Vol. 168
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-10-03
Fundamental Implicit FDTD Schemes for Computational Electromagnetics and Educational Mobile Apps (Invited Review)
By
Progress In Electromagnetics Research, Vol. 168, 39-59, 2020
Abstract
This paper presents an overview and review of the fundamental implicit finite-difference time-domain (FDTD) schemes for computational electromagnetics (CEM) and educational mobile apps. The fundamental implicit FDTD schemes are unconditionally stable and feature the most concise update procedures with matrix-operator-free right-hand sides (RHS). We review the developments of fundamental implicit schemes, which are simpler and more efficient than all previous implicit schemes having RHS matrix operators. They constitute the basis of unification for many implicit schemes including classical ones, providing insights into their inter-relations along with simplifications, concise updates and efficient implementations. Based on the fundamental implicit schemes, further developments can be carried out more conveniently. Being the core CEM on mobile apps, the multiple one-dimensional (M1-D) FDTD methods are also reviewed. To simulate multiple transmission lines, stubs and coupled transmission lines efficiently, the M1-D explicit FDTD method as well as the unconditionally stable M1-D fundamental alternating direction implicit (FADI) FDTD and coupled line (CL) FDTD methods are discussed. With the unconditional stability of FADI methods, the simulations are fast-forwardable with enhanced efficiency. This is very useful for quick concept illustrations or phenomena demonstrations during interactive teaching and learning. Besides time domain, many frequency-domain methods are well-suited for further developments of useful mobile apps as well.
Citation
Eng Leong Tan, "Fundamental Implicit FDTD Schemes for Computational Electromagnetics and Educational Mobile Apps (Invited Review)," Progress In Electromagnetics Research, Vol. 168, 39-59, 2020.
doi:10.2528/PIER20061002
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.

2. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.        Google Scholar

3. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, 2000.        Google Scholar

4. Namiki, T., "3-D ADI-FDTD method --- Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 48, 1743-1748, 2000.        Google Scholar

5. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1254, 2004.        Google Scholar

6. Fu, W. and E. L. Tan, "Compact higher-order split-step FDTD method," Electron. Lett., Vol. 41, No. 7, 397-399, 2005.        Google Scholar

7. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, 2007.        Google Scholar

8. Tan, E. L., "Fundamental schemes for e±cient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 170-177, 2008.        Google Scholar

9. Yang, Z. and E. L. Tan, "A microstrip circuit tool kit app with FDTD analysis including lumped elements," IEEE Microw. Mag., Vol. 16, No. 1, 74-80, 2015.        Google Scholar

10. Yang, Z. and E. L. Tan, "A microwave transmission line courseware based on multiple 1-D FDTD method on mobile devices," Asia-Pacific Conf. Antennas Propag., 251-252, Bali, 2015.        Google Scholar

11. Tan, E. L. and D. Y. Heh, "Demonstration of electromagnetic polarization app on iPad," IEEE Int. Conf. Comput. Electromagn., 196-197, Kumamoto, 2017.        Google Scholar

12. Tan, E. L. and D. Y. Heh, "Mobile device aided teaching and learning of electromagnetic polarization," IEEE Int. Conf. Teaching, Assessment, and Learning for Engineering, 52-55, Hong Kong, 2017.        Google Scholar

13. Tan, E. L. and D. Y. Heh, "Teaching and learning electromagnetic polarization using mobile devices," IEEE Antennas Propag. Mag., Vol. 60, No. 4, 112-121, 2018.        Google Scholar

14. Tan, E. L. and D. Y. Heh, "Teaching and learning electromagnetic plane wave reflection and transmission using 3-D TV," IEEE Antennas Propag. Mag., Vol. 61, No. 2, 101-108, 2019.        Google Scholar

15. Peaceman, D., H. Rachford, and Jr., "The numerical solution of parabolic and elliptic differential equations," J. Soc. Ind. Appl. Math., Vol. 3, No. 1, 28-41, 1955.        Google Scholar

16. Mitchell, A. R. and D. F. Griffths, The Finite-Difference Method in Partial Differential Equations, Wiley, 1980.

17. Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods, Springer-Verlag, 1998.

