1. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics, Wiley Interscience, 1997.
doi:10.1002/9783527618422
2. Walls, D. F. and G. J. Milburn, Quantum Optics, Springer Science & Business Media, 2007.
3. Liu, A. Y. and W. C. Chew, "Dressed atom fields and dressed states in waveguide quantum electrodynamics," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 2, 58-65, 2017.
doi:10.1109/JMMCT.2017.2698341 Google Scholar
4. Rodriguez, A. W., A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, "Casimir forces in the time domain: Theory," Physical Review A, Vol. 80, No. 1, 012115, 2009.
doi:10.1103/PhysRevA.80.012115 Google Scholar
5. Gregersen, N., P. Kaer, and J.Mørk, "Modeling and design of high-efficiency single-photon sources," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 5, 1-16, 2013.
doi:10.1109/JSTQE.2013.2255265 Google Scholar
6. Kandala, A., A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets," Nature, Vol. 549, No. 7671, 242-246, 2017.
doi:10.1038/nature23879 Google Scholar
7. Barends, R., J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, et al. "Superconducting quantum circuits at the surface code threshold for fault tolerance," Nature, Vol. 508, No. 7497, 500-503, 2014.
doi:10.1038/nature13171 Google Scholar
8. Shanker, B., A. A. Ergin, M. Lu, and E. Michielssen, "Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 628-641, 2003.
doi:10.1109/TAP.2003.809054 Google Scholar
9. Yilmaz, A. E., J.-M. Jin, and E. Michielssen, "Time domain adaptive integral method for surface integral equations," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2692-2708, 2004.
doi:10.1109/TAP.2004.834399 Google Scholar
10. Chen, N.-W., K. Aygun, and E. Michielssen, "Integral-equation-based analysis of transient scattering and radiation from conducting bodies at very low frequencies," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 148, No. 6, 381-387, 2001.
doi:10.1049/ip-map:20010827 Google Scholar
11. Cools, K., F. P. Andriulli, F. Olyslager, and E. Michielssen, "Time domain Calder´on identities and their application to the integral equation analysis of scattering by PEC objects Part I: Preconditioning," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2352-2364, 2009.
doi:10.1109/TAP.2009.2024460 Google Scholar
12. Qian, Z.-G. and W. C. Chew, "Fast full-wave surface integral equation solver for multiscale structure modeling," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3594-3601, 2009.
doi:10.1109/TAP.2009.2023629 Google Scholar
13. Taskinen, M. and P. Yla-Oijala, "Current and charge integral equation formulation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 58-67, 2006.
doi:10.1109/TAP.2005.861580 Google Scholar
14. Liu, Q. S., S. Sun, and W. C. Chew, "A potential based integral equation method for low-frequency electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1413-1426, 2018.
doi:10.1109/TAP.2018.2794388 Google Scholar
15. Li, J., X. Fu, and B. Shanker, "Decoupled potential integral equations for electromagnetic scattering from dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1729-1739, 2018.
doi:10.1109/TAP.2018.2883636 Google Scholar
16. Roth, T. E. and W. C. Chew, "Development of stable A-Φ time domain integral equations for multiscale electromagnetics," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 3, 255-265, 2018.
doi:10.1109/JMMCT.2018.2889535 Google Scholar
17. Roth, T. E. and W. C. Chew, "Stability analysis and discretization of A-Φ time domain integral equations for multiscale electromagnetics," Journal of Computational Physics, 109102, 2019. Google Scholar
18. Jackson, J. D., Classical Electrodynamics, Wiley, 1999.
19. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, 2007.
20. Tai, C.-T., "Direct integration of field equations," Progress In Electromagnetics Research, Vol. 28, 339-359, 2000.
doi:10.2528/PIER99101401 Google Scholar
21. Jin, J.-M., Theory and Computation of Electromagnetic Fields, John Wiley & Sons, 2011.
22. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
23. Ha-Duong, T., "On retarded potential boundary integral equations and their discretisation," Topics in Computational Wave Propagation, 301-336, Springer, 2003.
doi:10.1007/978-3-642-55483-4_8 Google Scholar
24. Cools, K., F. Andriulli, D. De Zutter, and E. Michielssen, "Accurate and conforming mixed discretization of the MFIE," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 528-531, 2011.
doi:10.1109/LAWP.2011.2155022 Google Scholar
25. van’tWout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "Stability analysis of the marchingon-in-time boundary element method for electromagnetics," Journal of Computational and Applied Mathematics, Vol. 294, 358-371, 2016.
doi:10.1016/j.cam.2015.09.002 Google Scholar
26. Bachelot, A., L. Bounhoure, and A. Pujols, "Couplage elements finis-potentiels retardes pour la diffraction electromagnetique par un obstacle heterogene," Numerische Mathematik, Vol. 89, No. 2, 257-306, 2001.
doi:10.1007/PL00005468 Google Scholar
27. Roth, T. E. and W. C. Chew, "Potential-based TDIEs for dielectric regions using magnetic currents," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1443-1444, IEEE, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889161 Google Scholar
28. Roth, T. E. and W. C. Chew, "Initial potential-based time domain surface integral equations for dielectric regions," 2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS — Spring), Rome, Italy, June 17–20, 2019. Google Scholar
29. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Mathematics of Computation, Vol. 76, No. 260, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5 Google Scholar
30. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
31. Dai, Q. I., W. C. Chew, L. J. Jiang, and Y. Wu, "Differential-forms-motivated discretizations of electromagnetic differential and integral equations," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1223-1226, 2014.
doi:10.1109/LAWP.2014.2332300 Google Scholar
32. Chen, Q. and D. Wilton, "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies," International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's, 590-593, IEEE, 1990.
doi:10.1109/APS.1990.115179 Google Scholar
33. Walker, S., M. Bluck, and I. Chatzis, "The stability of integral equation time-domain scattering computations for three-dimensional scattering; similarities and differences between electrodynamic and elastodynamic computations," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 15, No. 5-6, 459-474, 2002.
doi:10.1002/jnm.473 Google Scholar
34. Bamberger, A., T. Ha-Duong, and J. C. Nedelec, "Formulation variationnelle espace-temps pour le calcul par potentiel retard´e de la diffraction d’une onde acoustique (I)," Mathematical Methods in the Applied Sciences, Vol. 8, No. 1, 405-435, 1986.
doi:10.1002/mma.1670080127 Google Scholar
35. Terrasse, I., Resolution mathematique et numerique des equations de Maxwell instationnaires par une methode de potentiels retardes, Ph.D. dissertation, 1993.
36. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 316-328, 1997.
doi:10.1109/8.558648 Google Scholar
37. Desbrun, M., E. Kanso, and Y. Tong, "Discrete differential forms for computational modeling," Discrete Differential Geometry, 287-324, Springer, 2008.
doi:10.1007/978-3-7643-8621-4_16 Google Scholar