Vol. 166
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-01-03
Green's Dyadic, Spectral Function, Local Density of States, and Fluctuation Dissipation Theorem
By
, Vol. 166, 147-165, 2019
Abstract
The spectral functions are studied in conjunction with the dyadic Green's functions for various media. The dyadic Green's functions are found using the eigenfunction expansion method for homogeneous, inhomogeneous, periodic, lossless, lossy, and anisotropic media, guided by the Bloch-Floquet theorem. For the lossless media cases, the spectral functions can be directly related to the photon local density of states, and hence, to the electromagnetic energy density. For the lossy case, the spectral function can be related to the field correlation function. Because of these properties, one can derive properties for field correlations and the Langevin-source correlations without resorting to the fluctuation dissipation theorem. The results are corroborated by the fluctuation dissipation theorem. An expression for the local density of states for lossy, inhomogeneous, and dispersive media has also been suggested.
Citation
Weng Cho Chew Wei E. I. Sha Qi Dai , "Green's Dyadic, Spectral Function, Local Density of States, and Fluctuation Dissipation Theorem," , Vol. 166, 147-165, 2019.
doi:10.2528/PIER19111801
http://www.jpier.org/PIER/pier.php?paper=19111801
References

1. Langevin, P., "Sur la thorie du mouvement brownien [On the Theory of Brownian Motion]," C. R. Acad. Sci. (Paris), Vol. 146, 530-533, 1908.

2. Johnson, J., "Thermal agitation of electricity in conductors," Phys. Rev., Vol. 32, 97, 1928.

3. Nyquist, H., "Thermal agitation of electric charge in conductors," Phys. Rev., Vol. 32, 110, 1928.

4. Haus, H. A., Electromagnetic Noise and Quantum Optical Measurements, Springer, 2000.

5. Callen, H. B. and T. A. Welton, "Irreversibility and generalized noise," Phys. Rev., Vol. 83, No. 1, 34, 1951.

6. Rytov, S., Y. Kravtsov, and V. Tatarskii, Principles of Statistical Radiophysics, Vol. 3, Springer- Verlag, Berlin, 1989.

7. Kubo, R., "The fluctuation-dissipation theorem," Rep. Prog. Phys., Vol. 29, 255-284, 1966.

8. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics. Part 2, Pergamon Press, Oxford, UK, 1980.

9. Casimir, H. B. G., "On the attraction between two perfectly conducting plates," Proceedings of the Royal Netherlands Academy of Arts and Sciences, Vol. 51, 793-795, 1948.

10. Casimir, H. B. G. and D. Polder, "The influence of retardation on the London-van der Waals forces," Phys. Rev., Vol. 73, 360-372, 1948.

11. Lifshitz, E. M., "The theory of molecular attractive forces between solids," Sov. Phys. JETP, Vol. 2, 73, 1956.

12. Van Kampen, N. G., B. R. A. Nijboer, and K. Schram, "On the macroscopic theory of van der Waals forces," Phys. Lett., Vol. 26A, No. 7, 307-308, 1968.

13. Milonni, P. W., The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic Press, San Diego, CA, 1994.

14. Lamoreaux, S. K., "Demonstration of the casimir force in the 0.6 to 6 μm range," Phys. Rev. Lett., Vol. 78, No. 1, 5-8, 1997.

15. Sernelius, B. E., "Casimir force and complications in the Van Kampen theory for dissipative systems," Phys. Rev. B, Vol. 74, 233103, 2006.

16. Rodriguez, A., M. Ibanescu, D. Iannuzzi, J. D. Joannopoulos, and S. G. Johnson, "Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques," Phys. Rev. A, Vol. 76, No. 3, 032106, 2007.

17. Capasso, F., J. Munday, D. Iannuzzi, and H. Chan, "Casimir forces and quantum electrodynamical torques: Physics and nanomechanics," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 2, 400-414, Mar.–Apr. 2007.

18. Munday, J. N., F. Capasso, and V. A. Parsegian, "Measured long-range repulsive Casimir-Lifshitz forces," Nature, Vol. 457, 170, 2009.

19. Rahi, S. J., T. Emig, N. Graham, R. L. Jae, and M. Kardar, "Scattering theory approach to electrodynamic Casimir forces," Phys. Rev. D, Vol. 80, 085021, 2009.

20. Xiong, J. L., M. S. Tong, P. Atkins, and W. C. Chew, "Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods," Phys. Lett. A, Vol. 374, 2517-2520, 2010.

21. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and Casimir forces. II. Inhomogeneous dielectric media," Phys. Rev. A, Vol. 84, 053813, 2011.