18. Tan, E. L., "Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 1, 7-9, 2007.        Google Scholar

19. Tan, E. L., "Concise current source implementation for efficient 3-D ADI-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 11, 748-750, 2007.        Google Scholar

20. Douglas, J., "Alternating direction methods for three space variables," Numerische Mathematik, Vol. 4, No. 1, 94-102, 1962.        Google Scholar

21. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, 2006.        Google Scholar

22. Tan, E. L., "Efficient algorithms for Crank-Nicolson-based finite-difference time-domain methods," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 408-413, 2008.        Google Scholar

23. Fu, W. and E. L. Tan, "Stability and dispersion analysis for higher order 3-D ADI-FDTD method," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3691-3696, 2005.        Google Scholar

24. Fu, W. and E. L. Tan, "A compact higher-order ADI-FDTD method," Microwave Opt. Technol. Lett., Vol. 44, No. 3, 273-275, 2005.        Google Scholar

25. Fu, W. and E. L. Tan, "A parameter optimized ADI-FDTD method based on the (2,4) stencil," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1836-1842, 2006.        Google Scholar

26. Fu, W. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1095-1102, 2007.        Google Scholar

27. Singh, G., E. L. Tan, and Z. N. Chen, "Efficient tensor based FDTD scheme for modeling sloped interfaces in lossy media," Microwave Opt. Technol. Lett., Vol. 51, No. 6, 1530-1537, 2009.        Google Scholar

28. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.        Google Scholar

29. Heh, D. Y. and E. L. Tan, "Generalized stability criterion of 3-D FDTD schemes for doubly lossy media," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1421-1425, 2010.        Google Scholar

30. Heh, D. Y. and E. L. Tan, "Lyapunov and matrix norm stability analysis of ADI-FDTD schemes for doubly lossy media," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 979-986, 2011.        Google Scholar

31. Heh, D. Y. and E. L. Tan, "Efficient implementation of 3-D ADI-FDTD method for lossy media," IEEE MTT-S Int. Microwave Symp., 313-316, Boston, Massachusetts, 2009.        Google Scholar

32. Heh, D. Y. and E. L. Tan, "Unified efficient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.        Google Scholar

33. Fu, W. and E. L. Tan, "Effective permittivity scheme for ADI-FDTD method at the interface of dispersive media," Appl. Comput. Electromag. Soc. J., Vol. 23, No. 2, 120-125, 2008.        Google Scholar

34. Heh, D. Y. and E. L. Tan, "Modeling Lorentz dispersive media in FDTD using the exponential time differencing method," Asia-Pacific Microwave Conf., Hong Kong, 2008.        Google Scholar

35. Heh, D. Y. and E. L. Tan, "FDTD modeling for dispersive media using matrix exponential method," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 2, 53-55, 2009.        Google Scholar

36. Tan, E. L. and D. Y. Heh, "Corrected impulse invariance method for dispersive media using FDTD," Asia-Pacific Symp. Electromag. Compat., 56-59, Singapore, 2008.        Google Scholar

37. Heh, D. Y. and E. L. Tan, "Corrected impulse invariance method in Z-transform theory for frequency-dependent FDTD methods," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2683-2690, 2009.        Google Scholar

38. Heh, D. Y. and E. L. Tan, "Modeling Debye dispersive media using efficient ADI-FDTD method," IEEE AP-S Int. Symp. Antennas Propag., Charleston, 2009.        Google Scholar

39. Heh, D. Y. and E. L. Tan, "Fundamental ADI-FDTD method for multiple-pole Debye dispersive media," Asia-Pacific Conf. Antennas Propag., 9-10, Singapore, 2012.        Google Scholar

40. Heh, D. Y. and E. L. Tan, "Stable formulation of FADI-FDTD method for multiterm, doubly, second-order dispersive media," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4167-4175, 2013.        Google Scholar

41. Heh, D. Y. and E. L. Tan, "Unconditionally stable fundamental alternating direction implicit FDTD method for dispersive media," Computational Electromagnetics --- Retrospective and Outlook, Chapter 4, 85-116, Springer, 2015.        Google Scholar

