1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
2. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1990.
3. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
4. Jin, Y. Q., Electromagnetic Scattering Modelling for Quantitative Remote Sensing, World Science Press, 2000.
5. Tang, L., J. A. Kong, and B. Shin, Theory of Microwave Remote Sensing, IEEE Press, 1995.
6. Harrington, R. F., Field Computation by Moment Methods, Wiley, 2000.
7. Kulkarni, S., S. Uy, R. Lemdiasov, R. Ludwig, and S. Makarov, "MoM volume integral equation solution for an isolated metal-dielectric resonator with the edge-based basis functions," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1566-1571, Apr. 2005.
doi:10.1109/TAP.2005.844402 Google Scholar
8. Xiao, L., X. H. Huang, B. Z.Wang, G. Zheng, and P. Chen, "An efficient hybrid method of iterative MoM-PO and equivalent dipole-moment for scattering from electrically large objects," IEEE Trans. Antennas Propag. Lett., Vol. 16, 1723-1726, 2017.
doi:10.1109/LAWP.2017.2669910 Google Scholar
9. Jin, J. M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley-IEEE Press, 2014.
10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd Ed., Artech House, 2015.
11. Yao, J. J., S. Y. He, Y. H. Zhang, H. C. Yin, C. Wang, and G. Q. Zhu, "Evaluation of scattering from electrically large and complex PEC target coated with uniaxial electric anisotropic medium layer based on asymptotic solution in spectral domain," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2175-2186, Apr. 2014.
doi:10.1109/TAP.2014.2300537 Google Scholar
12. Bhalla, R., H. Ling, J. Moore, D. J. Andersh, S. W. Lee, and J. Hughes, "3D scattering center representation of complex targets using the shooting and bouncing ray technique: A review," IEEE Antennas Propag. Mag., Vol. 40, No. 5, 30-39, Oct. 1998.
doi:10.1109/74.735963 Google Scholar
13. Domingo, M., F. Rivas, J. Perez, R. P. Torres, and M. F. Catedra, "Computation of the RCS of complex bodies using NURBS surfaces," IEEE Antennas Propag. Mag., Vol. 37, No. 6, 36-47, Dec. 1995.
doi:10.1109/74.482030 Google Scholar
14. Elking, D. M., J. M. Roedder, D. D. Car, and S. D. Alspach, "A review of high frequency radar cross section analysis capabilities at McDonnell Douglas Aerospace," IEEE Antennas Propag. Mag., Vol. 37, No. 5, 33-43, Oct. 1995.
doi:10.1109/74.475862 Google Scholar
15. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308 Google Scholar
16. Wu, Y. M., L. J. Jiang, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting quadratic surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
doi:10.1109/TAP.2013.2259788 Google Scholar
17. Zhang, J., B. Xu, and T. J. Cui, "An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 986-991, Feb. 2014.
doi:10.1109/TAP.2013.2292937 Google Scholar
18. Fan, T. T., X. Zhou, and T. J. Cui, "Singularity-free contour-integral representations for physicaloptics near-field backscattering problem," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 805-811, Feb. 2017.
doi:10.1109/TAP.2016.2647581 Google Scholar
19. Roudstein, M., Y. Brick, and A. Boag, "Multilevel physical optics algorithm for near-field double-bounce scattering," IEEE Trans. Antennas Propag., Vol. 63, No. 11, 5015-5025, Nov. 2015.
doi:10.1109/TAP.2015.2481491 Google Scholar
20. Macdonald, H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913. Google Scholar
21. Hodges, R. E. and Y. Rahmat-Samii, "Evaluation of dielectric physical optics in electromagnetic scattering," Symp. on Antennas and Propag. (IEEE APS1993), 1742-1745, 1993.
doi:10.1109/APS.1993.385538 Google Scholar
22. Li, N., W. C. Su, J. Yang, and L. J. Hu, "The bistatic formulae of dielectric objects in physical optics," Symp. on Antennas and Propag. (IEEE APS1993), 1746-1749, 1993.
