1. Williams, R. A. and M. S. Beck, "Chapter 1 — Introduction to process tomography," Process Tomography, Vol. 13, No. 2, 3-12, 1995.
doi:10.1016/B978-0-08-093801-1.50005-8 Google Scholar
2. Yang, L., C. Zhang, W. Liu, H. Wang, J. Xia, B. Liu, X. Shi, X. Dong, F. Fu, M. Dai, and J. L. Campos, "Real-time detection of hemothorax and monitoring its progression in a piglet model by electrical impedance tomography: A feasibility study," BioMed Research International, Vol. 2020, Article ID 1357160, 2020. Google Scholar
3. Schullcke, B., B. Gong, S. Krueger-Ziolek, et al. "Structural-functional lung imaging using a combined CT-EIT and a discrete cosine transformation reconstruction method," Scientific Reports, Vol. 6, 25951, 2016.
doi:10.1038/srep25951 Google Scholar
4. Hong, S., J. Lee, J. Bae, et al. "A 10.4mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system," IEEE Journal of Solid-State Circuits, Vol. 50, No. 11, 2501-2512, 2015.
doi:10.1109/JSSC.2015.2464705 Google Scholar
5. Boverman, G., T. J. Kao, X. Wang, et al. "Detection of small bleeds in the brain with electrical impedance tomography," Physiol. Meas., Vol. 37, No. 6, 727-750, 2016.
doi:10.1088/0967-3334/37/6/727 Google Scholar
6. Murphy, E. K., A. Mahara, and R. J. Halter, "Absolute reconstructions using rotational electrical impedance tomography for breast cancer imaging," IEEE Transactions on Medical Imaging, Vol. 36, No. 4, 892-903, 2017.
doi:10.1109/TMI.2016.2640944 Google Scholar
7. Sarode, V., S. S. Patkar, and A. N. Cheeran, "Comparison of factors affecting the detection of small impurities in breast cancer using EIT," International Journal of Engineering Science & Technology, Vol. 5, No. 6, 1267-1271, 2013. Google Scholar
8. Podczeck, F., C. L. Mitchell, J. M. Newton, et al. "The gastric emptying of food as measured by gamma-scintigraphy and electrical impedance tomography (EIT) and its influence on the gastric emptying of tablets of different dimensions," Journal of Pharmacy & Pharmacology, Vol. 59, No. 11, 1527-1536, 2010.
doi:10.1211/jpp.59.11.0010 Google Scholar
9. Tomasino, S., R. Sassanelli, C. Marescalco, et al. "Electrical impedance tomography and prone position during ventilation in COVID-19 Pneumonia: Case reports and a brief literature review," Semin. Cardiothorac. Vasc. Anesth., Vol. 24, No. 4, 287-292, 2020.
doi:10.1177/1089253220958912 Google Scholar
10. Dickin, F. and M. Wang, "Electrical resistance tomography for process applications," Measurement Science and Technology, Vol. 7, No. 3, 247, 1996.
doi:10.1088/0957-0233/7/3/005 Google Scholar
11. Tapp, H. S., A. J. Peyton, E. K. Kemsley, et al. "Chemical engineering applications of electrical process tomography," Sensors & Actuators B: Chemical, Vol. 92, No. 1/2, 17-24, 2003.
doi:10.1016/S0925-4005(03)00126-6 Google Scholar
12. Kruger, M. V. P., Tomography as a metrology technique for semiconductor manufacturing, Ph.D. Thesis, University of California, Berkeley, 2003.
13. Linderholm, P., L. Marescot, M. H. Loke, et al. "Cell culture imaging using microimpedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 138, 2008.
doi:10.1109/TBME.2007.910649 Google Scholar
14. Sun, T., S. Tsuda, K. P. Zauner, et al. "On-chip electrical impedance tomography for imaging biological cells," Biosensors & Bioelectronics, Vol. 25, No. 5, 1109-1115, 2010.
doi:10.1016/j.bios.2009.09.036 Google Scholar
15. Hou, T. C., K. J. Loh, and J. P. Lynch, "Electrical impedance tomography of carbon nanotube composite materials," Proceedings of SPIE — The International Society for Optical Engineering, 2007. Google Scholar
16. Hou, T. C., K. J. Loh, and J. P. Lynch, "Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications," Nanotechnology, Vol. 18, No. 31, 962-969, 2007.
