7/073003 Google Scholar
4. Komljenovic, T., D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, "Photonic integrated circuits using heterogeneous integration on silicon," Proceedings of the IEEE, Vol. 106, No. 12, 2246-2257, 2018.
doi:10.1109/JPROC.2018.2864668 Google Scholar
5. Samani, A., M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, "A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system," IEEE Photonics Journal, Vol. 7, No. 3, 7901413, 2015.
doi:10.1109/JPHOT.2015.2426875 Google Scholar
6. Manipatruni, S., K. Preston, L. Chen, and M. Lipson, "Ultra-low voltage, ultra-small mode volume silicon microring modulator," Optics Express, Vol. 18, No. 17, 18235-18242, 2010.
doi:10.1364/OE.18.018235 Google Scholar
7. Nguyen, H. C., S. Hashimoto, M. Shinkawa, and T. Baba, "Compact and fast photonic crystal silicon optical modulators," Optics Express, Vol. 20, No. 20, 22465-22474, 2012.
doi:10.1364/OE.20.022465 Google Scholar
8. Melikyan, A., L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, "High-speed plasmonic phase modulators," Nature Photonics, Vol. 8, 229-233, 2014.
doi:10.1038/nphoton.2014.9 Google Scholar
9. Kuo, Y.-H., Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature, Vol. 437, 1334-1336, 2005.
doi:10.1038/nature04204 Google Scholar
10. Wang, C., M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Vol. 562, 101-104, 2018.
doi:10.1038/s41586-018-0551-y Google Scholar
11. Schow, C. L. and K. Schmidtke, "INTREPID: Developing power efficient analog coherent interconnects to transform data center networks," Optical Fiber Communications Conference and Exhibition (OFC), M4D.9, 2019. Google Scholar
12. Kerrebrouck, J. V., X. Pang, O. Ozolins, R. Lin, A. Udalcovs, L. Zhang, H. Li, S. Spiga, M.- C. Amann, L. Gan, M. Tang, S. Fu, R. Schatz, G. Jacobsen, S. Popov, D. Liu, W. Tong, G. Torfs, J. Bauwelinck, J. Chen, and X. Yin, "High-speed PAM4-based optical SDM interconnects with directly modulated long-wavelength VCSEL," IEEE/OSA Journal of Lightwave Technology, Vol. 37, No. 2, 356-362, 2019.
doi:10.1109/JLT.2018.2875538 Google Scholar
13. Huynh, T. N., et al. "4×50 Gb/s NRZ shortwave-wavelength division multiplexing VCSEL link over 50m multimode fiber," Optical Fiber Communications Conference and Exhibition (OFC), Tu2B.5, 2017.
doi:10.1364/OFC.2017.Tu2B.5 Google Scholar
14. Lin, C.-K., A. Tandon, K. Djordjev, S.W. Corzine, and M. R. T. Tan, "High-speed 985 nm bottomemitting VCSEL arrays for chip-to-chip parallel optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, 1332-1339, 2007.
doi:10.1109/JSTQE.2007.906794 Google Scholar
15. Tan, M. R. T., P. Rosenberg, W. V. Sorin, B. Wang, S. Mathai, G. Panotopoulos, and G. Rankin, "Universal photonic interconnect for data centers," IEEE/OSA Journal of Lightwave Technology, Vol. 36, 175-180, 2018.
doi:10.1109/JLT.2017.2747501 Google Scholar
16. Hatakeyama, H., T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, and M. Tsuj, "Highly reliable high-speed 1.1-μm-range VCSELs with InGaAs/GaAsP-MQWs," IEEE Journal of Quantum Electronics, Vol. 46, 890-897, 2010.
doi:10.1109/JQE.2010.2040583 Google Scholar
17. Lavrencik, J., S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, "4λ × 100 Gbps VCSEL PAM-4 transmission over 105m of wide band multimode fiber," Optical Fiber Communications Conference and Exhibition (OFC), Tu2B.5, 2017. Google Scholar
18. Ralph, S. E. and J. Lavrencik, "High capacity VCSEL links," Optical Fiber Communications Conference and Exhibition (OFC), Tu3A.1, 2019. Google Scholar
19. Horst, F., W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, "Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing," Optics Express, Vol. 21, 11652-11658, 2013.
