Vol. 168
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-10-15
Multiple Scattering of Waves by Complex Objects Using Hybrid Method of T-Matrix and Foldy-Lax Equations Using Vector Spherical Waves and Vector Spheroidal Waves
By
Progress In Electromagnetics Research, Vol. 168, 87-111, 2020
Abstract
In this paper, we develop numerical methods for using vector spherical and spheroidal waves in the hybrid method to calculate the multiple scattering of objects of complex shapes, based on the rigorous solutions of Maxwell equations in the form of Foldy-Lax multiple scattering equations (FL). The steps in the hybrid method are: (1) calculating the T-matrix of each single object using vector spherical/spheroidal waves and (2) vector spherical/spheroidal waves addition theorem. We utilize the commercial software HFSS to calculate the scattered fields of a complex object on the circumscribing sphere or spheroid for multiple incidences and polarizations. The T-matrix of spherical waves or spheroidal waves are then obtained from these scattered fields. To perform wave transformations (i.e. addition theorem) for vector spherical/spheroidal waves, we develop robust numerical methods. Numerical results are illustrated for T-matrices and numerical vector addition theorems.
Citation
Huanting Huang Leung Tsang Andreas Colliander Rashmi Shah Xiaolan Xu Simon Yueh , "Multiple Scattering of Waves by Complex Objects Using Hybrid Method of T-Matrix and Foldy-Lax Equations Using Vector Spherical Waves and Vector Spheroidal Waves," Progress In Electromagnetics Research, Vol. 168, 87-111, 2020.
doi:10.2528/PIER20080409
http://www.jpier.org/PIER/pier.php?paper=20080409
References

1. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, New York, 1985.

2. Chandrasekhar, S., "Radiative Transfer," Courier Corporation, 2013.

3. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, John Wiley and Sons, 2017.
doi:10.1002/9781119079699

4. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge University Press, 2006.

5. Ulaby, F. T., K. Sarabandi, K. Y. Mcdonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," InternationalJournal ofRemote Sensing, Vol. 11, No. 7, 1223-1253, 1990.

6. Liao, T. H., S. B. Kim, S. Tan, L. Tsang, C. Su, and T. J. Jackson, "Multiple scattering effects with cyclical correction in active remote sensing of vegetated surface using vector radiative transfer theory," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 4, 1414-1429, 2016.
doi:10.1109/JSTARS.2015.2505638

7. Lang, R. H. and J. S. Sighu, "Electromagnetic backscattering from a layer of vegetation: A discrete approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 1, No. 1, 62-71, 1983.
doi:10.1109/TGRS.1983.350531

8. Chauhan, N. S., R. H. Lang, and K. J. Ranson, "Radar modeling of a boreal forest," IEEE Transactions on Geoscience and Remote Sensing, Vol. 29, No. 4, 627-638, 1991.
doi:10.1109/36.135825

9. Kim, S. B., et al., "Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the soil moisture active-passive satellite and evaluation at core validation sites," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 4, 1897-1914, 2017.
doi:10.1109/TGRS.2016.2631126

10. Huang, H., T.-H. Liao, L. Tsang, E. G. Njoku, A. Colliander, T. J. Jackson, M. S. Burgin, and S. Yueh, "Modelling and validation of combined active and passive microwave remote sensing of agricultural vegetation at L-band," Progress In Electromagnetics Research B, Vol. 78, 94-124, 2017.

11. Frisch, U., Wave Propagation in Random Media, Institue d’Astrophysique Centre National de la Recherche, Paris, Academic Press Inc., New York, 1968.

12. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, John Wiley and Sons, 2004.

13. Tsang, L. and A. Ishimaru, "Theory of backscattering enhancement of random discrete isotropic scatterers based on the summation of all ladder and cyclical terms," JOSA A, Vol. 2, No. 8, 1331-1338, 1985.
doi:10.1364/JOSAA.2.001331

14. Tsang, L., J. A. Kong, and C. O. Ao, "Scattering of Electromagnetic Waves: Numerical Simulations," John Wiley and Sons, 2004.

15. Tsang, L., C. E. Mandt, and K. H. Ding, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations," Optics Letters, Vol. 17, 314-316, 1992.
doi:10.1364/OL.17.000314

16. Xu, X., et al., "Active remote sensing of snow using NMM3D/DMRT and comparison with CLPX II airborne data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, 689-697, 2010.
doi:10.1109/JSTARS.2010.2053919

17. Tsang, L., H. Chen, C. C. Huang, and V. Jandhyala, "Modeling of multiple scattering among vias in planar waveguides using Foldy-Lax equations," Microwave and Optical Technology Letters, Vol. 31, 201-208, 2001.
doi:10.1002/mop.1398