doi:10.1088/0957-4484/18/31/315501 Google Scholar
17. Liu, K., Y. Wu, S. Wang, et al. "Artificial sensitive skin for robotics based on electrical impedance tomography," Advanced Intelligent Systems, 1-13, 2020. Google Scholar
18. Jiang, D., Y. Wu, and A. Demosthenous, "Hand gesture recognition using three-dimensional electrical impedance tomography," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 9, 1554-1558, 2020.
doi:10.1109/TCSII.2020.3006430 Google Scholar
19. Wang, Z., S. Yue, H. Wang, et al. "Data preprocessing methods for electrical impedance tomography: A review," Physiological Measurement, Vol. 41, No. 9, 09TR02, 2020.
doi:10.1088/1361-6579/abb142 Google Scholar
20. Wei, Z., D. Liu, and X. Chen, "Dominant-current deep learning scheme for electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2546-2555, 2019.
doi:10.1109/TBME.2019.2891676 Google Scholar
21. Liu, D., V. Kolehmainen, et al. "Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors," IEEE Transactions on Biomedical Engineering, Vol. 63, No. 9, 1956-1965, 2016.
doi:10.1109/TBME.2015.2509508 Google Scholar
22. Chitturi, V. and F. Nagi, "Spatial resolution in electrical impedance tomography: A topical review," Journal of Electrical Bioimpedance, Vol. 8, No. 1, 66, 2017.
doi:10.5617/jeb.3350 Google Scholar
23. Zhang, K., M. Li, et al. "Three-dimensional electrical impedance tomography with multiplicative regularization," IEEE Transactions on Biomedical Engineering, Vol. 13, No. 6, 1139-1159, 2019. Google Scholar
24. Smyl, D. and D. Liu, "Optimizing electrode positions in 2D Electrical Impedance Tomography using deep learning," IEEE Transactions on Instrumentation and Measurement, 2020. Google Scholar
25. Agnelli, J. P., A. Col, M. Lassas, et al. "Classification of stroke using neural networks in electrical impedance tomography," Inverse Problems, Vol. 36, No. 11, 115008, 2020.
doi:10.1088/1361-6420/abbdcd Google Scholar
26. Borcea, L., "Topical review: Electrical impedance tomography," Inverse Problems, Vol. 18, No. 6, R99, 2002.
doi:10.1088/0266-5611/18/6/201 Google Scholar
27. Padilha Leitzke, J. and H. Zangl, "A review on electrical impedance tomography spectroscopy," Sensors, Vol. 20, No. 18, 2020.
doi:10.3390/s20185160 Google Scholar
28. Schwan, H. P., "Electrical properties of tissues and cell suspensions: Mechanisms and models," International Conference of the IEEE Engineering in Medicine & Biology Society, IEEE, 1994. Google Scholar
29. Somersalo, E., M. Cheney, and D. Isaacson, "Existence and uniqueness for electrode models for electric current computed tomography," SIAM Journal on Applied Mathematics, Vol. 52, No. 4, 1023-1040, 1992.
doi:10.1137/0152060 Google Scholar
30. Jackson, J., "Classical Electrodynamics," Wiley, 1998. Google Scholar
31. Cheng, K. S. and D. Isaacson, "Electrode models for electric current computed tomography," IEEE Transactions on Biomedical Engineering, Vol. 36, No. 9, 918-924, 1989.
doi:10.1109/10.35300 Google Scholar
32. Xiang, J., Y. Dong, and Y. Yang, "Multi-frequency electromagnetic tomography for acute stroke detection using frequency constrained sparse bayesian learning," IEEE Transactions on Medical Imaging, Vol. 39, No. 12, 4102-4112, 2020.
doi:10.1109/TMI.2020.3013100 Google Scholar
33. Liu, S., Y. Huang, H. Wu, et al. "Efficient multi-task structure-aware sparse bayesian learning for frequency-difference electrical impedance tomography," IEEE Transactions on Industrial Informatics, Vol. 17, No. 1, 463-472, 2021.
doi:10.1109/TII.2020.2965202 Google Scholar
34. Liu, S., J. Jia, Y. D. Zhang, et al. "Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning," IEEE Transactions on Medical Imaging, Vol. 37, No. 9, 2090-2102, 2018.
doi:10.1109/TMI.2018.2816739 Google Scholar
35. Darma, P. N., M. R. Baidillah, M. W. Sifuna, et al. "Real-time dynamic imaging method for flexible boundary sensor in wearable electrical impedance tomography," IEEE Sensors Journal, Vol. 20, No. 16, 9469-9479, 2020. Google Scholar
36. Wei, Z. and X. Chen, "Induced-current learning method for nonlinear reconstructions in electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 39, No. 5, 1326-1334, 2019.