42. Heh, D. Y. and E. L. Tan, "Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method," Biomedical Opt. Expr., Vol. 2, No. 5, 1169-1183, 2011.        Google Scholar

43. Heh, D. Y. and E. L. Tan, "Modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma using the unconditionally stable fundamental ADI-FDTD method," Progress In Electromagnetics Research B, Vol. 37, 365-386, 2012.        Google Scholar

44. Fu, W. and E. L. Tan, "ADI-FDTD method including linear lumped networks," Electron. Lett., Vol. 42, No. 13, 728-729, 2006.        Google Scholar

45. Fu, W. and E. L. Tan, "Unconditionally stable FDTD technique including passive lumped elements," 2006 Int. RF Microwave Conf., Putrajaya, Malaysia, 2006.        Google Scholar

46. Fu, W. and E. L. Tan, "Unconditionally stable ADI-FDTD method including passive lumped elements," IEEE Trans. Electromagn. Compat., Vol. 48, No. 4, 661-668, 2006.        Google Scholar

47. Gan, T. H., Z. Yang, and E. L. Tan, "A polarization-reconfigurable filtering antenna system," IEEE Antennas Propag. Mag., Vol. 55, No. 6, 198-219, 2013.        Google Scholar

48. Yang, Z. and E. L. Tan, "A de-embedding technique for diode-incorporated reconfigurable antenna simulation," IEEE AP-S Int. Symp. Antennas Propag., 1437-1438, Farjardo, Puerto Rico, 2016.        Google Scholar

49. Yang, Z. and E. L. Tan, "A fundamental ADI-FDTD method with implicit update for magnetic fields in the second procedure," Asia-Pacific Conf. Antennas Propag., 6-7, Bali, 2015.        Google Scholar

50. Tay, W. C. and E. L. Tan, "Implementation of Mur first order absorbing boundary condition in efficient 3-D ADI-FDTD," IEEE AP-S Int. Symp. Antennas Propag., Charleston, 2009.        Google Scholar

51. Tay, W. C. and E. L. Tan, "Split-field PML implementation for the efficient fundamental ADI-FDTD method," Asia-Pacific Microwave Conf., 1553-1556, Singapore, 2009.        Google Scholar

52. Singh, G., E. L. Tan, and Z. N. Chen, "Analytic fields of a focused beam with higher-order compensations for FDTD TF/SF formulation," IEEE AP-S Int. Symp. Antennas Propag., 2278-2281, Spokane, 2011.        Google Scholar

53. Singh, G., E. L. Tan, and Z. N. Chen, "Analytic fields with higher-order compensations for 3-D FDTD TF/SF formulation with application to beam excitations," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2588-2598, 2011.        Google Scholar

54. Gan, T. H. and E. L. Tan, "An efficient total-field/scattered-field technique for the fundamental ADI-FDTD method," IEEE AP-S Int. Symp. Antennas Propag., 159-160, Memphis, 2014.        Google Scholar

55. Singh, G., E. L. Tan, and Z. N. Chen, "Efficient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals," IEEE Photon. Technol. Lett., Vol. 23, No. 12, 801-803, 2011.        Google Scholar

56. Singh, G., E. L. Tan, and Z. N. Chen, "Modeling magnetic photonic crystals with lossy ferrites using efficient complex envelope ADI-FDTD method," Opt. Lett., Vol. 36, No. 8, 1494-1496, 2011.        Google Scholar

57. D'Yakonov, Ye. G., "On some difference schemes for solutions of boundary problems," U.S.S.R. Comput. Math. and Math. Phys., Vol. 2, 55-77, 1962.        Google Scholar

58. Shibayama, J., T. Hirano, J. Yamauchi, and H. Nakano, "Efficient implementation of frequency-dependent 3D LOD-FDTD method using fundamental scheme," Electron. Lett., Vol. 48, No. 13, 774-775, 2012.        Google Scholar

59. Yang, Z., E. L. Tan, and L. Wang, "Upgrading LOD-FDTD method to efficient method with second-order accuracy," Asia-Pacific Microwave Conf., Nanjing, 2015.        Google Scholar