18. Huang, H., L. Tsang, E. G. Njoku, A. Colliander, T.-H. Liao, and K. H. Ding, "Propagation and scattering by a layer of randomly distributed dielectric cylinders using Monte Carlo simulations of 3D Maxwell equations with applications in microwave interactions with vegetation," IEEE Access, Vol. 5, 11985-12003, 2017.
doi:10.1109/ACCESS.2017.2714620

19. Huang, H., L. Tsang, A. Colliander, and S. Yueh, "Propagation of waves in randomly distributed cylinders using three-dimensional vector cylindrical wave expansions in Foldy-Lax equations," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 214-226, 2019.
doi:10.1109/JMMCT.2019.2948022

20. Ulaby, F. T., et al., Microwave Radar and Radiometric Remote Sensing, The University of Michigan, 2014.

21. Gu, W. and L. Tsang, "Vegetation effects for remote sensing of soil moisture using NMM3D full-wave simulation," IEEE Antennas and Propagation Sympsium, Montreal, 2020.

22. Waterman, P. C. and R. Truell, "Multiple scattering of waves," Journal of Mathematical Physics, Vol. 2, 512-537, 1961.
doi:10.1063/1.1703737

23. Peterson, B. and S. Strom, "T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3)," Physical Review D, Vol. 8, 3661, 1973.
doi:10.1103/PhysRevD.8.3661

24. Tse, K. K., L. Tsang, C. H. Chan, K. H. Ding, and K. W. Leung, "Multiple scattering of waves by dense random distributions of sticky particles for applications in microwave scattering by terrestrial snow," Radio Science, Vol. 42, 1-14, 2007.

25. Tsang, L., K. H. Ding, G. Zhang, C. C. Hsu, and J. A. Kong, "Backscattering enhancement and clustering effects of randomly distributed dielectric cylinders overlying a dielectric half space based on Monte-Carlo simulations," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 5, 488-499, 1995.
doi:10.1109/8.384193

26. Valagiannopoulos, C. A. and N. L. Tsitsas, "Linearization of the T-matrix solution for quasihomogeneous scatterers," JOSA A, Vol. 26, No. 4, 870-881, 2009.
doi:10.1364/JOSAA.26.000870

27. Maystre, D., "Electromagnetic scattering by a set of objects: An integral method based on scattering operator," Progress In Electromagnetics Research, Vol. 57, 55-84, 2006.
doi:10.2528/PIER05040901

28. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5–6, 631-640, 2010.
doi:10.1163/156939310791036331

29. Hajihashemi, M. R. and M. El-Shenawee, "Inverse scattering of three-dimensional PEC objects using the level-set method," Progress In Electromagnetics Research, Vol. 116, 23-47, 2011.
doi:10.2528/PIER11012304

30. Wei, Z. and X. Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, 2019.
doi:10.1109/TAP.2019.2922779

31. Tsang, L., J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wiley and Sons, 2004.

32. Flammer, C., Spheroidal Wave Functions, Courier Corporation, 2014.

33. Huang, H., Vegetation/forest effects in microwave remote sensing of soil moisture, Ph.D. Thesis, 2019.

34. Sinha, B. P. and R. H. MacPhie, "Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization and angle of incidence," Radio Science, Vol. 12, No. 2, 171-184, 1977.
doi:10.1029/RS012i002p00171

35. Cooray, M. F. R. and I. R. Ciric, "Scattering by systems of spheroids in arbitrary configurations," Computer Physics Communications, Vol. 68, No. 1–3, 279-305, 1991.
doi:10.1016/0010-4655(91)90204-X

36. Nag, S. and B. P. Sinha, "Electromagnetic plane wave scattering by a system of two uniformly lossy dielectric prolate spheroids in arbitrary orientation," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 3, 322-327, 1995.
doi:10.1109/8.372005

37. Huang, H., L. Tsang, A. Colliander, R. Shah, X. Xu, E. G. Njoku, and S. Yueh, "Numerical 3D solutions of Maxwell equations based on hybrid method combining generalized T-matrix and Foldy-Lax multiple scattering theory for vegetation/trees scattering," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), 2018.

38. Visser, T. D., D. G. Fischer, and E. Wolf, "Scattering of light from quasi-homogeneous sources by quasi-homogeneous media," JOSA A, Vol. 23, No. 7, 1631-1638, 2006.
doi:10.1364/JOSAA.23.001631

39. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic PIN in a slab," Progress In Electromagnetics Research, Vol. 79, 1-21, 2008.
doi:10.2528/PIER07092206

40. Asano, S. and G. Yamamoto, "Light scattering by a spheroidal particle," Applied Optics, Vol. 14, No. 1, 29-49, 1976.
doi:10.1364/AO.14.000029

41. Zhang, S. and J. M. Jin, Computation of Special Functions, Wiley, New York, 1996.

42. Li, L. W., X. K. Kang, and M. S. Leong, Spheroidal Wave Functions in Electromagnetic Theory, Wiley, New York, 2002.