Vol. 170
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-01-15
Advanced Progress on Χ(3) Nonlinearity in Chip-Scale Photonic Platforms (Invited Review)
By
Progress In Electromagnetics Research, Vol. 170, 17-62, 2021
Abstract
χ(3) nonlinearity enables ultrafast femtosecond scale light-to-light coupling and manipulation of intensity, phase, and frequency. χ(3) nonlinear functionality in micro- and nano-scale photonic waveguides can potentially replace bulky fiber platforms for many applications. In this review, we summarize and comment on the progress on χ(3) nonlinearity in chip-scale photonic platforms, including several focused hot topics such as broadband and coherent sources in the new bands, nonlinear pulse shaping, and all-optical signal processing. An outlook of challenges and prospects on this hot research field is given at the end.
Citation
Zhe Kang, Chao Mei, Luqi Zhang, Zhichao Zhang, Julian Evans, Yunjun Cheng, Kun Zhu, Xianting Zhang, Dongmei Huang, Yuhua Li, Jijun He, Qiang Wu, Binbin Yan, Kuiru Wang, Xian Zhou, Keping Long, Feng Li, Qian Li, Shaokang Wang, Jinhui Yuan, Ping-Kong Alexander Wai, and Sailing He, "Advanced Progress on Χ(3) Nonlinearity in Chip-Scale Photonic Platforms (Invited Review)," Progress In Electromagnetics Research, Vol. 170, 17-62, 2021.
doi:10.2528/PIER20122108
References

1. Maiman, T. H., "Stimulated optical radiation in ruby," Nature, Vol. 187, No. 4736, 493-494, 1960.
doi:10.1038/187493a0        Google Scholar

2. Bloembergen, N., Nonlinear Optics, 3rd Printing, 1977.

3. Woodbury, E. J. and W. K. Ng, "Ruby laser operation in the near IR," Proc. IRE, Vol. 50, 2367, 1962.        Google Scholar

4. Maker, P. D., R. W. Terhune, and C. M. Savage, "Intensity-dependent changes in the refractive index of liquids," Phys. Rev. Lett., Vol. 12, 507-509, 1964.
doi:10.1103/PhysRevLett.12.507        Google Scholar

5. Chiao, R. Y., C. H. Townes, and B. P. Stoicheff, "Stimulated Brillouin scattering and coherent generation of intense hypersonic waves," Phys. Rev. Lett., Vol. 12, 592-595, 1964.
doi:10.1103/PhysRevLett.12.592        Google Scholar

6. Carman, R. L., R. Y. Chiao, and P. L. Kelly, "Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification," Phys. Rev. Lett., Vol. 17, 1281-1283, 1966.
doi:10.1103/PhysRevLett.17.1281        Google Scholar

7. Kao, K. C. and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proceedings of the Institution of Electrical Engineers, Vol. 113, No. 7, 1151-1158, IET Digital Library, 1966.
doi:10.1049/piee.1966.0189        Google Scholar

8. Ippen, E. P., "Low-power quasi-CW Raman oscillator," Appl. Phys. Lett., Vol. 16, 303-305, 1970.
doi:10.1063/1.1653204        Google Scholar

9. Ippen, E. P. and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett., Vol. 21, 539-541, 1972.
doi:10.1063/1.1654249        Google Scholar

10. Stolen, R. H., "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quan. Electron., Vol. 11, 100-103, 1975.
doi:10.1109/JQE.1975.1068571        Google Scholar

11. Stolen, R. H. and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A, Vol. 17, 1448-1453, 1978.
doi:10.1103/PhysRevA.17.1448        Google Scholar

12. Chraplyvy, A. R. and J. Stone, "Measurement of cross phase modulation in coherent wavelength-division multiplexing using injection lasers," Electron. Lett., Vol. 20, No. 24, 996-997, 1984.
doi:10.1049/el:19840678        Google Scholar

13. Hasegawa, A. and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion," Appl. Phys. Lett., Vol. 23, 142-144, 1973.
doi:10.1063/1.1654836        Google Scholar

14. Mollenauer, L. F., R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and solitons in optical fibers," Phys. Rev. Lett., Vol. 45, 1095-1098, 1980.
doi:10.1103/PhysRevLett.45.1095        Google Scholar

15. Mollenauer, L. F. and R. H. Stolen, "The soliton laser," Opt. News, Vol. 10, No. 6, 20_2-21, 1984.
doi:10.1364/ON.10.6.0020_2        Google Scholar