60. Gan, T. H. and E. L. Tan, "Unconditionally stable fundamental LOD-FDTD method with second-order temporal accuracy and complying divergence," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2630-2638, 2013.        Google Scholar

61. Gan, T. H. and E. L. Tan, "Convolutional perfectly matched layer (CPML) for fundamental LOD-FDTD method with 2nd order temporal accuracy and complying divergence," Asia-Pacific Microwave Conf., 839-841, Seoul, Korea, 2013.        Google Scholar

62. Gan, T. H. and E. L. Tan, "Application of the fundamental LOD2-CD-FDTD method for antenna modeling," Asia-Pacific Conf. Antennas Propag., 445-446, Bali, 2015.        Google Scholar

63. Gan, T. H. and E. L. Tan, "Current source implementations for fundamental SS2-FDTD method," Asia-Pacific Microwave Conf., 1292-1294, Kaohsiung, 2012.        Google Scholar

64. Heh, D. Y. and E. L. Tan, "Split-step finite-difference time-domain method with fourth order accuracy in time," Asia-Pacific Symp. Electromag. Compat., 68-71, Singapore, 2008.        Google Scholar

65. Tan, E. L. and D. Y. Heh, "ADI-FDTD method with fourth order accuracy in time," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 5, 296-298, 2008.        Google Scholar

66. Heh, D. Y. and E. L. Tan, "Further reinterpretation of multi-stage implicit FDTD schemes," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4407-4411, 2014.        Google Scholar

67. Garcia, S. G., T. W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propag. Lett., Vol. 1, 31-34, 2002.        Google Scholar

68. Kong, Y. and Q. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3280-3289, 2011.        Google Scholar

69. Tan, E. L., "Acceleration of LOD-FDTD method using fundamental scheme on graphics processor units," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 12, 648-650, 2010.        Google Scholar

70. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.        Google Scholar

71. Tay, W. C. and E. L. Tan, "Mur absorbing condition for efficient fundamental 3D LOD-FDTD," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, 61-63, 2010.        Google Scholar

72. Tay, W. C. and E. L. Tan, "Implementations of PMC and PEC boundary conditions for efficient fundamental ADI and LOD-FDTD," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 565-573, 2010.        Google Scholar

73. Singh, G., E. L. Tan, and Z. N. Chen, "Implementation of total-field/scattered-field technique in the 2-D LOD-FDTD method," Asia-Pacific Microwave Conf., 1505-1508, Singapore, 2009.        Google Scholar

74. Singh, G., E. L. Tan, and Z. N. Chen, "A split-step FDTD method for 3-D Maxwell's equations in general anisotropic media," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3647-3657, 2010.        Google Scholar

75. Heh, D. Y. and E. L. Tan, "Complex-envelope LOD-FDTD method for ionospheric propagation," IEEE AP-S Int. Symp. Antennas Propag., 2027-2028, Farjardo, Puerto Rico, 2016.        Google Scholar

76. Yang, Z. and E. L. Tan, "Efficient 3-D fundamental LOD-FDTD method with lumped elements," IEEE MTT-S Int. Microwave Symp., Tampa, 2014.        Google Scholar

77. Yang, Z. and E. L. Tan, "3-D unified FLOD-FDTD method incorporated with lumped elements," IEEE AP-S Int. Symp. Antennas Propag., San Diego, 2017.        Google Scholar

78. Yang, Z. and E. L. Tan, "Two finite-difference time-domain methods incorporated with memristor," Progress In Electromagnetics Research M, Vol. 42, 153-158, 2015.        Google Scholar

79. Yang, Z. and E. L. Tan, "Efficient 3-D fundamental LOD-FDTD method incorporated with memristor," IEICE Trans. Electronics, Vol. E99-C, No. 7, 788-792, 2016.        Google Scholar

80. Yang, Z. and E. L. Tan, "3-D non-uniform time step locally onedimensional FDTD method," Electron. Lett., Vol. 52, No. 12, 993-994, 2016.        Google Scholar

81. Yang, Z. and E. L. Tan, "Stability analyses of non-uniform time-step schemes for ADI- and LOD-FDTD methods," IEEE Int. Conf. Comput. Electromagn., 312-313, Kumamoto, 2017.        Google Scholar

