Department of Electronic and Information Engineering
The Hong Kong Polytechnic University
China
HomepageDepartment of Electronic and Information Engineering
The Hong Kong Polytechnic University
China
HomepageDepartment of Electronic and Information Engineering
The Hong Kong Polytechnic University
China
HomepageState Key Laboratory of Information Photonics and Optical Communications
Beijing University of Posts and Telecommunications
China
HomepageDepartment of Electronic and Information Engineering
The Hong Kong Polytechnic University
China
HomepageComputer Science and Electrical Engineering Department
University of Maryland Baltimore County
USA
HomepagePhotonics Research Center and Department of Electronic and Information Engineering
The Hong Kong Polytechnic University
China
Homepage1. Maiman, T. H., "Stimulated optical radiation in ruby," Nature, Vol. 187, No. 4736, 493-494, 1960.
doi:10.1038/187493a0 Google Scholar
2. Bloembergen, N., Nonlinear Optics, 3rd Printing, 1977.
3. Woodbury, E. J. and W. K. Ng, "Ruby laser operation in the near IR," Proc. IRE, Vol. 50, 2367, 1962. Google Scholar
4. Maker, P. D., R. W. Terhune, and C. M. Savage, "Intensity-dependent changes in the refractive index of liquids," Phys. Rev. Lett., Vol. 12, 507-509, 1964.
doi:10.1103/PhysRevLett.12.507 Google Scholar
5. Chiao, R. Y., C. H. Townes, and B. P. Stoicheff, "Stimulated Brillouin scattering and coherent generation of intense hypersonic waves," Phys. Rev. Lett., Vol. 12, 592-595, 1964.
doi:10.1103/PhysRevLett.12.592 Google Scholar
6. Carman, R. L., R. Y. Chiao, and P. L. Kelly, "Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification," Phys. Rev. Lett., Vol. 17, 1281-1283, 1966.
doi:10.1103/PhysRevLett.17.1281 Google Scholar
7. Kao, K. C. and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proceedings of the Institution of Electrical Engineers, Vol. 113, No. 7, 1151-1158, IET Digital Library, 1966.
doi:10.1049/piee.1966.0189 Google Scholar
8. Ippen, E. P., "Low-power quasi-CW Raman oscillator," Appl. Phys. Lett., Vol. 16, 303-305, 1970.
doi:10.1063/1.1653204 Google Scholar
9. Ippen, E. P. and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett., Vol. 21, 539-541, 1972.
doi:10.1063/1.1654249 Google Scholar
10. Stolen, R. H., "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quan. Electron., Vol. 11, 100-103, 1975.
doi:10.1109/JQE.1975.1068571 Google Scholar
11. Stolen, R. H. and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A, Vol. 17, 1448-1453, 1978.
doi:10.1103/PhysRevA.17.1448 Google Scholar
12. Chraplyvy, A. R. and J. Stone, "Measurement of cross phase modulation in coherent wavelength-division multiplexing using injection lasers," Electron. Lett., Vol. 20, No. 24, 996-997, 1984.
doi:10.1049/el:19840678 Google Scholar
13. Hasegawa, A. and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion," Appl. Phys. Lett., Vol. 23, 142-144, 1973.
doi:10.1063/1.1654836 Google Scholar
14. Mollenauer, L. F., R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and solitons in optical fibers," Phys. Rev. Lett., Vol. 45, 1095-1098, 1980.
doi:10.1103/PhysRevLett.45.1095 Google Scholar
15. Mollenauer, L. F. and R. H. Stolen, "The soliton laser," Opt. News, Vol. 10, No. 6, 20_2-21, 1984.
doi:10.1364/ON.10.6.0020_2 Google Scholar
16. Anderson, D. and M. Lisak, "Bandwidth limits due to mutual pulse interaction in optical soliton communication systems," Opt. Lett., Vol. 11, No. 3, 174-176, 1986.
doi:10.1364/OL.11.000174 Google Scholar
17. Wai, P. K. A., C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett., Vol. 11, 464-488, 1986.
doi:10.1364/OL.11.000464 Google Scholar
18. Tai, K., A. Hasegawa, and N. Bekki, "Fission of optical solitons induced by stimulated Raman effect," Opt. Lett., Vol. 13, 392-394, 1988.
doi:10.1364/OL.13.000392 Google Scholar
19. Mitschke, F. M. and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett., Vol. 11, 659-661, 1986.
doi:10.1364/OL.11.000659 Google Scholar
20. Corkum, P. B., C. Rolland, and T. Srinivasan-Rao, "Supercontinuum generation in gases," Phys. Rev. Lett., Vol. 57, No. 18, 2268, 1986.
doi:10.1103/PhysRevLett.57.2268 Google Scholar
21. Birks, T. A., P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett., Vol. 31, 1941-1942, 1995.
doi:10.1049/el:19951306 Google Scholar
22. Bouwmans, G., F. Luan, J. C. Knight, et al. "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express, Vol. 11, No. 14, 1613-1620, 2003.
doi:10.1364/OE.11.001613 Google Scholar
23. Yusoff, Z., J. H. Lee, W. Belardi, et al. "Raman effects in a highly nonlinear holey fiber: Amplification and modulation," Opt. Lett., Vol. 27, No. 6, 424-426, 2002.
doi:10.1364/OL.27.000424 Google Scholar
24. Nakajima, K., K. Hogari, J. Zhou, et al. "Hole-assisted fiber design for small bending and splice losses," IEEE Photon. Technol. Lett., Vol. 15, No. 12, 1737-1739, 2003.
doi:10.1109/LPT.2003.819723 Google Scholar
25. Vienne, G., Y. Xu, C. Jakobsen, et al. "First demonstration of air-silica Bragg fiber," Optical Fiber Communication Conference, Vol. 2, 3, Optical Society of America, 2004. Google Scholar
26. Habib, M. S., J. E. Antonio-Lopez, C. Markos, et al. "Single-mode, low loss hollow-core anti-resonant fiber designs," Opt. Express, Vol. 27, No. 4, 3824-3836, 2019.
doi:10.1364/OE.27.003824 Google Scholar
27. Ferrera, M., L. Razzari, D. Duchesne, et al. "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures," Nat. Photon., Vol. 2, No. 12, 737, 2008.
doi:10.1038/nphoton.2008.228 Google Scholar
28. Barrelet, C. J., H. S. Ee, S. H. Kwon, et al. "Nonlinear mixing in nanowire subwavelength waveguides," Nano Lett., Vol. 11, No. 7, 3022-3025, 2011.
doi:10.1021/nl201743x Google Scholar
29. Li, G., J. Yao, H. Thacker, et al. "Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects," Opt. Express, Vol. 20, No. 11, 12035-12039, 2012.