16. Anderson, D. and M. Lisak, "Bandwidth limits due to mutual pulse interaction in optical soliton communication systems," Opt. Lett., Vol. 11, No. 3, 174-176, 1986.
doi:10.1364/OL.11.000174        Google Scholar

17. Wai, P. K. A., C. R. Menyuk, Y. C. Lee, and H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett., Vol. 11, 464-488, 1986.
doi:10.1364/OL.11.000464        Google Scholar

18. Tai, K., A. Hasegawa, and N. Bekki, "Fission of optical solitons induced by stimulated Raman effect," Opt. Lett., Vol. 13, 392-394, 1988.
doi:10.1364/OL.13.000392        Google Scholar

19. Mitschke, F. M. and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett., Vol. 11, 659-661, 1986.
doi:10.1364/OL.11.000659        Google Scholar

20. Corkum, P. B., C. Rolland, and T. Srinivasan-Rao, "Supercontinuum generation in gases," Phys. Rev. Lett., Vol. 57, No. 18, 2268, 1986.
doi:10.1103/PhysRevLett.57.2268        Google Scholar

21. Birks, T. A., P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett., Vol. 31, 1941-1942, 1995.
doi:10.1049/el:19951306        Google Scholar

22. Bouwmans, G., F. Luan, J. C. Knight, et al. "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express, Vol. 11, No. 14, 1613-1620, 2003.
doi:10.1364/OE.11.001613        Google Scholar

23. Yusoff, Z., J. H. Lee, W. Belardi, et al. "Raman effects in a highly nonlinear holey fiber: Amplification and modulation," Opt. Lett., Vol. 27, No. 6, 424-426, 2002.
doi:10.1364/OL.27.000424        Google Scholar

24. Nakajima, K., K. Hogari, J. Zhou, et al. "Hole-assisted fiber design for small bending and splice losses," IEEE Photon. Technol. Lett., Vol. 15, No. 12, 1737-1739, 2003.
doi:10.1109/LPT.2003.819723        Google Scholar

25. Vienne, G., Y. Xu, C. Jakobsen, et al. "First demonstration of air-silica Bragg fiber," Optical Fiber Communication Conference, Vol. 2, 3, Optical Society of America, 2004.        Google Scholar

26. Habib, M. S., J. E. Antonio-Lopez, C. Markos, et al. "Single-mode, low loss hollow-core anti-resonant fiber designs," Opt. Express, Vol. 27, No. 4, 3824-3836, 2019.
doi:10.1364/OE.27.003824        Google Scholar

27. Ferrera, M., L. Razzari, D. Duchesne, et al. "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures," Nat. Photon., Vol. 2, No. 12, 737, 2008.
doi:10.1038/nphoton.2008.228        Google Scholar

28. Barrelet, C. J., H. S. Ee, S. H. Kwon, et al. "Nonlinear mixing in nanowire subwavelength waveguides," Nano Lett., Vol. 11, No. 7, 3022-3025, 2011.
doi:10.1021/nl201743x        Google Scholar

29. Li, G., J. Yao, H. Thacker, et al. "Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects," Opt. Express, Vol. 20, No. 11, 12035-12039, 2012.
doi:10.1364/OE.20.012035        Google Scholar

30. Solehmainen, K., "Fabrication of microphotonic waveguide components on silicon," VTT Technical Research Centre of Finland, 68, 2007.        Google Scholar

31. Tsang, H. K., C. S. Wong, T. K. Liang, et al. "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett., Vol. 80, No. 3, 416-418, 2002.
doi:10.1063/1.1435801        Google Scholar

32. Astar, W., J. B. Driscoll, X. Liu, et al. "Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting," J. Lightw. Technol., Vol. 28, No. 17, 2499-2511, 2010.
doi:10.1109/JLT.2010.2053698        Google Scholar

33. Liang, T. K. and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 10, No. 5, 1149-1153, 2004.
doi:10.1109/JSTQE.2004.835290        Google Scholar

34. Tien, E. K., N. S. Yuksek, F. Qian, and A. O. Boyraz, "Pulse compression and mode locking by using TPA in silicon waveguides," Opt. Express, Vol. 15, No. 10, 6500-6506, 2007.
doi:10.1364/OE.15.006500        Google Scholar

35. Liang, T. K., H. K. Tsang, I. E. Day, et al. "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett., Vol. 81, No. 7, 1323-1325, 2002.
doi:10.1063/1.1500430        Google Scholar