82. Tan, E. L. and D. Y. Heh, "Stability analyses of nonuniform time-step LOD-FDTD methods for electromagnetic and thermal simulations," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 2, 183-193, 2017.        Google Scholar

83. Heh, D. Y. and E. L. Tan, "Some recent developments in fundamental implicit FDTD schemes," Asia-Pacific Symp. Electromag. Compat., 153-156, Singapore, 2012.        Google Scholar

84. Tay, W. C. and E. L. Tan, "Efficient algorithm for 3-D thermal alternating-direction-implicit method," IEEE Electrical Design Adv. Packag. Syst. Symp., 177-180, Taipei, 2012.        Google Scholar

85. Tay, W. C., E. L. Tan, and D. Y. Heh, "Fundamental locally one-dimensional method for 3-D thermal simulation," IEICE Trans. Electronics, Vol. E97-C, No. 7, 636-644, 2014.        Google Scholar

86. Heh, D. Y., E. L. Tan, and W. C. Tay, "Fast alternating direction implicit method for e±cient transient thermal simulation of integrated circuits," Int. J. Numer. Model. Electron. Networks Devices Fields, Vol. 29, No. 1, 93-108, 2016.        Google Scholar

87. Tay, W. C. and E. L. Tan, "Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrodinger equation," Computer Phys. Comm., Vol. 185, No. 7, 1886-1892, 2014.        Google Scholar

88. Cooke, S. J., M. Botton, T. M. Antonsen, and B. Levush, "A leapfrog formulation of the 3D ADI-FDTD algorithm," Int. J. Numer. Model, Vol. 22, No. 2, 187-200, 2009.        Google Scholar

89. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.        Google Scholar

90. Gan, T. H. and E. L. Tan, "Divergence of electric field for the two-dimensional (2-D) leapfrog ADI-FDTD method," IEEE AP-S Int. Symp. Antennas Propag., Chicago, 2012.        Google Scholar

91. Gan, T. H. and E. L. Tan, "Analysis of the divergence properties for the three-dimensional leapfrog ADI-FDTD method," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5801-5808, 2012.        Google Scholar

92. Gan, T. H. and E. L. Tan, "Unconditionally stable leapfrog ADI-FDTD method for lossy media," Progress In Electromagnetics Research M, Vol. 26, 173-186, 2012.        Google Scholar

93. Gan, T. H. and E. L. Tan, "On the field leakage of the leapfrog ADI-FDTD method for nonpenetrable targets," Microwave Opt. Technol. Lett., Vol. 56, No. 6, 1401-1405, 2014.        Google Scholar

94. Heh, D. Y. and E. L. Tan, "Divergence-preserving alternating direction implicit scheme for multi-pole Debye dispersive media," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 2, 69-71, 2014.        Google Scholar

95. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, 2008.        Google Scholar

96. Saxena, A. K. and K. V. Srivastava, "A three-dimensional unconditionally stable five-step LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1321-1329, 2014.        Google Scholar

97. Yang, Z., E. L. Tan, and D. Y. Heh, "Second-order temporal-accurate scheme for 3-D LOD-FDTD method with three split matrices," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1105-1108, 2015.        Google Scholar

98. Yang, Z., E. L. Tan, and D. Y. Heh, "Variants of second-order temporal-accurate 3-D FLOD-FDTD schemes with three split matrices," IEEE Int. Conf. Comput. Electromagn., 265-267, Guangzhou, 2016.        Google Scholar

99. Tan, E. L. and D. Y. Heh, "M1-D FDTD methods for mobile interactive teaching and learning of wave propagation in transmission lines," IEEE Antennas Propag. Mag., Vol. 61, No. 5, 119-126, 2019.        Google Scholar

100. Yang, Z. and E. L. Tan, "Interconnected multi-1-D FADI- and FLOD-FDTD methods for transmission lines with interjunctions," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 3, 684-692, 2017.        Google Scholar