doi:10.1364/OE.21.011652 Google Scholar
20. Dai, D., J. Wang, S. Chen, S. Wang, and S. He, "Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing," Laser Photonics Review, Vol. 9, 339-344, 2015.
doi:10.1002/lpor.201400446 Google Scholar
21. Pathak, S., P. Dumon, D. van Thourhout, and W. Bogaerts, "Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator," IEEE Photonics Journal, Vol. 6, 1-9, 2014.
doi:10.1109/JPHOT.2014.2361658 Google Scholar
22. Simpanen, E., J. S. Gustavsson, A. Larsson, M. Karlsson, W. V. Sorin, S. Mathai, M. R. Tan, and S. R. Bickham, "1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects," IEEE/OSA Journal of Lightwave Technology, Vol. 37, 2963-2969, 2019.
doi:10.1109/JLT.2019.2908249 Google Scholar
23. Tan, M. R. T., B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, "50 Gb/s PAM4 modulated 1065 nm single-mode VCSELs using SMF-28 for mega-data centers," IEEE Photonics Technology Letters, Vol. 29, 1128-1131, 2017.
doi:10.1109/LPT.2017.2707058 Google Scholar
24. Karinou, F., N. Stojanovic, A. Daly, C. Neumeyr, and M. Ortsiefer, "1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks," IEEE/OSA Journal of Lightwave Technology, Vol. 34, 2897-2904, 2016.
doi:10.1109/JLT.2015.2505359 Google Scholar
25. Malacarne, A., F. Falconi, C. Neumeyr, W. Soenen, C. Porzi, T. Aalto, J. Rosskopf., M. Chiesa, J. Bauwelinck, and A. Bogon, "Low-power 1.3-μm VCSEL transmitter for data center interconnects and beyond," Proc. European Conference on Optical Communication (ECOC), M.2.C.5, 2017. Google Scholar
26. Kapon, E. and A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer," Nature Photonics, Vol. 3, 27-29, 2009.
doi:10.1038/nphoton.2008.266 Google Scholar
27. Tansu, N., N. J. Kirsch, and L. J. Mawst, "Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers," Applied Physics Letters, Vol. 81, No. 14, 2523, 2002.
doi:10.1063/1.1511290 Google Scholar
28. Liu, A., R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, Vol. 427, 615-618, 2004.
doi:10.1038/nature02310 Google Scholar
29. Sun, C., et al. "Single-chip microprocessor that communicates directly using light," Nature, Vol. 528, 534-538, 2015.
doi:10.1038/nature16454 Google Scholar
30. Atabaki, A. H., et al. "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Vol. 556, 349-354, 2018.
doi:10.1038/s41586-018-0028-z Google Scholar
31. Idjadi, M. H. and F. Aflatouni, "Integrated Pound-Drever-Hall laser stabilization system in silicon," Nature Communications, Vol. 8, 1209, 2017.
doi:10.1038/s41467-017-01303-y Google Scholar
32. El-Fiky, E., A. Samani, M. S. Alam, M. Sowailem, O. Carpentier, M. Jacques, L. Guenin, D. Patel, and D. V. Plant, "A 4-lane 400 Gb/s silicon photonic transceiver for intra-datacenter optical interconnects," Optical Fiber Communications Conference and Exhibition (OFC), Th3A.3, 2019. Google Scholar
33. Shi, T., T. Su, N. Zhang, C. Hong, and D. Pan, "Silicon photonics platform for 400G data center applications," Optical Fiber Communications Conference and Exhibition (OFC), M3F.4, 2018.
doi:10.1364/OFC.2018.M3F.4 Google Scholar
34. Nagarajan, R., M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, "Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects," Journal of Optical Communications and Networking, Vol. 10, No. 7, B25-B36, 2018.
doi:10.1364/JOCN.10.000B25 Google Scholar
35. Harris, N. C., Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, "Efficient, compact and low loss thermo-optic phase shifter in silicon," Optics Express, Vol. 22, No. 9, 10487-10493, 2014.