doi:10.1109/APS.1993.385539 Google Scholar
23. Cai, W. F., X. G. Liu, H. P. Guo, H. C. Yin, and P. K. Huang, "A concise expression for PO method on electromagnetic scattering by arbitrary shaped conducting targets with partially coating," Environmental Electromagnetics (IEEE CEEM2003), 469-473, 2003. Google Scholar
24. Li, X., Y. Xie, and R. Yang, "High-frequency method for scattering from coated targets with electrically large size in half space," IET Microw. Antennas Propag., Vol. 3, 181-186, Feb. 2009.
doi:10.1049/iet-map:20070287 Google Scholar
25. Liu, Z. L. and C. F. Wang, "Shooting and bouncing ray and physical optics for predicting the EM scattering of coated PEC objects," Antennas and Propag. (IEEE APCAP12), 2012. Google Scholar
26. Mohammadzadeh, H., A. Z. Nezhad, Z. H. Firouzeh, and R. Safian, "Modified physical optics approximation and physical theory of diffraction for RCS calculation of dielectric coated PEC," Symp. on Antennas and Propag. (IEEE APS2013), 1896-1897, 2013. Google Scholar
27. Gordon, W. B., "Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 7, 590-592, Jul. 1975. Google Scholar
28. Gordon, W. B., "Near field calculations with far field formulas," Proc. IEEE Trans. Antennas Propag. Soc., Vol. 2, No. 7, 950-953, Jul. 1996. Google Scholar
29. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Trans. Antennas Propag., Vol. 16, No. 6, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296 Google Scholar
30. Catedra, M. F., C. Delgado, S. Luceri, and F. S. de Adana, "Efficient procedure for computing fields created by current modes," Electron. Lett., Vol. 39, 763-764, May 2003.
doi:10.1049/el:20030513 Google Scholar
31. Catedra, M. F., C. Delgado, S. Luceri, O. G. Blanco, and F. S. de Adana, "Physical optics analysis of multiple interactions in large scatters using current modes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 985-994, Mar. 2006.
doi:10.1109/TAP.2006.869893 Google Scholar
32. Delgado, C., J. M. Gomez, and M. F. Catedra, "Analytical field calculation involving current modes and quadratic phase expressions," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 233-240, Jan. 2007.
doi:10.1109/TAP.2006.888470 Google Scholar
33. Boag, A., "A fast physical optics (FPO) algorithm for high frequency scattering," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 197-204, Jan. 2004.
doi:10.1109/TAP.2003.822426 Google Scholar
34. Gendelman, A., Y. Brick, and A. Boag, "Multilevel physical optics algorithm for near field scattering," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4325-4335, Aug. 2014.
doi:10.1109/TAP.2014.2327648 Google Scholar
35. Brick, Y. and A. Boag, "Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 57, No. 1, 262-273, Jan. 2010.
doi:10.1109/TUFFC.2010.1404 Google Scholar
36. Boag, A., "A fast iterative physical optics (FIPO) algorithm based on nonuniform polar grid interpolation," Microw. Opt. Technol. Lett., Vol. 35, No. 3, 240-244, Nov. 2002.
doi:10.1002/mop.10568 Google Scholar
37. Boag, A. and E. Michielssen, "A fast physical optics (FPO) algorithm for double-bounce scattering," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 205-212, Jan. 2004.
doi:10.1109/TAP.2003.822428 Google Scholar
38. Song, J. M. and W. C. Chew, "Moment method solution using parameter geometry," IEEE Trans. Antennas Propag., Vol. 3, 2242-2245, Jun. 1994. Google Scholar
39. Li, J., L. J. Jiang, and B. Shanker, "Generalized Debye sources-based EFIE solver on subdivision surfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5376-5386, Oct. 2017. Google Scholar
40. Bucci, O. M. and G. Franceschetti, "On the spatial bandwidth of scattered fields," IEEE Trans. Antennas Propag., Vol. 35, No. 12, 1445-1455, Dec. 1987.
doi:10.1109/TAP.1987.1144024 Google Scholar