101. Tan, E. L. and D. Y. Heh, "Demonstration of electromagnetic waves propagation along transmission lines on iPad," 2018 Joint IEEE Int. Symp. Electromag. Compat. and Asia-Pacific Symp. Electromag. Compat., 599-601, Singapore, 2018.        Google Scholar

102. Yang, Z. and E. L. Tan, "Non-uniform time-step FLOD-FDTD method for multiconductor transmission lines including lumped elements," IEEE Trans. Electromagn. Compat., Vol. 59, No. 6, 1983-1992, 2017.        Google Scholar

103. Yang, Z. and E. L. Tan, "Multiple one-dimensional FDTD method for coupled transmission lines and stability condition," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 11, 864-866, 2016.        Google Scholar

104. Yang, Z. and E. L. Tan, "Multiple one-dimensional finite-difference time-domain method for asymmetric coupled transmission lines," IEEE Int. Conf. Comput. Electromagn., Chengdu, 2018.        Google Scholar

105. Paul, C. R., Analysis of Multiconductor Transmission Lines, 2nd Ed., Wiley, 2008.

106. Mongia, R. K., I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled-line Circuits, 2nd Ed., Artech House, 2007.

107. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.

108. Heh, D. Y. and E. L. Tan, "Unconditionally stable multiple one-dimensional ADI-FDTD method for coupled transmission lines," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7488-7492, 2018.        Google Scholar

109. Heh, D. Y. and E. L. Tan, "Numerical stability analysis of M1-D ADI-FDTD method for coupled transmission lines," IEEE Int. Conf. Comput. Electromagn., Shanghai, 2019.        Google Scholar

110. Tan, E. L. and D. Y. Heh, "Source-incorporated M1-D FADI-FDTD method for coupled transmission lines," 11th Int. Conf. Microw. Millimeter Wave Techn., Guangzhou, 2019.        Google Scholar

111. Tan, E. L. and D. Y. Heh, "Multiple 1-D fundamental ADI-FDTD method for coupled transmission lines on mobile devices," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 4, 198-206, 2019.        Google Scholar

112. Tan, E. L. and D. Y. Heh, "Mobile teaching and learning of coupled-line structures," IEEE Antennas Propag. Mag., Vol. 62, No. 4, 62-69, 2020.        Google Scholar

113. Heh, D. Y. and E. L. Tan, "Numerical stability analysis of M1-D LOD-FDTD method for inhomogeneous coupled transmission lines," IEEE AP-S Int. Symp. Antennas Propag., 1657-1658, Atlanta, 2019.        Google Scholar

114. Heh, D. Y. and E. L. Tan, "Multiple LOD-FDTD method for inhomogeneous coupled transmission lines and stability analyses," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 2198-2205, 2020.        Google Scholar

115. Tan, E. L. and S. Y. Tan, "Spectral-domain dyadic Green's functions for surface current excitation in planar stratified bianisotropic media," IEE Proc. Microw. Antennas Propag., Vol. 146, No. 6, 394-400, 1999.        Google Scholar

116. Tan, E. L. and S. Y. Tan, "Unbounded and scattered field representations of the dyadic Green's functions for planar stratified bianisotropic media," IEEE Trans. Antennas Propag., Vol. 49, No. 8, 1218-1225, 2001.        Google Scholar

117. Tan, E. L., "Note on formulation of the enhanced scattering- (transmittance-) matrix approach," J. Opt. Soc. Am. A, Vol. 19, No. 6, 1157-1161, 2002.        Google Scholar

118. Tan, E. L., "Recursive asymptotic impedance matrix method for electromagnetic waves in bianisotropic media," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 351-353, 2006.        Google Scholar

119. Ning, J. and E. L. Tan, "Hybrid matrix method for stable analysis of electromagnetic waves in stratified bianisotropic media," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 10, 653-655, 2008.        Google Scholar

120. Ning, J. and E. L. Tan, "Generalized eigenproblem of hybrid matrix method for stable analysis of periodic multilayered bianisotropic media," Asia-Pacific Microwave Conf., Hong Kong, 2008.        Google Scholar

121. Tan, E. L. and S. Y. Tan, "Singularities and discontinuities in the eigenfunction expansions of the dyadic Green's functions for biisotropic media," Progress In Electromagnetics Research, Vol. 19, 301-318, 1998.        Google Scholar