doi:10.1364/OE.20.012035 Google Scholar
30. Solehmainen, K., "Fabrication of microphotonic waveguide components on silicon," VTT Technical Research Centre of Finland, 68, 2007. Google Scholar
31. Tsang, H. K., C. S. Wong, T. K. Liang, et al. "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett., Vol. 80, No. 3, 416-418, 2002.
doi:10.1063/1.1435801 Google Scholar
32. Astar, W., J. B. Driscoll, X. Liu, et al. "Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting," J. Lightw. Technol., Vol. 28, No. 17, 2499-2511, 2010.
doi:10.1109/JLT.2010.2053698 Google Scholar
33. Liang, T. K. and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 10, No. 5, 1149-1153, 2004.
doi:10.1109/JSTQE.2004.835290 Google Scholar
34. Tien, E. K., N. S. Yuksek, F. Qian, and A. O. Boyraz, "Pulse compression and mode locking by using TPA in silicon waveguides," Opt. Express, Vol. 15, No. 10, 6500-6506, 2007.
doi:10.1364/OE.15.006500 Google Scholar
35. Liang, T. K., H. K. Tsang, I. E. Day, et al. "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett., Vol. 81, No. 7, 1323-1325, 2002.
doi:10.1063/1.1500430 Google Scholar
36. Reitze, D. H., T. R. Zhang, W. M. Wood, et al. "Two-photon spectroscopy of silicon using femtosecond pulses at above-gap frequencies," J. Opt. Soc. Am. B, Vol. 7, No. 1, 84-89, 1990.
doi:10.1364/JOSAB.7.000084 Google Scholar
37. Eggleton, B. J., B. Luther-Davies, and K. Richardson, "Chalcogenide photonics," Nat. Photon., Vol. 5, No. 3, 141, 2011.
doi:10.1038/nphoton.2011.309 Google Scholar
38. Monat, C., B. Corcoran, M. Ebnali-Heidari, et al. "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express, Vol. 17, No. 4, 2944-2953, 2009.
doi:10.1364/OE.17.002944 Google Scholar
39. Carletti, L., P. Ma, Y. Yu, et al. "Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared," Opt. Express, Vol. 23, No. 7, 8261-8271, 2015.
doi:10.1364/OE.23.008261 Google Scholar
40. Ramirez, J. M., V. Vakarin, J. Frigerio, et al. "Ge-rich graded-index Si1−xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics," Opt. Express, Vol. 25, No. 6, 6561-6567, 2017.
doi:10.1364/OE.25.006561 Google Scholar
41. Carletti, L., M. Sinobad, P. Ma, et al. "Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses," Opt. Express, Vol. 23, No. 25, 32202-32214, 2015.
doi:10.1364/OE.23.032202 Google Scholar
42. Moss, J. D., R. Morandotti, A. L. Gaeta, et al. "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nat. Photon., Vol. 7, No. 8, 597-607, 2013.
doi:10.1038/nphoton.2013.183 Google Scholar
43. Liu, J., A. S. Raja, M. Karpov, et al. "Ultralow-power chip-based soliton microcombs for photonic integration," Optica, Vol. 5, No. 10, 1347-1353, 2018.
doi:10.1364/OPTICA.5.001347 Google Scholar
44. Stern, B., X. Ji, Y. Okawachi, et al. "Battery-operated integrated frequency comb generator," Nature, Vol. 562, No. 7727, 401-405, 2018.
doi:10.1038/s41586-018-0598-9 Google Scholar
45. Shen, B., et al., "Integrated turnkey soliton microcombs," Nature, Vol. 582, 365-369, 2020.
doi:10.1038/s41586-020-2358-x Google Scholar
46. Choi, J. W., Z. Han, B. U. Sohn, et al. "Nonlinear characterization of GeSbS chalcogenide glass waveguides," Sci. Rep., Vol. 6, No. 1, 1-8, 2016.
doi:10.1038/s41598-016-0001-8 Google Scholar
47. Ta’eed, V. G., M. R. E. Lamont, D. J. Moss, et al. "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express, Vol. 14, No. 23, 11242-11247, 2006.
doi:10.1364/OE.14.011242 Google Scholar
48. Yeom, D. I., E. C. Magi, M. R. E. Lamont, et al. "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett., Vol. 33, No. 7, 660-662, 2008.
doi:10.1364/OL.33.000660 Google Scholar
49. Ta’eed, V. G., M. Shokooh-Saremi, L. Fu, et al. "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 12, No. 3, 360-370, 2006.
doi:10.1109/JSTQE.2006.872727 Google Scholar
50. Siviloglou, G. A., S. Suntsov, R. El-Ganainy, et al. "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express, Vol. 14, No. 20, 9377-9384, 2006.
doi:10.1364/OE.14.009377 Google Scholar
51. Inoue, K., H. Oda, N. Ikeda, et al. "Enhanced third-order nonlinear effects in slowlight photonic-crystal slab waveguides of line defect," Opt. Express, Vol. 17, No. 9, 7206-7216, 2009.
doi:10.1364/OE.17.007206 Google Scholar
52. Moille, G., L. Chang, W. Xie, et al. "Dissipative Kerr Solitons in a III-V microresonator," Laser & Photon. Rev., Vol. 14, No. 8, 2070043, 2020.
doi:10.1002/lpor.202070043 Google Scholar
53. Combrie, S., Q. V. Tran, A. De Rossi, et al. "High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption," Appl. Phys. Lett., Vol. 95, No. 22, 221108, 2009.
doi:10.1063/1.3269998 Google Scholar
54. Xiong, C., W. H. P. Pernice, X. Sun, et al. "Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics," New J. Phys., Vol. 14, No. 9, 095014, 2012.
doi:10.1088/1367-2630/14/9/095014 Google Scholar
55. Munk, D., M. Katzman, O. Westreich, et al. "Four-wave mixing and nonlinear parameter measurement in a gallium-nitride ridge waveguide," Opt. Mater. Express, Vol. 8, No. 1, 66-72, 2018.
doi:10.1364/OME.8.000066 Google Scholar
56. Pu, M., Y. Liu, et al. "Broadband optical signal processing in AlGaAs-on-insulator waveguides," Integrated Photonics Research, Silicon and Nanophotonics, Optical Society of America, ITu2A.1, 2020. Google Scholar
57. Chang, L., W. Xie, H. Shu, et al. "Ultra-efficient frequency comb generation in AlGaAs-oninsulator microresonators," Nat. Commun., Vol. 11, No. 1, 1-8, 2020.
doi:10.1038/s41467-019-13993-7 Google Scholar
58. Gaeta, A. L., M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," Nat. Photon., Vol. 13, No. 3, 158-169, 2019.
doi:10.1038/s41566-019-0358-x Google Scholar
59. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys., Vol. 78, No. 4, 1135, 2006.