36. Reitze, D. H., T. R. Zhang, W. M. Wood, et al. "Two-photon spectroscopy of silicon using femtosecond pulses at above-gap frequencies," J. Opt. Soc. Am. B, Vol. 7, No. 1, 84-89, 1990.
doi:10.1364/JOSAB.7.000084        Google Scholar

37. Eggleton, B. J., B. Luther-Davies, and K. Richardson, "Chalcogenide photonics," Nat. Photon., Vol. 5, No. 3, 141, 2011.
doi:10.1038/nphoton.2011.309        Google Scholar

38. Monat, C., B. Corcoran, M. Ebnali-Heidari, et al. "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express, Vol. 17, No. 4, 2944-2953, 2009.
doi:10.1364/OE.17.002944        Google Scholar

39. Carletti, L., P. Ma, Y. Yu, et al. "Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared," Opt. Express, Vol. 23, No. 7, 8261-8271, 2015.
doi:10.1364/OE.23.008261        Google Scholar

40. Ramirez, J. M., V. Vakarin, J. Frigerio, et al. "Ge-rich graded-index Si1−xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics," Opt. Express, Vol. 25, No. 6, 6561-6567, 2017.
doi:10.1364/OE.25.006561        Google Scholar

41. Carletti, L., M. Sinobad, P. Ma, et al. "Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses," Opt. Express, Vol. 23, No. 25, 32202-32214, 2015.
doi:10.1364/OE.23.032202        Google Scholar

42. Moss, J. D., R. Morandotti, A. L. Gaeta, et al. "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nat. Photon., Vol. 7, No. 8, 597-607, 2013.
doi:10.1038/nphoton.2013.183        Google Scholar

43. Liu, J., A. S. Raja, M. Karpov, et al. "Ultralow-power chip-based soliton microcombs for photonic integration," Optica, Vol. 5, No. 10, 1347-1353, 2018.
doi:10.1364/OPTICA.5.001347        Google Scholar

44. Stern, B., X. Ji, Y. Okawachi, et al. "Battery-operated integrated frequency comb generator," Nature, Vol. 562, No. 7727, 401-405, 2018.
doi:10.1038/s41586-018-0598-9        Google Scholar

45. Shen, B., et al., "Integrated turnkey soliton microcombs," Nature, Vol. 582, 365-369, 2020.
doi:10.1038/s41586-020-2358-x        Google Scholar

46. Choi, J. W., Z. Han, B. U. Sohn, et al. "Nonlinear characterization of GeSbS chalcogenide glass waveguides," Sci. Rep., Vol. 6, No. 1, 1-8, 2016.
doi:10.1038/s41598-016-0001-8        Google Scholar

47. Ta’eed, V. G., M. R. E. Lamont, D. J. Moss, et al. "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express, Vol. 14, No. 23, 11242-11247, 2006.
doi:10.1364/OE.14.011242        Google Scholar

48. Yeom, D. I., E. C. Magi, M. R. E. Lamont, et al. "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett., Vol. 33, No. 7, 660-662, 2008.
doi:10.1364/OL.33.000660        Google Scholar

49. Ta’eed, V. G., M. Shokooh-Saremi, L. Fu, et al. "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 12, No. 3, 360-370, 2006.
doi:10.1109/JSTQE.2006.872727        Google Scholar

50. Siviloglou, G. A., S. Suntsov, R. El-Ganainy, et al. "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express, Vol. 14, No. 20, 9377-9384, 2006.
doi:10.1364/OE.14.009377        Google Scholar

51. Inoue, K., H. Oda, N. Ikeda, et al. "Enhanced third-order nonlinear effects in slowlight photonic-crystal slab waveguides of line defect," Opt. Express, Vol. 17, No. 9, 7206-7216, 2009.
doi:10.1364/OE.17.007206        Google Scholar

52. Moille, G., L. Chang, W. Xie, et al. "Dissipative Kerr Solitons in a III-V microresonator," Laser & Photon. Rev., Vol. 14, No. 8, 2070043, 2020.
doi:10.1002/lpor.202070043        Google Scholar

53. Combrie, S., Q. V. Tran, A. De Rossi, et al. "High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption," Appl. Phys. Lett., Vol. 95, No. 22, 221108, 2009.
doi:10.1063/1.3269998        Google Scholar