doi:10.1109/TMI.2019.2948909 Google Scholar
37. Wei, Z., R. Chen, H. Zhao, and X. Chen, "Two FFT subspace-based optimization methods for electrical impedance tomography," Progress In Electromagnetics Research, Vol. 157, 111-120, 2016.
doi:10.2528/PIER16082302 Google Scholar
38. Lucas, A., M. Iliadis, R. Molina, et al. "Using deep neural networks for inverse problems in imaging: Beyond analytical methods," IEEE Signal Processing Magazine, Vol. 35, No. 1, 20-36, 2018.
doi:10.1109/MSP.2017.2760358 Google Scholar
39. Chen, X., Z. Wei, M. Li, and P. Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Progress In Electromagnetics Research, Vol. 167, 67-81, 2020.
doi:10.2528/PIER20030705 Google Scholar
40. Mccann, M. T., K. H. Jin, and M. Unser, "Convolutional neural networks for inverse problems in imaging: A review," IEEE Signal Processing Magazine, Vol. 34, No. 6, 85-95, 2017.
doi:10.1109/MSP.2017.2739299 Google Scholar
41. Fan, Y. and L. Ying, "Solving electrical impedance tomography with deep learning," Journal of Computational Physics, Vol. 404, 109119, 2019. Google Scholar
42. Xia, Z., Z. Cui, Y. Chen, et al. "Generative adversarial networks for dual-modality electrical tomography in multi-phase flow measurement," Measurement, 2020. Google Scholar
43. Kosowski, G. and T. Rymarczyk, "Using neural networks and deep learning algorithms in electrical impedance tomography," Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska, Vol. 7, No. 3, 99-102, 2017.
doi:10.5604/01.3001.0010.5226 Google Scholar
44. Hamilton, S. J. and A. Hauptmann, "Deep D-bar: Real time electrical impedance tomography imaging with deep neural networks," IEEE Transactions on Medical Imaging, Vol. 37, No. 10, 2367-2377, 2017.
doi:10.1109/TMI.2018.2828303 Google Scholar
45. Ren, S., K. Sun, C. Tan, et al. "A two-stage deep learning method for robust shape reconstruction with electrical impedance tomography," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 7, 4887-4897, 2019.
doi:10.1109/TIM.2019.2954722 Google Scholar
46. Khan, T. A. and S. H. Ling, "Review on electrical impedance tomography: Artificial intelligence methods and its applications," Algorithms, Vol. 12, No. 5, 88, 2019.
doi:10.3390/a12050088 Google Scholar
47. Liu, D., D. Gu, D. Smyl, et al. "Shape reconstruction using boolean operations in electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 39, No. 9, 2954-2964, 2020.
doi:10.1109/TMI.2020.2983055 Google Scholar
48. Huska, M., D. Lazzaro, S. Morigi, et al. "Spatially-adaptive variational reconstructions for linear inverse electrical impedance tomography," Journal of Scientific Computing, Vol. 84, No. 3, 2020.
doi:10.1007/s10915-020-01295-w Google Scholar
49. Hamilton, S. J., J. L. Mueller, and T. R. Santos, "Robust computation in 2D absolute EIT (a-EIT) using D-bar methods with the ‘exp’ approximation," Physiological Measurement, Vol. 39, No. 6, 064005, 2018.
doi:10.1088/1361-6579/aac8b1 Google Scholar
50. Chaulet, N., S. Arridge, T. Betcke, et al. "The factorization method for three dimensional electrical impedance tomography," Mathematics, Vol. 30, No. 4, 45005-45019(15), 2014. Google Scholar
51. Vauhkonen, M. and D. Vadasz, "Tikhonov regularization and prior information in electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 17, No. 2, 285-293, 1998.
doi:10.1109/42.700740 Google Scholar
52. Gonzalez, G., J. M. J. Huttunen, V. Kolehmainen, et al. "Experimental evaluation of 3D electrical impedance tomography with total variation prior," Inverse Problems in Science & Engineering, Vol. 2015, 1-21, 2015. Google Scholar
53. Gehre, M., T. Kluth, A. Lipponen, et al. "Sparsity reconstruction in electrical impedance tomography: An experimental evaluation," Journal of Computational and Applied Mathematics, Vol. 236, No. 8, 2126-2136, 2012.