doi:10.1103/RevModPhys.78.1135 Google Scholar
60. Lin, Q., O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express, Vol. 15, No. 25, 16604-16644, 2007.
doi:10.1364/OE.15.016604 Google Scholar
61. Dudley, J. M. and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett., Vol. 27, No. 13, 1180-1182, 2002.
doi:10.1364/OL.27.001180 Google Scholar
62. Raabe, N., T. Feng, T. Witting, et al. "Role of Intrapulse coherence in carrier-envelope phase stabilization," Phys. Rev. Lett., Vol. 119, No. 12, 123901, 2017.
doi:10.1103/PhysRevLett.119.123901 Google Scholar
63. Mei, C. and G. Steinmeyer, "Tailoring the waveguide dispersion of nonlinear fibers for supercontinuum generation with superior intrapulse coherence," J. Opt. Soc. Am. B, Vol. 37, No. 8, 2485-2497, 2020.
doi:10.1364/JOSAB.396511 Google Scholar
64. Oh, D. Y., K. Y. Yang, C. Fredrick, et al. "Coherent ultra-violet to near-infrared generation in silica ridge waveguides," Nat. Commun., Vol. 8, No. 1, 1-7, 2017.
doi:10.1038/s41467-019-13993-7 Google Scholar
65. Liu, X., A. W. Bruch, J. Lu, et al. "Beyond 100THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide," Nat. Commun., Vol. 10, No. 1, 2971, 2019.
doi:10.1038/s41467-019-11034-x Google Scholar
66. Lafforgue, C., S. Guerber, J. M. Ramirez, et al. "Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform," Photon. Res., Vol. 8, No. 3, 2020.
doi:10.1364/PRJ.379555 Google Scholar
67. Genty, G., S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B, Vol. 24, No. 8, 1771-1785, 2007.
doi:10.1364/JOSAB.24.001771 Google Scholar
68. Johnson, A. R., A. S. Mayer, A. Klenner, et al. "Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide," Opt. Lett., Vol. 40, No. 21, 5117-5120, 2015.
doi:10.1364/OL.40.005117 Google Scholar
69. Okawachi, Y., M. Yu, J. Cardenas, et al. "Coherent, directional supercontinuum generation," Opt. Lett., Vol. 42, No. 21, 4466-4469, 2017.
doi:10.1364/OL.42.004466 Google Scholar
70. Kuyken, B., M. Billet, F. Leo, et al. "Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide," Opt. Lett., Vol. 45, No. 3, 603-606, 2020.
doi:10.1364/OL.45.000603 Google Scholar
71. Tremblay, J., M. Malinowski, K. A. Richardson, et al. "Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides," Opt. Express, Vol. 26, No. 16, 21358-21363, 2018.
doi:10.1364/OE.26.021358 Google Scholar
72. Dave, U. D., C. Ciret, S.-P. Gorza, et al. "Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate," Opt. Lett., Vol. 40, No. 15, 3584-3587, 2015.
doi:10.1364/OL.40.003584 Google Scholar
73. Singh, N., M. Xin, D. Vermeulen, et al. "Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm," Light Sci. Appl., Vol. 7, No. 1, 17131-17131, 2018.
doi:10.1038/lsa.2017.131 Google Scholar
74. Kou, R., T. Hatakeyama, J. Horng, et al. "Mid-IR broadband supercontinuum generation from a suspended silicon waveguide," Opt. Lett., Vol. 43, No. 6, 1387, 2018.
doi:10.1364/OL.43.001387 Google Scholar
75. Chiles, J., N. Nader, E. J. Stanton, et al. "Multi-functional integrated photonics in the mid-infrared with suspended AlGaAs on silicon," Optica, Vol. 6, No. 9, 1246-1254, 2019.
doi:10.1364/OPTICA.6.001246 Google Scholar
76. Nader, N., A. Kowligy, J. Chiles, et al. "Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides," Optica, Vol. 6, No. 10, 1269, 2019.
doi:10.1364/OPTICA.6.001269 Google Scholar
77. Lau, R. K. W., M. R. E. Lamont, A. G. Griffith, et al. "Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides," Opt. Lett., Vol. 39, No. 15, 4518-4521, 2014.
doi:10.1364/OL.39.004518 Google Scholar
78. Xie, S., N. Tolstik, J. C. Travers, et al. "octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr: ZnS laser," Opt. Express, Vol. 24, No. 11, 12406-12413, 2016.
doi:10.1364/OE.24.012406 Google Scholar
79. Sinobad, M., C. Monat, B. Luther-Davies, et al. "Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides," Optica, Vol. 5, No. 4, 360, 2018. Google Scholar
80. Sinobad, M., A. D. Torre, R. Armand, et al. "High coherence at f and 2f of mid-infrared supercontinuum generation in silicon germanium waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 26, No. 2, 1-8, 2019. Google Scholar
81. Yang, M., Y. Guo, J. Wang, et al. "Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses," Opt. Express, Vol. 25, No. 14, 16116, 2017. Google Scholar
82. Yuan, J., Z. Kang, F. Li, et al. "Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide," J. Lightw. Technol., Vol. 35, 2994-3002, 2017. Google Scholar
83. Jing, S., C. Mei, K. Wang, et al. "Broadband and highly coherent supercontinuum generation in a suspended As2S3 ridge waveguide," Opt. Commun., Vol. 428, 227-232, 2018. Google Scholar
84. Cheng, Y., J. Yuan, C. Mei, et al. "Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides," Opt. Commun., Vol. 454, 124380, 2019. Google Scholar
85. Li, Z., J. Yuan, C. Mei, et al. "Multi-octave mid-infrared supercontinuum and frequency comb generation in a suspended As2Se3 ridge waveguide," Appl. Opt., Vol. 58, No. 31, 8404-8410, 2019. Google Scholar
86. Lai, J., J. Yuan, Y. Cheng, et al. "Dispersion-engineered T-type germanium waveguide for mid-infrared supercontinuum and frequency comb generations in all-normal dispersion region," OSAC, Vol. 3, No. 9, 2320-2331, 2020. Google Scholar
87. Yu, M., B. Desiatov, Y. Okawachi, et al. "Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides," Opt. Lett., Vol. 44, 1222-1225, 2019. Google Scholar
88. Lu, J., X. Liu, A. W. Bruch, et al. "Ultraviolet to mid-infrared supercontinuum generation in single-crystalline aluminum nitride waveguides," Opt. Lett., Vol. 45, No. 16, 4499-4502, 2020. Google Scholar
89. Gaeta, A. L., M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," Nat. Photonics, Vol. 13, 158-169, 2019. Google Scholar
90. Hon, N. K., R. Soref, and B. Jalali, "The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the mid-wave and longwave infrared," J. Appl. Phys., Vol. 110, 011301, 2011. Google Scholar
91. Wang, T., N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, "Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths," Opt. Express, Vol. 21, 32192-32198, 2013. Google Scholar
92. Shen, L., N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, "Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime," Opt. Express, Vol. 21, 13075-13083, 2013. Google Scholar
93. Carletti, L., M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, "Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses," Opt. Express, Vol. 23, 32202-32214, 2015. Google Scholar