doi:10.1364/OE.22.010487 Google Scholar
36. Doylend, J. K., M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, "Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator," Optics Express, Vol. 19, No. 22, 21595-21604, 2011.
doi:10.1364/OE.19.021595 Google Scholar
37. Soref, R. and B. Bennett, "Electrooptical effects in silicon," IEEE Journal of Quantum Electronics, Vol. 23, 123-129, 1987.
doi:10.1109/JQE.1987.1073206 Google Scholar
38. Reed, G. T., G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, Vol. 4, 518-526, 2010.
doi:10.1038/nphoton.2010.179 Google Scholar
39. Debnath, K., D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M. K. Husain, K. Ibukuro, F. Y. Gardes, G. T. Reed, and S. Saito, "All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor," Photonics Research, Vol. 6, 373-379, 2018. Google Scholar
40. Webster, M., C. Appel, P. Gothoskar, S. Sunder, B. Dama, and K. Shastri, "Silicon photonic modulator based on a MOS-capacitor and a CMOS driver," IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2014. Google Scholar
41. Milivojevic, B., S. Wiese, J. Whiteaway, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. P. Anderson, B. Dama, and K. ShastrI, "Silicon high speed modulator for advanced modulation: Device structures and exemplary modulator performance," Proc. Silicon Photonics IX, Vol. 8990, 899013, 2014. Google Scholar
42. Titriku, A., C. Li, A. Shafik, and S. Palermo, "Efficiency modeling of tuning techniques for silicon carrier injection ring resonators," IEEE Optical Interconnects Conference (OI), 13-14, 2014. Google Scholar
43. Chen, C. H., C. Li, A. Shafik, M. Fiorentino, P. Chiang, S. Palermo, and R. Beausoleil, "A WDM silicon photonic transmitter based on carrier-injection microring modulators," IEEE Optical Interconnects Conference (OI), 121-122, 2014. Google Scholar
44. Xu, Q., S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Optics Express, Vol. 15, 430-436, 2007. Google Scholar
45. Li, M., L. Wang, X. Li, X. Xiao, and S. Yu, "Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications," Photonics Research, Vol. 6, No. 2, 109-116, 2018. Google Scholar
46. Miller, D. A. B., "Energy consumption in optical modulators for interconnects," Optics Express, Vol. 20, No. 102, 293-308, 2012. Google Scholar
47. Liu, A., L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Optics Express, Vol. 15, No. 2, 660-668, 2007. Google Scholar
48. Sharif Azadeh, S., S. Romero-Garc´ıa, F. Merget, A. Moscoso-M´artir, N. von den Driesch, D. Buca, and J. Witzens, "Epitaxially grown vertical junction phase shifters for improved modulation efficiency in silicon depletion-type modulators," Proc. SPIE Integrated Optics: Physics and Simulations II, Vol. 9516, 95160T, May 2015. Google Scholar
49. Azadeh, S. S., F. Merget, S. Romero-Garc´ıa, A. Moscoso-M´artir, N. von den Driesch, J. M¨uller, S. Mantl, D. Buca, and J. Witzens, "Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters," Optics Express, Vol. 23, No. 18, 23526-23550, 2015. Google Scholar
50. Dong, P., L. Chen, and Y.-K. Chen, "High-speed low-voltage single-drive push-pull silicon Mach- Zehnder modulators," Optics Express, Vol. 20, No. 6, 6163-6169, 2012. Google Scholar
51. Streshinsky, M., R. Ding, Y. Liu, et al. "Low power 50Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm," Optics Express, Vol. 21, No. 25, 30350-30357, 2013. Google Scholar
52. Li, Z.-Y., D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J.-Z. Yu, "Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions," Optics Express, Vol. 17, No. 18, 15947-15958, 2009. Google Scholar
53. Xiao, X., H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, "25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions," Optics Express, Vol. 20, 2507-2515, 2012. Google Scholar
54. Rosenberg, J. C., W. M. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, "A 25Gbps silicon microring modulator based on an interleaved junction," Optics Express, Vol. 20, 26411-26423, 2012. Google Scholar
55. Thomson, D. J., F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, "50-Gb/s silicon optical modulator," IEEE Photonics Technology Letters, Vol. 24, No. 4, 234-236, 2012. Google Scholar
