Vol. 167
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-07-07
Shark-Fin Antenna for Railway Communications in LTE-R, LTE, and Lower 5G Frequency Bands
By
Progress In Electromagnetics Research, Vol. 167, 83-94, 2020
Abstract
This paper presents a design study of a shark-fin antenna for future railway communications. Three specific bands are considered here as LTE-R (700 MHz), LTE (2100 MHz), and Lower 5G Band (3500 MHz). A 3-D metallic structure using the 3D printing technique has been designed and fabricated for the consideration of the required bands. The size (volume) of the antenna element is 163 × 61.9 × 10 mm3. The multi-physical simulations in terms of the smooth air flow and lower drag coefficient are performed for analyzing the need of shark-fin radome cover. More than 70 MHz bandwidth was observed for the LTE-R band and also a wide band response was observed that cover the required bands well i.e. the LTE, and lower 5G band. The proposed shark-fin antenna results the expected ideal radiation performance with an omnidirectional behavior in the horizontal plane.
Citation
Ashwini Kumar Arya Seong Jin Kim Sungik Park Dong-Hoon Kim Rehab S. Hassan Kyeongjun Ko Sanghoek Kim , "Shark-Fin Antenna for Railway Communications in LTE-R, LTE, and Lower 5G Frequency Bands," Progress In Electromagnetics Research, Vol. 167, 83-94, 2020.
doi:10.2528/PIER20040201
http://www.jpier.org/PIER/pier.php?paper=20040201
References

1. Choi, J. K., H. Cho, H. S.Oh, K. H. Kim, M. J. Bhang, I. S. Yu, and H. G. Ryu, "Challenges of LTE high-speed railway network to coexist with LTE public safety network," International Conference on Advanced Communication Technology, ICACT, 524-528, 2015.

2. Cheng, Y., J. Lu, and C. Wang, "Design of a multiple band vehicle-mounted antenna," International Journal of Antennas and Propagation, 1-11, 2019.

3. Arya, A. K., S. J. Kim, and S. Kim, "A dual-band antenna for LTE-R and 5G lower frequency operations," Progress In Electromagnetics Research Letters, Vol. 88, 113-119, 2020.
doi:10.2528/PIERL19081502

4. Choi, H. Y., Y. Song, and Y. K. Kim, "Standards of future railway wireless communication in Korea," Recent Advances in Computer Engineering, Communications and Information Technology, 360-367, 2014.

5. Wang, H. and G. Yang, "Design of 4×4 microstrip quasi-yagi beam-steering antenna array operation at 3.5 GHz for future 5G vehicle applications," International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), 2017.

6. Fujita, K., "MNL-FDTD/SPICE method for fast analysis of short-gap ESD in complex systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 709-720, June 2016.
doi:10.1109/TEMC.2016.2532888

7. Wang, S., K. M. Mak, H. W. Lai, K. K. So, Q. Xue, G. Liao, "Printed circularly polarized wire antennas with DC grounded stub," Microwave and Optical Technology Letters, 2719-2725, December 2012.
doi:10.1002/mop.27181

8. Basaery, D., S. Hosein, M. Armaki, and S. M. J. Razavi, "Radiation pattern analysis of inverted-F antenna mounted on the side wall of a long cylinder," Journal of Communication Engineering, Vol. 7, No. 2, 2018.

9. Huang, K., W. T. Hung, T. H. Cheng, and S. Y. Chen, "A 2.45-GHz high-efficiency loop-shaped PIFA rectenna for portable devices and wireless sensors," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1284-1285, 2015.
doi:10.1109/APS.2015.7305031

10. Henningsson, P. and A. Hedenstrom, "Aerodynamics of gliding flight in common swifts," Journal of Experimental Biology, 382-393, 2010.

11. Shavit, R., Radome Electromagnetic Theory and Design, Willey-IEEE Press, 2018.
doi:10.1002/9781119410850

12. Wu, Q., Y. Zhou, and S. Guo, "An L-sleeve L-monopole antenna fitting a shark-fin module for vehicular LTE, WLAN, and car-to-car communications," IEEE Transactions on Vehicular Technology, Vol. 67, No. 8, 7170-7180, 2018.
doi:10.1109/TVT.2018.2828433

13. Ghafari, E., A. Fuchs, D. Eblenkamp, and D. N. Aloi, "A vehicular rooftop, shark-fin, multiband antenna for the GPS/LTE/cellular/DSRC systems," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 237-240, 2014.
doi:10.1109/APWC.2014.6905546

14. Liu, Y., Z. Ai, G. Liu, and Y. Jia, "An integrated shark-fin antenna for MIMO-LTE, FM, and GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1666-1670, 2019.
doi:10.1109/LAWP.2019.2927019

15. Kwon, O. Y., R. Song, and B. S. Kim, "A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, andWAVE applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 600-603, 2018.
doi:10.1109/LAWP.2018.2805681

16. Melli, F., S. Lenzini, M. Cerretelli, E. Coscelli, A. Notari, S. Selleri, and L. Vincetti, "Low profile wideband 3D antenna for roof-top LTE vehicular applications," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 2019.

17. Software, Autodesk flow design, , available online: https://www.autodesk.com/education/freesoftware/flow-design.

18. Software, CST studio suite, , http://sst-mea.com/home.html.

19. Software, Ansys HFSS, , https://www.ansys.com/products/-electronics/ansys-hfss.

20. Ribeiro, A. G., Analysis of antennas’ locations on trains for mobile communications, Thesis, Universidade de Lisboa, 2018.

21. Williams, D. J. S., "Train roof antenna positioning issue study," Rail Safety and Standards Board (RSSB) Research Project T739, Siemens Mobility, London, UK, July 2009.

22. Lu, Y., K. Xiong, P. Fan, Y. Zhang, and Z. Zhong, "Deploying multiple antennas on high-speed trains: Equidistant strategy vs fixed-interval strategy," Proc. of 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, Canada, September 2016.

23. Pals, V. A. F., Analysis of influence on antenna radiation patterns by conducting environments for the development of vehicle antennas, Thesis, Technische Universitat Munchen, Munchen, Germany, 2013.

24. Elfergani, I., A. S. Hussaini, J. Rodriguez, and R. A. Alhameed, Antenna Fundamentals for Legacy Mobile Applications and Beyond, Springer International Publishing, 2018.
doi:10.1007/978-3-319-63967-3

25. Wong, K. L., Planar Antennas for Wireless Communications, John Wiley & Sons, 2003.