94. Agrawal, G. P., Nonlinear Fiber Optics, Nonlinear Science at the Dawn of the 21st Century, 195-211, Springer, 2000.
95. Tan, D. T. H., K. Ikeda, P. C. Sun, et al. "Group velocity dispersion and self-phase modulation in silicon nitride waveguides," Appl. Phys. Lett., Vol. 96, 061101, 2010. Google Scholar
96. Levy, J. S., A. Gondarenko, M. A. Foster, et al. "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nat. Photonics, Vol. 4, 37-40, 2010. Google Scholar
97. Cardenas, J., S. Miller, Y. Okawachi, et al. "Parametric frequency conversion in silicon carbide waveguides," CLEO: Science and Innovations, 1-3, Optical Society of America, 2015. Google Scholar
98. Jung, H., C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, "Optical frequency comb generation from aluminum nitride microring resonator," Opt. Lett., Vol. 38, 2810-2813, 2013. Google Scholar
99. Belt, M., M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, "Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates," Optica, Vol. 4, 532-536, 2017. Google Scholar
100. Guan, X., H. Hu, L. K. Oxenløwe, and L. H. Frandsen, "Compact titanium dioxide waveguides with high nonlinearity at telecommunication wavelengths," Opt. Express, Vol. 26, No. 2, 1055-1063, 2018. Google Scholar
101. Hausmann, B. J. M., I. Bulu, V. Venkataraman, P. Deotare, et al. "Diamond nonlinear photonics," Nat. Photonics, Vol. 8, 369-374, 2014. Google Scholar
102. Pu, M., H. Hu, L. Ottaviano, et al. "Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing," Laser & Photon. Rev., Vol. 12, 1800111, 2018. Google Scholar
103. Dolgaleva, K., W. C. Ng, L. Qian, and J. S. Aitchison, "Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion," Opt. Express, Vol. 19, 12440-12455, 2011. Google Scholar
104. Xiang, B.-X., et al., "Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching," Chinese Phys. Lett., Vol. 34, No. 2, 24203-024203, 2017. Google Scholar
105. Fan, Z., K. Yan, L. Zhang, J. Qin, J. Chen, R. Wang, and X. Shen, "Design and fabrication of As2Se3 chalcogenide waveguides with low optical losses," Appl. Opt., Vol. 59, 1564-1568, 2020. Google Scholar
106. Al-kadry, A., C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, "Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects," Opt. Lett., Vol. 38, 1185-1187, 2013. Google Scholar
107. Duchesne, D., M. Ferrera, et al. "Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides," Opt. Express, Vol. 17, No. 3, 1865-1870, 2009. Google Scholar
108. Kuyken, B., T. Ideguchi, S. Holzner, et al. "An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide," Nat. Commun., Vol. 6, No. 1, 1-6, 2015. Google Scholar
109. Carlson, D. R., D. D. Hickstein, A. Lind, et al. "Self-referenced frequency combs using high-efficiency silicon-nitride waveguides," Opt. Lett., Vol. 42, No. 12, 2314-2317, 2017. Google Scholar
110. Lee, K. F., N. Granzow, M. A. Schmidt, et al. "Mid-infrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation," Opt. Lett., Vol. 39, No. 7, 2056-2059, 2014. Google Scholar
111. Guo, H., C. Herkommer, A. Billat, et al. "Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides," Nat. Photon., Vol. 12, No. 6, 330-335, 2018. Google Scholar
112. Guo, H., W. Weng, J. Liu, et al. "Nanophotonic supercontinuum based mid-infrared dual-comb spectroscopy," Optica, Vol. 7, 1181-1188, 2020. Google Scholar
113. Grassani, D., E. Tagkoudi, H. Guo, et al. "Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum," Nat. Commun., Vol. 10, No. 1, 1553, 2019. Google Scholar
114. Tagkoudi, E., D. Grassani, F. Yang, et al. "Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si3N4 waveguide," Opt. Lett., Vol. 45, No. 7, 2195-2198, 2020. Google Scholar
115. Jung, H., R. Stoll, X. Guo, et al. "Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator," Optica, Vol. 1, No. 6, 396-399, 2014. Google Scholar
116. Kippenberg, T. J., A. L. Gaeta, M. Lipson, et al. "Dissipative Kerr solitons in optical microresonators," Science, Vol. 361, eaan8083, 2018. Google Scholar
117. Haelterman, M., S. Trillo, and S. Wabnitz, "Dissipative modulation instability in a nonlinear dispersive ring cavity," Opt. Commun., Vol. 91, No. 5–6, 401-407, 1992. Google Scholar
118. Kang, Z., F. Li, J. H. Yuan, et al. "Deterministic generation of single soliton Kerr frequency comb in microresonators by a single shot pulsed trigger," Opt. Express, Vol. 26, No. 14, 18563-18577, 2018. Google Scholar
119. Coen, S., H. G. Randle, T. Sylvestre, et al. "Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model," Opt. Lett., Vol. 38, 37-39, 2013. Google Scholar
120. Lau, R. K. W., M. R. E. Lamont, Y. Okawachi, et al. "Effects of multiphoton absorption on parametric comb generation in silicon microresonators," Opt. Lett., Vol. 40, No. 12, 2778-2781, 2015. Google Scholar
121. Bao, C., L. Zhang, L. C. Kimerling, et al. "Soliton breathing induced by stimulated Raman scattering and self-steepening in octave-spanning Kerr frequency comb generation," Opt. Express, Vol. 23, No. 14, 18665-18670, 2015. Google Scholar