56. Xiao, X., H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, "High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization," Optics Express, Vol. 21, No. 4, 4116-4125, 2013. Google Scholar
57. Ziebell, M., D. Marris-Morini, G. Rasigade, J.-M. F´ed´eli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, "40 Gbit/s low-loss silicon optical modulator based on a pipin diode," Optics Express, Vol. 20, No. 10, 10591-10596, 2012. Google Scholar
58. Tu, X., T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, "50 Gb/s silicon optical modulator with traveling-wave electrodes," Optics Express, Vol. 21, No. 10, 12776-12782, 2013. Google Scholar
59. Gardes, F. Y., D. J. Thomson, N. G. Emerson, and G. T. Reed, "40 Gb/s silicon photonics modulator for TE and TM polarisations," Optics Express, Vol. 19, No. 12, 11804-11814, 2011. Google Scholar
60. Yong, Z., W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, "U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band," Optics Express, Vol. 25, No. 7, 8425-8439, 2017. Google Scholar
61. Gardes, F. Y., A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martı, "High-speed modulation of a compact silicon ring resonator based on a reverse-biased PN diode," Optics Express, Vol. 17, No. 24, 21986-21991, 2009. Google Scholar
62. Xiao, X., H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, "60 Gbit/s silicon modulators with enhanced electro-optical efficiency," Optical Fiber Communications Conference and Exhibition (OFC), W4J.3, 2013. Google Scholar
63. Yang, Y., Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, "High-efficiency Si optical modulator using Cu travelling-wave electrode," Optics Express, Vol. 22, 29978-29985, 2014. Google Scholar
64. Xu, H., X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, "High speed silicon Mach-Zehnder modulator based on interleaved PN junctions," Optics Express, Vol. 20, 15093-15099, 2012. Google Scholar
65. Pantouvaki, M., P. Verheyen, J. De Coster, G. Lepage, P. Absil, and J. van Campenhout, "56 Gb/s ring modulator on a 300 mm silicon photonics platform," European Conference on Optical Communication (ECOC), 2015. Google Scholar
66. Pitris, S., M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. de Heyn, J. van Campenhout, and N. Pleros, "A 4×40 Gb/s O-band WDM silicon photonic transmitter based on micro-ring modulators," Optical Fiber Communications Conference and Exhibition (OFC), W3E.2, 2019. Google Scholar
67. Dube-Demers, R., S. LaRochelle, and W. Shi, "Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator," Optica, Vol. 3, No. 6, 622-627, 2016. Google Scholar
68. Liu, K., C. R. Ye, S. Khan, and V. J. Sorger, "Review and perspective on ultrafast wavelength-size electro-optic modulators," Lasers & Photonics Reviews, Vol. 9, No. 2, 172-194, 2015. Google Scholar
69. Wang, B., C. Li, C.-H. Chen, K. Yu, M. Fiorentino, R. G. Beausoleil, and S. Palermo, "A compact Verilog-A model of silicon carrier-injection ring modulators for optical interconnect transceiver circuit design," IEEE/OSA Journal of Lightwave Technology, Vol. 34, 2996-3005, 2016. Google Scholar
70. Chen, C. H., C. Li, A. Shafik, M. Fiorentino, P. Chiang, S. Palermo, and R. Beausoleil, "A WDM silicon photonic transmitter based on carrier-injection microring modulators," IEEE Optical Interconnects Conference (OI), 121-122, 2014. Google Scholar
71. Li, C., R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, "Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 49, 1419-1436, 2014. Google Scholar
72. Li, H., Z. Xuan, A. Titriku, C. Li, K. Yu, B. Wang, A. Shafik, N. Qi, Y. Liu, R. Ding, T. Baehr- Jones, M. Fiorentino, M. Hochberg, S. Palermo, and P. Y. Chiang, "A 25 Gb/s, 4.4 V-Swing, ACcoupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid State Circuits, Vol. 50, 3145-3159, 2015. Google Scholar
73. Wang, B., K. Yu, H. Li, P. Y. Chiang, and S. Palermo, "Energy efficiency comparisons of NRZ and PAM4 modulation for ring-resonator-based silicon photonic links," IEEE International Midwest Symposium on Circuits and Systems, 2015. Google Scholar
74. Roshan-Zamir, A., B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, "A 40Gb/s PAM4 silicon microring resonator modulator transmitter in 65 nm CMOS," IEEE Optical Interconnects Conference (OI), 8-9, 2016. Google Scholar