54. Xiong, C., W. H. P. Pernice, X. Sun, et al. "Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics," New J. Phys., Vol. 14, No. 9, 095014, 2012.
doi:10.1088/1367-2630/14/9/095014        Google Scholar

55. Munk, D., M. Katzman, O. Westreich, et al. "Four-wave mixing and nonlinear parameter measurement in a gallium-nitride ridge waveguide," Opt. Mater. Express, Vol. 8, No. 1, 66-72, 2018.
doi:10.1364/OME.8.000066        Google Scholar

56. Pu, M., Y. Liu, et al. "Broadband optical signal processing in AlGaAs-on-insulator waveguides," Integrated Photonics Research, Silicon and Nanophotonics, Optical Society of America, ITu2A.1, 2020.        Google Scholar

57. Chang, L., W. Xie, H. Shu, et al. "Ultra-efficient frequency comb generation in AlGaAs-oninsulator microresonators," Nat. Commun., Vol. 11, No. 1, 1-8, 2020.
doi:10.1038/s41467-019-13993-7        Google Scholar

58. Gaeta, A. L., M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," Nat. Photon., Vol. 13, No. 3, 158-169, 2019.
doi:10.1038/s41566-019-0358-x        Google Scholar

59. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys., Vol. 78, No. 4, 1135, 2006.
doi:10.1103/RevModPhys.78.1135        Google Scholar

60. Lin, Q., O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express, Vol. 15, No. 25, 16604-16644, 2007.
doi:10.1364/OE.15.016604        Google Scholar

61. Dudley, J. M. and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett., Vol. 27, No. 13, 1180-1182, 2002.
doi:10.1364/OL.27.001180        Google Scholar

62. Raabe, N., T. Feng, T. Witting, et al. "Role of Intrapulse coherence in carrier-envelope phase stabilization," Phys. Rev. Lett., Vol. 119, No. 12, 123901, 2017.
doi:10.1103/PhysRevLett.119.123901        Google Scholar

63. Mei, C. and G. Steinmeyer, "Tailoring the waveguide dispersion of nonlinear fibers for supercontinuum generation with superior intrapulse coherence," J. Opt. Soc. Am. B, Vol. 37, No. 8, 2485-2497, 2020.
doi:10.1364/JOSAB.396511        Google Scholar

64. Oh, D. Y., K. Y. Yang, C. Fredrick, et al. "Coherent ultra-violet to near-infrared generation in silica ridge waveguides," Nat. Commun., Vol. 8, No. 1, 1-7, 2017.
doi:10.1038/s41467-019-13993-7        Google Scholar

65. Liu, X., A. W. Bruch, J. Lu, et al. "Beyond 100THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide," Nat. Commun., Vol. 10, No. 1, 2971, 2019.
doi:10.1038/s41467-019-11034-x        Google Scholar

66. Lafforgue, C., S. Guerber, J. M. Ramirez, et al. "Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform," Photon. Res., Vol. 8, No. 3, 2020.
doi:10.1364/PRJ.379555        Google Scholar

67. Genty, G., S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B, Vol. 24, No. 8, 1771-1785, 2007.
doi:10.1364/JOSAB.24.001771        Google Scholar

68. Johnson, A. R., A. S. Mayer, A. Klenner, et al. "Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide," Opt. Lett., Vol. 40, No. 21, 5117-5120, 2015.
doi:10.1364/OL.40.005117        Google Scholar

69. Okawachi, Y., M. Yu, J. Cardenas, et al. "Coherent, directional supercontinuum generation," Opt. Lett., Vol. 42, No. 21, 4466-4469, 2017.
doi:10.1364/OL.42.004466        Google Scholar

70. Kuyken, B., M. Billet, F. Leo, et al. "Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide," Opt. Lett., Vol. 45, No. 3, 603-606, 2020.
doi:10.1364/OL.45.000603        Google Scholar

71. Tremblay, J., M. Malinowski, K. A. Richardson, et al. "Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides," Opt. Express, Vol. 26, No. 16, 21358-21363, 2018.
doi:10.1364/OE.26.021358        Google Scholar

72. Dave, U. D., C. Ciret, S.-P. Gorza, et al. "Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate," Opt. Lett., Vol. 40, No. 15, 3584-3587, 2015.
doi:10.1364/OL.40.003584        Google Scholar

73. Singh, N., M. Xin, D. Vermeulen, et al. "Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm," Light Sci. Appl., Vol. 7, No. 1, 17131-17131, 2018.
doi:10.1038/lsa.2017.131        Google Scholar