122. Liu, X., C. Sun, B. Xiong, et al. "Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities," Appl. Phys. Lett., Vol. 113, No. 17, 171106, 2018. Google Scholar
123. Wang, L., L. Chang, N. Volet, et al. "Frequency comb generation in the green using silicon nitride microresonators," Laser & Photonics Rev., Vol. 10, No. 4, 631-638, 2016. Google Scholar
124. Guo, X., C.-L. Zou, H. Jung, et al. "Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb," Phys. Rev. Appl., Vol. 10, No. 1, 014012, 2018. Google Scholar
125. Lee, S. H., D. Y. Oh, Q.-F. Yang, et al. "Towards visible soliton microcomb generation," Nat. Commun., Vol. 8, No. 1, 1295, 2017. Google Scholar
126. Raja, A. S., A. S. Voloshin, H. Guo, et al. "Electrically pumped photonic integrated soliton microcomb," Nat. Commun., Vol. 10, No. 1, 1-16, 2019. Google Scholar
127. Briles, T. C., S.-P. Yu, T. E. Drake, et al. "Generating octave-bandwidth soliton frequency combs with compact, low-power semiconductor lasers," Phys. Rev. Appl., Vol. 14, No. 1, 014006, 2020. Google Scholar
128. Fujii, L., M. Inga, J. H. Soares, et al. "Dispersion tailoring in wedge microcavities for Kerr comb generation," Opt. Lett., Vol. 45, No. 12, 3232-3235, 2020. Google Scholar
129. Yu, M., Y. Okawachi, A. G. Griffith, et al. "Mode-locked mid-infrared frequency combs in a silicon microresonator," Optica, Vol. 3, No. 8, 854-860, 2016. Google Scholar
130. Yu, M., Y. Okawachi, A. G. Griffith, et al. "Silicon-chip-based mid-infrared dual-comb spectroscopy," Nat. Commun., Vol. 9, No. 1, 1869, 2018. Google Scholar
131. Yu, M., Y. Okawachi, A. G. Griffith, et al. "Microfluidic mid-infrared spectroscopy via microresonator-based dual-comb source," Opt. Lett., Vol. 44, No. 17, 4259-4262, 2019. Google Scholar
132. Gong, Z., X. Liu, Y. Xu, et al. "Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators," Opt. Lett., Vol. 44, No. 12, 3182, 2019. Google Scholar
133. Guo, Y., J. Wang, Z. Han, et al. "Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator," Nanophotonics, Vol. 7, No. 8, 1461-1467, 2018. Google Scholar
134. Fan, W., Z. Lu, W. Li, et al. "Low-threshold 4/5 octave-spanning mid-infrared frequency comb in a LiNbO3 microresonator," IEEE Photonics J., Vol. 11, No. 6, 1-7, 2019. Google Scholar
135. Anashkina, E. A., M. P. Marisova, A. A. Sorokin, et al. "Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators," Photonics, Vol. 6, No. 2, 55, 2019. Google Scholar
136. Lamb, E. S., D. R. Carlson, D. D. Hickstein, et al. "Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum," Phys. Rev. Appl., Vol. 9, No. 2, 024030, 2018. Google Scholar
137. Signorini, S., S. Piccione, M. Ghulinyan, et al. "Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides," Quantum Photonic Devices, Vol. 10733, 107330G, 2018. Google Scholar
138. Signorini, S., M. Mancinelli, M. Borghi, et al. "Intermodal four-wave mixing in silicon waveguides," Photon. Res., Vol. 6, No. 8, 805-814, 2018. Google Scholar
139. Lacava, C., M. A. Ettabib, T. D. Bucio, et al. "Intermodal bragg-scattering four wave mixing in silicon waveguides," J. Lightw. Technol., Vol. 37, No. 7, 1680-1685, 2019. Google Scholar
140. Lacava, C., T. D. Bucio, A. Z. Khokhar, et al. "Intermodal frequency generation in silicon-rich silicon nitride waveguides," Photon. Res., Vol. 7, 615-621, 2019. Google Scholar
141. Guo, H., E. Lucas, M. H. P. Pfeiffer, et al. "Intermode breather solitons in optical microresonators," Phys. Rev. X, Vol. 7, No. 4, 041055, 2017. Google Scholar
142. Boscolo, S., A. I. Latkin, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber systems," J. Quantum Elect., Vol. 44, No. 12, 1196-1203, 2008. Google Scholar
143. Boscolo, S. and C. Finot, "Nonlinear pulse shaping in fibers for pulse generation and optical processing," International Journal of Optics, 2012. Google Scholar
144. Luo, A., M. Liu, X. Wang, et al. "Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser," Photon. Res., Vol. 3, No. 2, A69-A78, 2015. Google Scholar
145. Boscolo, S. and C. Finot, "Artificial neural networks for nonlinear pulse shaping in optical fibers,", arXiv preprint arXiv:2002.08815, 2020. Google Scholar
146. Boscolo, S. and C. Finot, "Nonlinear pulse shaping in optical fibres with a neural network," Nonlinear Photonics, NpTu1E. 1, Optical Society of America, 2020. Google Scholar
147. Ataie, V., E. Myslivets, B. P.-P. Kuo, et al. "Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping," J. Lightw. Technol., Vol. 32, No. 4, 840-846, 2014. Google Scholar
148. Weiner, A. M., "Ultrafast optical pulse shaping: A tutorial review," Opt. Commun., Vol. 284, No. 15, 3669-3692, 2011. Google Scholar
149. Wang, D., L. Huo, Q. Wang, et al. "Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing," Opt. Commun., Vol. 364, 76-82, 2016. Google Scholar
150. Mitrofanov, A. V., D. A. Sidorov-Biryukov, M. M. Nazarov, et al. "Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses," Optica, Vol. 7, No. 1, 15-19, 2020. Google Scholar
151. Maiuri, M., M. Garavelli, and G. Cerullo, "Ultrafast spectroscopy: State of the art and open challenges," J. Am. Chem. Soc., Vol. 142, No. 1, 3-15, 2019. Google Scholar