75. Roshan-Zamir, A., B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, "A two-segment optical DAC 40 Gbps PAM4 silicon microring resonator modulator transmitter," IEEE Optical Interconnects Conference (OI), 5-6, 2017. Google Scholar
76. Sun, J., M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, "A 128Gb/s PAM4 silicon microring modulator," Optical Fiber Communications Conference and Exhibition (OFC), Th4A.7, 2018. Google Scholar
77. Li, H., G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, "A 112 Gb/s PAM4 transmitter with silicon photonics microring modulator and CMOS driver," Optical Fiber Communications Conference and Exhibition (OFC), Th4A.7, 2019. Google Scholar
78. Xu, Q., B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature, Vol. 435, 325-327, 2005. Google Scholar
79. Liu, A., R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nico-laescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, Vol. 427, 615-618, 2004. Google Scholar
80. Sugawara, M. and M. Usami, "Quantum dot devices handling the heat," Nature Photonics, Vol. 3, 30-31, 2009. Google Scholar
81. Ortner, G., C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, "External cavity InAs/InP quantum dot laser with a tuning range of 166 nm," Apply Physics Letters, Vol. 88, 121119, 2006. Google Scholar
82. Capua, A., L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, "Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser," Optics Express, Vol. 15, 5388-5393, 2007. Google Scholar
83. Azouigui, S., D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, "Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3-μm DFB quantum-dot lasers," IEEE Photonics Technology Letters, Vol. 23, 582-584, 2011. Google Scholar
84. Liang, D. and J. E. Bowers, "Highly efficient vertical outgassing channels for low-temperature InPto- silicon direct wafer bonding on the silicon-on-insulator substrate," Journal of Vacuum Science & Technology B, Vol. 26, 1560, 2008. Google Scholar
85. Kurczveil, G., D. Liang, M. Fiorentino, and R. G. Beausoleil, "Robust hybrid quantum dot laser for integrated silicon photonics," Optics Express, Vol. 24, 16167-16174, 2016. Google Scholar
86. Kurczveil, G., C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, "On-chip hybrid silicon quantum dot comb laser with 14 error-free channels," Proc. IEEE International Semiconductor Laser Conference (ISLC), 1-2, 2018. Google Scholar
87. Nguyen, H. C., Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, "10Gb/s operation of photonic crystal silicon optical modulators," Optics Express, Vol. 19, No. 14, 13000-13007, 2011. Google Scholar
88. Terada, Y., K. Kondo, R. Abe, and T. Baba, "Full C-band Si photonic crystal waveguide modulator," Optics Letters, Vol. 42, No. 24, 5110-5112, 2017. Google Scholar
89. Shakoor, A., K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, "Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy," Optics Express, Vol. 22, No. 23, 28623-28634, 2014. Google Scholar
90. Zhang, J., X. Leroux, E. Dur´an-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. He, and E. Cassan, "Generating Fano resonances in a single-waveguide silicon nanobeam cavity for efficient electro-optical modulation," ACS Photonics, Vol. 5, No. 11, 4229-4237, 2018. Google Scholar
91. Marshall, O., M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. van Thourhout, "Heterogeneous integration on silicon photonics," Proceedings of the IEEE, Vol. 106, No. 12, 2258-2269, 2018. Google Scholar
92. Heck, M. J., H.-W. Chen, A.-W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, "Hybrid silicon photonics for optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 2, 333-346, 2010. Google Scholar
93. Alloatti, L., R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, and C. Koos, "100 GHz silicon-organic hybrid modulator," Light: Science & Applications, Vol. 3, No. 5, e173, 2014. Google Scholar
94. Hu, Y., M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. van Thourhout, "Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon," Laser & Photonics Reviews, Vol. 10, No. 2, 307-316, 2016. Google Scholar