122. Tan, E. L. and S. Y. Tan, "A unified representation of the dyadic Green's functions for planar, cylindrical and spherical multilayered biisotropic media," Progress In Electromagnetics Research, Vol. 20, 75-100, 1998.        Google Scholar

123. Tan, E. L. and S. Y. Tan, "Dyadic Green's functions for circular waveguides filled with biisotropic media," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 7, 1134-1137, 1999.        Google Scholar

124. Tan, E. L., "Unified solutions of static Green's functions for open and covered planar two-layered anisotropic media," IEEE AP-S Int. Symp. Antennas Propag., 892-895, Salt Lake City, 2000.        Google Scholar

125. Tan, E. L., "Electrostatic Green's functions for planar multilayered anisotropic media," IEE Proc. Microw. Antennas Propag., Vol. 149, No. 1, 78-83, 2002.        Google Scholar

126. Ning, J. and E. L. Tan, "Simple and stable analysis of multilayered anisotropic materials for design of absorbers and shields," Mater. Des., Vol. 30, No. 6, 2061-2066, 2009.        Google Scholar

127. Tan, E. L. and S. Y. Tan, "Cylindrical vector wave function representations of electromagnetic fields in gyrotropic bianisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 11, 1461-1476, 1999.        Google Scholar

128. Tan, E. L. and S. Y. Tan, "Cylindrical vector wave function representations of the dyadic Green's functions for cylindrical multilayered gyrotropic bianisotropic media," Progress In Electromagnetics Research, Vol. 26, 199-222, 2000.        Google Scholar

129. Tan, E. L. and S. Y. Tan, "On the eigenfunction expansions of the dyadic Green's functions for bianisotropic media," Progress In Electromagnetics Research, Vol. 20, 227-247, 1998.        Google Scholar

130. Tan, E. L. and S. Y. Tan, "Coordinate-independent dyadic formulation of the dispersion relation for bianisotropic media," IEEE Trans. Antennas Propag., Vol. 47, No. 12, 1820-1824, 1999.        Google Scholar

131. Tan, E. L. and S. Y. Tan, "Concise spectral formalism in the electromagnetics of bianisotropic media," Progress In Electromagnetics Research, Vol. 25, 309-331, 2000.        Google Scholar

132. Tan, E. L., "Vector wave function expansions of dyadic Green's functions for bianisotropic media," IEE Proc. Microw. Antennas Propag., Vol. 149, No. 1, 57-63, 2002.        Google Scholar

133. Tan, E. L., "Reduced conditions for the constitutive parameters of lossy bi-anisotropic media," Microwave Opt. Technol. Lett., Vol. 41, No. 2, 133-135, 2004.        Google Scholar

134. Tan, E. L., "Enhanced R-matrix algorithms for multilayered diffraction gratings," Appl. Opt., Vol. 45, No. 20, 4803-4809, 2006.        Google Scholar

135. Tan, E. L., "Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings," J. Mod. Opt., Vol. 53, No. 4, 417-428, 2006.        Google Scholar

136. Ning, J. and E. L. Tan, "Generalized eigenproblem of hybrid matrix for Bloch-Floquet waves in one-dimensional photonic crystals," J. Opt. Soc. Am. B, Vol. 26, No. 4, 676-683, 2009.        Google Scholar

137. Tan, E. L. and Y. W. M. Chia, "Green's function and network analysis of quasi-2D SAW ID-tags," IEEE Ultrasonics Symp., 55-58, San Juan, Puerto Rico, 2000.        Google Scholar

138. Tan, E. L., "A robust formulation of SAW Green's functions for arbitrarily thick multilayers at high frequencies," IEEE Trans. Ultrason., Ferroelec., Freq. Contr., Vol. 49, No. 7, 929-936, 2002.        Google Scholar

139. Tan, E. L., "A concise and efficient scattering matrix formalism for stable analysis of elastic wave propagation in multilayered anisotropic solids," Ultrasonics, Vol. 41, No. 3, 229-236, 2003.        Google Scholar