152. Mitra, K. and S. Miller, Short Pulse Laser Systems for Biomedical Applications, Springer, 2017.
153. Treacy, E., "Optical pulse compression with diffraction gratings," IEEE J. Quant. Electron., Vol. 5, No. 9, 454-458, 1969. Google Scholar
154. Mei, C., K. Wang, J. Yuan, et al. "Self-similar propagation and compression of the parabolic pulse in silicon waveguide," J. Lightw. Technol., Vol. 37, No. 9, 1990-1999, 2019. Google Scholar
155. Tan, D. T. H., P. C. Sun, and Y. Fainman, "Monolithic nonlinear pulse compressor on a silicon chip," Nat. Commun., Vol. 1, No. 1, 1-6, 2010. Google Scholar
156. Colman, P., C. Husko, S. Combrie, et al. "Temporal solitons and pulse compression in photonic crystal waveguides," Nat. Photon., Vol. 4, No. 12, 862-868, 2010. Google Scholar
157. Sahin, E., A. Blanco-Redondo, P. Xing, et al. "Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride," Laser & Photon. Rev., Vol. 13, 1900114, 2019. Google Scholar
158. Choi, J. W., B. U. Sohn, G. F. R. Chen, et al. "Sub-ps optical pulse compression in ultra-silicon-rich nitride waveguides," Nonlinear Optics, NM3B. 4, OSA, 2019. Google Scholar
159. Redondo, A. B., C. Husko, D. Eades, et al. "Observation of soliton compression in silicon photonic crystals," Nat. Commun., Vol. 5, No. 1, 1-8, 2014. Google Scholar
160. Amine, B. S., C. Rim, and Z. Mourad, "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy," Opt. Express, Vol. 19, No. 21, 19955-19966, 2011. Google Scholar
161. Lavdas, S., J. B. Driscoll, R. R. Grote, et al. "Pulse compression in adiabatically tapered silicon photonic wires," Opt. Express, Vol. 22, No. 6, 6296-6312, 2014. Google Scholar
162. Li, Q., P. K. A. Wai, K. Senthilnathan, et al. "Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations," J. Lightw. Technol., Vol. 29, No. 9, 1293-1305, 2011. Google Scholar
163. Kruglov, V. I., A. C. Peacock, and J. D. Harvey, "Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients," Phys. Rev. E, Vol. 71, No. 5, 056619, 2005. Google Scholar
164. Li, F., Q. Li, J. Yuan, et al. "Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression," Opt. Express, Vol. 22, No. 22, 27339-27354, 2014. Google Scholar
165. Mei, C., F. Li, J. Yuan, et al. "High degree picosecond pulse compression in chalcogenide-silicon slot waveguide taper," J. Lightw. Technol., Vol. 34, No. 16, 3843-3852, 2016. Google Scholar
166. Huang, J., M. S. A. Gandhi, and Q. Li, "Self-similar chirped pulse compression in the tapered silicon ridge slot waveguide," IEEE J. Sel. Top. Quant. Electron., Vol. 26, No. 2, 1-8, 2019. Google Scholar
167. Yuan, J., J. Chen, F. Li, et al. "Mid-infrared self-similar compression of picosecond pulse in an inversely tapered silicon ridge waveguide," Opt. Express, Vol. 25, No. 26, 33439-33450, 2017. Google Scholar
168. Cheng, Y., J. Yuan, C. Mei, et al. "Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides," Opt. Commun., Vol. 454, 124380, 2020. Google Scholar
169. Kang, Z., J. Yuan, S. Li, et al. "Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques," Chinese Phys. B, Vol. 22, No. 11, 114211, 2013. Google Scholar
170. Huber, R., M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML, A new laser operating regime and applications for optical coherence tomography," Opt. Express, Vol. 14, No. 8, 3225-3237, 2006. Google Scholar
171. Andresen, E. R., V. Birkedal, J. Thøgersen, et al. "Tunable light source for coherent anti-Stokes Raman scattering micro spectroscopy based on the soliton self-frequency shift," Opt. Lett., Vol. 31, No. 9, 1328-1330, 2006. Google Scholar
172. Chuang, H. P. and C. B. Huang, "Wavelength-tunable spectral compression in a dispersion-increasing fiber," Opt. Lett., Vol. 36, No. 15, 2848-2850, 2011. Google Scholar
173. Andresen, E. R., J. Thøgersen, and S. R. Keiding, "Spectral compression of femtosecond pulses in photonic crystal fibers," Opt. Lett., Vol. 30, No. 15, 2025-2027, 2005. Google Scholar
174. Mei, C., J. Yuan, K. Wang, et al. "Chirp-free spectral compression of parabolic pulses in silicon nitride channel waveguides," 2016 21st Opto Electronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 1-3, IEEE, 2016. Google Scholar
175. Mei, C., J. Yuan, F. Li, et al. "Efficient spectral compression of wavelength-shifting soliton and its application in integratable all-optical quantization," IEEE Photonics J., Vol. 11, No. 1, 1-15, 2019. Google Scholar
176. Cheng, Y., J. Yuan, C. Mei, et al. "Mid-infrared spectral compression of soliton pulse in an adiabatically suspended silicon waveguide taper," IEEE Photonics J., Vol. 11, No. 4, 4500911, 2019. Google Scholar
177. Fermann, M. E., V. I. Kruglov, B. C. Thomsen, et al. "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett., Vol. 84, No. 26, 6010, 2000. Google Scholar
178. Limpert, J., T. Schreiber, T. Clausnitzer, et al. "High-power femtosecond Yb-doped fiber amplifier," Opt. Express, Vol. 10, No. 14, 628-638, 2002. Google Scholar
179. Ozeki, Y., Y. Takushima, K. Aiso, et al. "High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources," IEICE T. Electron., Vol. 88, No. 5, 904-911, 2005. Google Scholar
180. Finot, C., G. Millot, C. Billet, et al. "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express, Vol. 11, No. 13, 1547-1552, 2003. Google Scholar
181. Boscolo, S., A. I. Latkin, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber systems," IEEE J. Quant. Electron., Vol. 44, No. 12, 1196-1203, 2008. Google Scholar
182. Kruglov, V. I. and J. D. Harvey, "Asymptotically exact parabolic solutions of the generalized nonlinear Schrodinger equation with varying parameters," J. Opt. Soc. Am. B, Vol. 23, No. 12, 2541-2550, 2006. Google Scholar
183. Hirooka, T. and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Opt. Lett., Vol. 29, No. 5, 498-500, 2004. Google Scholar
184. Jiang, G., Y. Fu, Y. Huang, et al. "Generation of the self-similar parabolic pulses by designing comb-like profiled dispersion fiber based on alternately arranged single-mode fibers and dispersion-shifted fibers," Optik, Vol. 124, 5328-5331, 2013. Google Scholar
185. Finot, C., L. Provost, P. Petropoulos, et al. "Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device," Opt. Express, Vol. 15, No. 3, 852-864, 2007. Google Scholar