22. Narayanaswamy, A. and G. Chen, "Dyadic Green’s functions and electromagnetic local density of states," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 111, No. 12, 1877-1884, 2010.

23. Greet, J.-J., R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature, Vol. 416, No. 6876, 61-64, 2002.

24. Joulain, K., J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surface Science Reports, Vol. 57, No. 3, 59-112, 2005.

25. Sprik, R., B. A. van Tiggelen, and A. Lagendijk, "Optical emission in periodic dielectrics," Europhys. Lett., Vol. 35, No. 4, 265-270, 1996.

26. Jones, A. C., B. T. O’Callahan, H. U. Yang, and M. B. Raschke, "The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces," Progress in Surface Science, Vol. 88, No. 4, 349-392, 2013.

27. Keldysh, L. V., "Diagram technique for nonequilibrium processes," Sov. Phys. JETP, Vol. 20, No. 4, 1018-1026, 1965.

28. Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.

29. Van Tiggelen, B. A. and E. Kogan, "Analogies between light and electrons: Density of states and Friedels identity," Phys. Rev. A, Vol. 49, No. 2, 708, 1994.

30. Dirac, P. A. M., "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London A, Vol. 114, No. 767, 243265, 1927.

31. Glauber, R. J. and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A, Vol. 43, No. 1, 467, 1991.

32. Milonni, P. W., "Field quantization and radiative processes in dispersive dielectric media," Journal of Modern Optics, Vol. 42, No. 10, 1991-2004, 1995.

33. Garrison, J. C. and R. Y. Chiao, Quantum Optics, Oxford Univ. Press, 2008.

34. Hopfield, J. J., "Theory of the contribution of excitons to the complex dielectric constant of crystals," Phys. Rev., Vol. 112, No. 5, 1555, 1958.

35. Caldeira, A. and A. J. Leggett, "Influence of dissipation on quantum tunneling in macroscopic systems," Phys. Rev. Lett., Vol. 46, 211, 1981.

36. Huttner, B. and S. M. Barnett, "Quantization of the electromagnetic field in dielectrics," Phys. Rev. A, Vol. 46, No. 7, 4306, 1992.

37. Grunner, T. and D.-G. Welsch, "Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics," Phys. Rev. A, Vol. 53, No. 3, 1818, 1996.

38. Dung, H. T., L. Knoll, and D.-G. Welsch, "Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics," Phys. Rev. A, Vol. 57, No. 5, 3931, 1998.

39. Dung, H. T., S. Y. Buhmann, L. Knoll, D.-G. Welsch, S. Scheel, and J. Kastel, "Electromagneticfield quantization and spontaneous decay in left-handed media," Phys. Rev. A, Vol. 68, No. 4, 043816, 2003.

40. Scheel, S. and S. Y. Buhmann, "Macroscopic quantum electrodynamicsconcepts and applications," Acta Physica Slovaca, Vol. 58, No. 5, 675-809, Oct. 2008.

41. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, Vol. 272, IEEE Press, New York, 1994.

42. Chew, W. C., Waves and Fields in Inhomogeneous Media, Vol. 522, IEEE Press, New York, 1995 (First Printing, Van Nostrand Reinhold, 1990).

43. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool Publishers, 2008.

44. Gerry, C. and P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.

45. Fox, M., Quantum Optics: An Introduction, Vol. 6, Oxford University Press, 2006.

46. Feynman, R. P., R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1, 41-1, Basic Books, 2013.

47. Kronig, R. and H. A. Kramers, "Absorption and dispersion in X-ray spectra," Z. Phys., Vol. 48, 174, 1928.

48. Dai, Q. I., Y. H. Lo, W. C. Chew, Y. G. Liu, and L. J. Jiang, "Generalized modal expansion and reduced modal representation of 3-D electromagnetic fields," IEEE Transactions on Antennas and Propagation, Vol. 62, 783-793, Feb. 2014.

49. Jones, A. C. and M. Raschke, "Thermal infrared near-field spectroscopym," Nano Letters, Vol. 12, No. 3, 1475-1481, 2012.

50. Sapienza, R., T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, "Deepsubwavelength imaging of the modal dispersion of light," Nature Materials, Vol. 11, No. 9, 781-787, 2012.

51. Loudon, R., "The propagation of electromagnetic energy through an absorbing dielectric," Journal of Physics A: General Physics, Vol. 3, No. 3, 233, 1970.

52. Ruppin, R., "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A, Vol. 299, No. 2, 309-312, 2002.

53. Busch, K. and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E, Vol. 58, No. 3, 3896, 1998.

54. Kong, J. A., Theory of Electromagnetic Waves, Vol. 348, 1, Wiley-Interscience, New York, 1975.