140. Tan, E. L., "Stiffness matrix method with improved efficiency for elastic wave propagation in layered anisotropic media," J. Acoust. Soc. Am., Vol. 118, No. 6, 3400-3403, 2005.        Google Scholar

141. Tan, E. L., "Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media," J. Acoust. Soc. Am., Vol. 119, No. 1, 45-53, 2006.        Google Scholar

142. Tan, E. L., "Generalized eigenproblem for acoustic wave propagation in periodically layered anisotropic media," J. Comput. Acoustics, Vol. 16, No. 1, 1-10, 2008.        Google Scholar

143. Tan, E. L., "Generalized eigenproblem of hybrid matrix for Floquet wave propagation in one- dimensional phononic crystals with solids and fluids," Ultrasonics, Vol. 50, No. 1, 91-98, 2010.        Google Scholar

144. Tan, E. L., "Recursive asymptotic hybrid matrix method for acoustic waves in multilayered piezoelectric media," Open J. Acoustics, Vol. 1, 27-33, 2011.        Google Scholar

145. Tan, E. L., "Simple derivation and proof of geometrical stability criteria for linear two-ports," Microwave Opt. Technol. Lett., Vol. 40, No. 1, 81-83, 2004.        Google Scholar

146. Tan, E. L., "Simplified graphical analysis of linear three-port stability," IEE Proc. Microw. Antennas Propag., Vol. 152, No. 4, 209-213, 2005.        Google Scholar

147. Tan, E. L., J. Ning, and K. S. Ang, "Geometrical stability criteria for two-port networks in invariant immittance parameters representation," Asia-Pacific Microwave Conf., Hong Kong, 2008.        Google Scholar

148. Tan, E. L., "Comments on `Distance from unconditional stability boundary of a two-port network'," IET Microw. Antennas Propag., Vol. 8, No. 1, 64, 2014.        Google Scholar

149. Tan, E. L., "Rollett-based single-parameter criteria for unconditional stability of linear two-ports," IEE Proc. Microw. Antennas Propag., Vol. 151, No. 4, 299-302, 2004.        Google Scholar

150. Tan, E. L., X. Sun, and K. S. Ang, "Unconditional stability criteria for microwave networks," Progress In Electromagnetics Research Symposium, 1524-1528, Beijing, China, March 23-27, 2009.        Google Scholar

151. Tan, E. L., "A Quasi-invariant single-parameter criterion for linear two-port unconditional stability," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 487-489, 2004.        Google Scholar

152. Tan, E. L., "Quasi-invariant single-parameter criterion for unconditional stability: Review and application," Asia-Pacific Microwave Conf., 429-432, Yokohama, 2006.        Google Scholar

153. Tan, E. L. and S. Z. Fan, "Graphical analysis of stabilization loss and gains for three-port networks," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1635-1640, 2012.        Google Scholar

154. Tan, E. L. and D. Y. Heh, "Application of Belevitch theorem for pole-zero analysis of microwave filters with transmission lines and lumped elements," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 11, 4669-4676, 2018.        Google Scholar

155. Tan, E. L. and D. Y. Heh, "Analysis and determination of microwave filter order," Asia-Pacific Microwave Conf., 1360-1362, Kyoto, 2018.        Google Scholar

156. Tan, E. L. and D. Y. Heh, "Pole-zero analysis of microwave filters using contour integration method exploiting right-half plane," Progress In Electromagnetics Research M, Vol. 78, 59-68, 2019.        Google Scholar

157. Smunyahirun, R. and E. L. Tan, "Derivation of the most energy-efficient source functions by using calculus of variations," IEEE Trans. Circuits Syst. I: Regul. Pap., Vol. 63, No. 4, 494-502, 2016.        Google Scholar

158. Smunyahirun, R. and E. L. Tan, "Optimum lowest input energy for first-order circuits in transient state," Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 143-146, Phuket, 2017.        Google Scholar

159. Smunyahirun, R. and E. L. Tan, "Most energy-efficient input voltage function for RC delay line," 2018 Joint IEEE Int. Symp. Electromag. Compat. and Asia-Pacific Symp. Electromag. Compat., 1022-1026, Singapore, 2018.        Google Scholar