186. Lavdas, S., J. B. Driscoll, H. Jiang, et al. "Generation of parabolic similaritons in tapered silicon photonic wires: Comparison of pulse dynamics at telecom and mid-infrared wavelengths," Opt. Lett., Vol. 38, No. 19, 3953-3956, 2013. Google Scholar
187. Lavdas, S., J. B. Driscoll, et al. "Generation and collision of optical similaritons in dispersion-engineered silicon photonic nanowires," Nanoengineering: Fabrication, Properties, Optics, and Devices X. International Society for Optics and Photonics, Vol. 8816, 8816DJ, 2013. Google Scholar
188. Mei, C., F. Li, J. Yuan, et al. "Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires," Sci. Rep., Vol. 7, No. 1, 3814-1-14, 2017. Google Scholar
189. Mei, C., J. Yuan, F. Li, et al. "Generation of parabolic pulse in a dispersion and nonlinearity jointly engineered silicon waveguide taper," Opt. Commun., Vol. 448, 48-54, 2019. Google Scholar
190. Mei, C., J. Yuan, F. Li, et al. "Passive generation of the multi-wavelength parabolic pulses in tapered silicon nanowires," IEEE Access, Vol. 8, 77631-77641, 2020. Google Scholar
191. Jones, N., "How to stop data centres from gobbling up the world’s electricity," Nature, Vol. 561, No. 7722, 163-167, 2018. Google Scholar
192. Minzioni, P., C. Lacava, T. Tanabe, et al. "Roadmap on all-optical processing," J. Opt., Vol. 21, No. 6, 063001, 2019. Google Scholar
193. Willner, A. E., D. Gurkan, A. B. Sahin, et al. "All-optical address recognition for optically-assisted routing in next-generation optical networks," IEEE Commun. Mag., Vol. 41, No. 5, S38-S44, 2003. Google Scholar
194. Mahjoubfar, A., D. V. Churkin, S. Barland, et al. "Time stretch and its applications," Nat. Photon., Vol. 11, No. 6, 341, 2017. Google Scholar
195. Kang, Z., X. Zhang, J. Yuan, et al. "Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation," Opt. Express, Vol. 22, No. 18, 21441-21453, 2014. Google Scholar
196. Tian, Y., J. Qiu, Z. Huang, et al. "On-chip integratable all-optical quantizer using cascaded step-size MMI," Opt. Express, Vol. 26, No. 3, 2453-2461, 2018. Google Scholar
197. Valley, G. C., "Photonic analog-to-digital converters," Opt. Express, Vol. 15, No. 5, 1955-1982, 2007. Google Scholar
198. Miyoshi, Y., S. Namiki, and K. I. Kitayama, "Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 2, 779-784, 2012. Google Scholar
199. Andrekson, P. A. and M. Westlund, "Nonlinear optical fiber based high resolution all-optical waveform sampling," Laser & Photonics Rev., Vol. 1, No. 3, 231-248, 2007. Google Scholar
200. Nuno, J., M. Gilles, M. Guasoni, et al. "All-optical sampling and magnification based on XPM-induced focusing," Opt. Express, Vol. 24, No. 22, 24921-24929, 2016. Google Scholar
201. Nishitani, T., T. Konishi, and K. Itoh, "Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression," IEEE J. Sel. Top. Quant. Electron., Vol. 14, No. 3, 724-732, 2008. Google Scholar
202. Li, Y., K. Zhu, Z. Kang, et al. "CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion," Photon. Res., Vol. 7, No. 10, 1200-1208, 2019. Google Scholar
203. Bres, C. S., N. Alic, A. H. Gnauck, et al. "Multicast parametric synchronous sampling," IEEE Photon. Technol. Lett., Vol. 20, No. 14, 1222-1224, 2008. Google Scholar
204. Miao, B., C. Chen, A. Sharkway, et al. "Two-bit optical analog-to-digital converter based on photonic crystals," Opt. Express, Vol. 14, No. 17, 7966-7973, 2006. Google Scholar
205. Kang, Z., J. Yuan, X. Zhang, et al. "On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide," Sci. Rep., Vol. 6, No. 1, 1-12, 2016. Google Scholar
206. Kang, Z., J. Yuan, X. Zhang, et al. "CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide," Sci. Rep., Vol. 4, No. 1, 1-9, 2014. Google Scholar
207. Kang, S., J. Yuan, Z. Kang, et al. "All-optical quantization scheme by slicing the supercontinuum in a chalcogenide horizontal slot waveguide," J. Opt., Vol. 17, No. 8, 085502, 2015. Google Scholar
208. Kang, X., J. Yuan, Z. Kang Z, et al. "Integratable all-optical spectral quantization scheme based on chalcogenide-silicon slot waveguide," Opt. Commun., Vol. 355, 479-484, 2015. Google Scholar
209. Zhang, J., K. Wang, J. Yuan, et al. "All-optical spectral quantization scheme based on cascaded chalcogenide-silicon slot waveguides," Opt. Eng., Vol. 57, No. 4, 045102, 2018. Google Scholar
210. Keyes, R. W., "Optical logic-in the light of computer technology," Optica Acta: Int. J. Opt., Vol. 32, No. 5, 525-535, 1985. Google Scholar
211. Tsuda, H. and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett., Vol. 57, No. 17, 1724-1726, 1990. Google Scholar
212. Wang, J. M., M, Luo, Y, Qiu et al. "Dual-channel AND logic gate based on four-wave mixing in a multimode silicon waveguide," IEEE Photonics J., Vol. 9, No. 4, 1-6, 2017. Google Scholar
213. Wu, W., Q. B. Sun, L. R. Wang, et al. "Influence of two-photon absorption and free-carrier effects on all-optical logic gates in silicon waveguides," Appl. Phys. Express, Vol. 12, 042005, 2019. Google Scholar
214. Moroney, N., L. D. Bino, M. T. M. Woodley, et al. "Logic gates based on interaction of counterpropagating light in microresonators," J. Lightw. Technol., Vol. 38, No. 6, 1414-1419, 2020. Google Scholar
215. Jandieri, V., R. Khomeriki, and D. Erni, "Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides," Opt. Express, Vol. 26, No. 16, 19845-19853, 2018. Google Scholar
216. Kumar, S. and M. Sen, "Integrable all-optical NOT gate using nonlinear photonic crystal MZI for photonic integrated circuit," J. Opt. Soc. Am. B, Vol. 37, No. 2, 359-369, 2020. Google Scholar
217. Vakhtang, J., K. Ramaz, O. Tornike, et al. "Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides," Opt. Express, Vol. 28, No. 12, 18317-18331, 2020. Google Scholar
218. Dimitriadou, E. and K. E. Zoiros, "All-optical XOR gate using single quantum-dot SOA and optical filter," J. Lightw. Technol., Vol. 31, No. 23, 3813-3821, 2013. Google Scholar
219. Kotb, A., K. E. Zoiros, and C. Guo, "1Tb/s all-optical XOR and AND gates using quantum-dot semiconductor optical amplifier-based turbo-switched Mach-Zehnder interferometer," J. Comput. Electron., Vol. 18, No. 2, 628-639, 2019. Google Scholar
220. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nat. Photon., Vol. 1, No. 6, 319-330, 2007. Google Scholar