doi:10.1016/j.cam.2011.09.035 Google Scholar
54. Cherkaev, A. V. and L. V. Gibiansky, "Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli," Journal of Mathematical Physics, Vol. 35, No. 1, 127-145, 1994.
doi:10.1063/1.530782 Google Scholar
55. Li, K., N. Yang, J. Wang, et al. "Size projection algorithm: Optimal thresholding value selection for image segmentation of electrical impedance tomography," Mathematical Problems in Engineering, Vol. 2019, No. 6, 1-11, 2019. Google Scholar
56. Li, M., K. Zhang, R. Guo, F. Yang, S. Xu, and A. Abubakar, "Supervised descent method for electrical impedance tomography," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 2342-2348, Xiamen, China, December 17–20, 2019. Google Scholar
57. Hu, D., K. Lu, and Y. Yang, "Image reconstruction for electrical impedance tomography based on spatial invariant feature maps and convolutional neural network," 2019 IEEE International Conference on Imaging Systems and Techniques (IST), IEEE, 2019. Google Scholar
58. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2018.
doi:10.1109/TGRS.2018.2869221 Google Scholar
59. Wei, Z. and X. Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, 2019.
doi:10.1109/TAP.2019.2922779 Google Scholar
60. Bera, T. K. and J. Nagaraju, "Studying the resistivity imaging of chicken tissue phantoms with different current patterns in Electrical Impedance Tomography (EIT)," Measurement, Vol. 45, No. 4, 663-682, 2012.
doi:10.1016/j.measurement.2012.01.002 Google Scholar
61. Jones, D. M., R. H. Smallwood, D. R. Hose, et al. "Constraints on tetrapolar tissue impedance measurements," Electronics Letters, Vol. 37, No. 25, 1515-1517, 2002.
doi:10.1049/el:20011034 Google Scholar
62. Chandra, H., S. W. Allen, S. W. Oberloier, et al. "Open-source automated mapping four-point probe," Materials, Vol. 10, No. 2, 110, 2017.
doi:10.3390/ma10020110 Google Scholar
63. Tan, C., S. Liu, J. Jia, et al. "A wideband electrical impedance tomography system based on sensitive bioimpedance spectrum bandwidth," IEEE Transactions on Instrumentation and Measurement, Vol. 2019, 1-11, 2019. Google Scholar
64. Yue, X. and C. Mcleod, "FPGA design and implementation for EIT data acquisition," Physiological Measurement, Vol. 29, No. 10, 1233-1233, 2008.
doi:10.1088/0967-3334/29/10/007 Google Scholar
65. Huang, S. K. and K. J. Loh, "Development of a portable electrical impedance tomography data acquisition system for near-real-time spatial sensing," SPIE Proceedings, Vol. 9435, 11 pages, 2015. Google Scholar
66. Kourunen, J., T. Savolainen, A. Lehikoinen, et al. "Suitability of a PXI platform for an electrical impedance tomography system," Measurement Science & Technology, Vol. 20, No. 1, 015503, 2012.
doi:10.1088/0957-0233/20/1/015503 Google Scholar
67. Xu, Z., J. Yao, Z. Wang, et al. "Development of a portable electrical impedance tomography system for biomedical applications," IEEE Sensors Journal, Vol. 18, 8117-8124, 2018.
doi:10.1109/JSEN.2018.2864539 Google Scholar
68. Huang, J. J., Y. H. Hung, J. J. Wang, et al. "Design of wearable and wireless electrical impedance tomography system," Measurement, Vol. 78, 9-17, 2016.
doi:10.1016/j.measurement.2015.09.031 Google Scholar
69. Rymarczyk, T., Tomographic Imaging in Environmental, Industrial and Medical Applications: Tomography, Internet of Things, Machine Learning, Distributed Systems, Big Data, Industry 4.0, Innovation Press Publishing House, University of Economics and Innovation, 2019.
70. Rymarczyk, T., S. Filipowicz, and J. Sikora, "Comparing methods of image reconstruction in electrical impedance tomography," Computer Applications in Electrical Engineering, 2011. Google Scholar
71. Rymarczyk, T., "Minimization of objective function in electrical impedance tomography by topological derivative," Przeglad Elektrotechniczny, Vol. 1, No. 6, 139-142, 2019.
doi:10.15199/48.2019.06.25 Google Scholar
72. Wei, Z. and X. Chen, "Uncertainty quantification in inverse scattering problems with bayesian convolutional neural networks," IEEE Transactions on Antennas and Propagation, IEEE, 2020. Google Scholar