221. Supradeepa, V. R., et al., "Comb-based radio frequency photonic filters with rapid tunability and high selectivity," Nat. Photon., Vol. 6, No. 3, 186-194, 2012. Google Scholar
222. Li, J., H. Lee, T. Chen, et al. "Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs," Phys. Rev. Lett., Vol. 109, No. 23, 233901, 2012. Google Scholar
223. Liang, W., D. Eliyahu, V. S. Ilchenko, et al. "High spectral purity Kerr frequency comb radio frequency photonic oscillator," Nat. Commun., Vol. 6, No. 1, 1-8, 2015. Google Scholar
224. Nguyen, T. G., M. Shoeiby, S. T. Chu, et al. "Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis," Opt. Express, Vol. 23, No. 17, 22087-22097, 2015. Google Scholar
225. Xue, X., Y. Xuan, H. J. Kim, et al. "Programmable single-bandpass photonic RF filter based on Kerr comb from a microring," J. Light. Technol., Vol. 32, No. 20, 3557-3565, 2014. Google Scholar
226. Xu, X., J. Wu, T. G. Nguyen, et al. "Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source," Photon. Res., Vol. 6, No. 5, B30-B36, 2018. Google Scholar
227. Wu, J., X. Xu, T. G. Nguyen, et al. "RF photonics: An optical microcombs’ perspective," IEEE J. Sel. Top. Quant. Electron., Vol. 24, No. 4, 1-20, 2018. Google Scholar
228. Xu, X., J. Wu, T. G. Nguyen, et al. "Broadband RF channelizer based on an integrated optical frequency Kerr comb source," J. Lightw. Technol., Vol. 36, No. 19, 4519-4526, 2018. Google Scholar
229. Hu, J., J. He, J. Liu, et al. "Reconfigurable radiofrequency filters based on versatile soliton microcombs," Nat. Commun., Vol. 11, No. 1, 1-9, 2020. Google Scholar
230. Yu, X., B. Ding, H. Lu, et al. "Third-order optical nonlinearity in nonstoichiometric amorphous silicon carbide films," J. Alloy. Compd., Vol. 794, 518-524, 2019. Google Scholar
231. Tumuluri, A., M. S. S. Bharati, S. V. Rao, et al. "Structural, optical and femtosecond third-order nonlinear optical properties of LiNbO3 thin films," Mater. Res. Bull., Vol. 94, 342-351, 2017. Google Scholar
232. Sierra, J. H., R. C. Rangel, R. E. Samad, et al. "Low-loss pedestal Ta2O5 nonlinear optical waveguides," Opt. Express, Vol. 27, No. 26, 37516-37521, 2019. Google Scholar
233. Zhang, L., Q. Lin, Y. Yue, et al. "Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation," Opt. Express, Vol. 20, No. 2, 1685-1690, 2012. Google Scholar
234. Guo, Y., Z. Jafari, L. J. Xu, et al. "Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics," Photon. Res., Vol. 7, No. 11, 1279-1286, 2019. Google Scholar
235. Shao, L., M. Yu, S. Maity, et al. "Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators," Optica, Vol. 6, No. 12, 1498-1505, 2019. Google Scholar
236. Chauvet, M., F. Henrot, L. Gauthier-Manuel, et al. "Periodically poled LiNbO3 ridge waveguides on silicon for second-harmonic generation," Silicon Photonics and Photonic Integrated Circuits V. International Society for Optics and Photonics, Vol. 9891, 98910S, 2016. Google Scholar
237. Autere, A., H. Jussila, Y. Dai, et al. "Nonlinear optics with 2D layered materials," Adv. Mater., Vol. 30, No. 24, 1705963, 2018. Google Scholar
238. Alam, M. Z., I. De Leon, and R. W. Boyd, "Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region," Science, Vol. 352, No. 6287, 795-797, 2016. Google Scholar
239. Kauranen, M. and A. V. Zayats, "Nonlinear plasmonics," Nat. Photon., Vol. 6, No. 11, 737, 2012. Google Scholar
240. Feng, M., H. Zhan, and Y. Chen, "Nonlinear optical and optical limiting properties of graphene families," Appl. Phys. Lett., Vol. 96, No. 3, 033107, 2010. Google Scholar
241. Liu, Z., Y. Wang, X. Zhang, et al. "Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes," Appl. Phys. Lett., Vol. 94, No. 2, 021902, 2009. Google Scholar
242. Liu, L., K. Xu, X. Wan, et al. "Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides," Photon. Res., Vol. 3, No. 5, 206-209, 2015. Google Scholar
243. Alam, M. Z., S. A. Schulz, J. Upham, et al. "Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material," Nat. Photon., Vol. 12, No. 2, 79-83, 2018. Google Scholar
244. Neira, A. D., N. Olivier, M. E. Nasir, et al. "Eliminating material constraints for nonlinearity with plasmonic metamaterials," Nat. Commun., Vol. 6, No. 1, 1-8, 2015. Google Scholar
245. Li, G., S. Zhang, and T. Zentgraf, "Nonlinear photonic metasurfaces," Nat. Rev. Mater., Vol. 2, No. 5, 1-14, 2017. Google Scholar
246. Lee, J., M. Tymchenko, C. Argyropoulos, et al. "Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions," Nature, Vol. 511, No. 7507, 65-69, 2014. Google Scholar
247. Horak, P. and F. Poletti, "Multimode nonlinear fibre optics: Theory and applications," Recent Progress in Optical Fiber Research, 3-25, 2012. Google Scholar
248. Gloge, D. and E. A. J. Marcatili, "Multimode theory of graded-core fibers," Bell System Technical Journal, Vol. 52, No. 9, 1563-1578, 1973. Google Scholar
249. Wright, L. G., D. N. Christodoulides, and F. W. Wise, "Controllable spatiotemporal nonlinear effects in multimode fibres," Nat. Photon., Vol. 9, No. 5, 306-310, 2015. Google Scholar
250. Renninger, W. H. and F. W. Wise, "Optical solitons in graded-index multimode fibres," Nat. Commun., Vol. 4, No. 1, 1-6, 2013. Google Scholar
251. Krupa, K., A. Tonello, B. M. Shalaby, et al. "Spatial beam self-cleaning in multimode fibres," Nat. Photon., Vol. 11, No. 4, 237-241, 2017. Google Scholar
252. Demas, J., P. Steinvurzel, B. Tai, et al. "Intermodal nonlinear mixing with Bessel beams in optical fiber," Optica, Vol. 2, No. 1, 14-17, 2015. Google Scholar
253. Wright, L. G., S. Wabnitz, D. N. Christodoulides, et al. "Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves," Phys. Rev. Lett., Vol. 115, No. 22, 223902, 2015. Google Scholar
254. Krupa, K., A. Tonello, A. Barthelemy, et al. "Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves," Phys. Rev. Lett., Vol. 116, No. 18, 183901, 2016. Google Scholar
255. Elshaari, A. W., W. Pernice, K. Srinivasan, et al. "Hybrid integrated quantum photonic circuits," Nat. Photon., Vol. 14, 285-298, 2020. Google Scholar
256. Singh, A., Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, et al. "Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip," Optica, Vol. 6, No. 5, 563-569, 2019. Google Scholar