74. Kou, R., T. Hatakeyama, J. Horng, et al. "Mid-IR broadband supercontinuum generation from a suspended silicon waveguide," Opt. Lett., Vol. 43, No. 6, 1387, 2018.
doi:10.1364/OL.43.001387        Google Scholar

75. Chiles, J., N. Nader, E. J. Stanton, et al. "Multi-functional integrated photonics in the mid-infrared with suspended AlGaAs on silicon," Optica, Vol. 6, No. 9, 1246-1254, 2019.
doi:10.1364/OPTICA.6.001246        Google Scholar

76. Nader, N., A. Kowligy, J. Chiles, et al. "Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides," Optica, Vol. 6, No. 10, 1269, 2019.
doi:10.1364/OPTICA.6.001269        Google Scholar

77. Lau, R. K. W., M. R. E. Lamont, A. G. Griffith, et al. "Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides," Opt. Lett., Vol. 39, No. 15, 4518-4521, 2014.
doi:10.1364/OL.39.004518        Google Scholar

78. Xie, S., N. Tolstik, J. C. Travers, et al. "octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr: ZnS laser," Opt. Express, Vol. 24, No. 11, 12406-12413, 2016.
doi:10.1364/OE.24.012406        Google Scholar

79. Sinobad, M., C. Monat, B. Luther-Davies, et al. "Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides," Optica, Vol. 5, No. 4, 360, 2018.        Google Scholar

80. Sinobad, M., A. D. Torre, R. Armand, et al. "High coherence at f and 2f of mid-infrared supercontinuum generation in silicon germanium waveguides," IEEE J. Sel. Top. Quant. Electron., Vol. 26, No. 2, 1-8, 2019.        Google Scholar

81. Yang, M., Y. Guo, J. Wang, et al. "Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses," Opt. Express, Vol. 25, No. 14, 16116, 2017.        Google Scholar

82. Yuan, J., Z. Kang, F. Li, et al. "Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide," J. Lightw. Technol., Vol. 35, 2994-3002, 2017.        Google Scholar

83. Jing, S., C. Mei, K. Wang, et al. "Broadband and highly coherent supercontinuum generation in a suspended As2S3 ridge waveguide," Opt. Commun., Vol. 428, 227-232, 2018.        Google Scholar

84. Cheng, Y., J. Yuan, C. Mei, et al. "Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides," Opt. Commun., Vol. 454, 124380, 2019.        Google Scholar

85. Li, Z., J. Yuan, C. Mei, et al. "Multi-octave mid-infrared supercontinuum and frequency comb generation in a suspended As2Se3 ridge waveguide," Appl. Opt., Vol. 58, No. 31, 8404-8410, 2019.        Google Scholar

86. Lai, J., J. Yuan, Y. Cheng, et al. "Dispersion-engineered T-type germanium waveguide for mid-infrared supercontinuum and frequency comb generations in all-normal dispersion region," OSAC, Vol. 3, No. 9, 2320-2331, 2020.        Google Scholar

87. Yu, M., B. Desiatov, Y. Okawachi, et al. "Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides," Opt. Lett., Vol. 44, 1222-1225, 2019.        Google Scholar

88. Lu, J., X. Liu, A. W. Bruch, et al. "Ultraviolet to mid-infrared supercontinuum generation in single-crystalline aluminum nitride waveguides," Opt. Lett., Vol. 45, No. 16, 4499-4502, 2020.        Google Scholar

89. Gaeta, A. L., M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," Nat. Photonics, Vol. 13, 158-169, 2019.        Google Scholar

90. Hon, N. K., R. Soref, and B. Jalali, "The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the mid-wave and longwave infrared," J. Appl. Phys., Vol. 110, 011301, 2011.        Google Scholar

91. Wang, T., N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, "Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths," Opt. Express, Vol. 21, 32192-32198, 2013.        Google Scholar

92. Shen, L., N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, "Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime," Opt. Express, Vol. 21, 13075-13083, 2013.        Google Scholar

93. Carletti, L., M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, "Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses," Opt. Express, Vol. 23, 32202-32214, 2015.        Google Scholar

94. Agrawal, G. P., Nonlinear Fiber Optics, Nonlinear Science at the Dawn of the 21st Century, 195-211, Springer, 2000.

95. Tan, D. T. H., K. Ikeda, P. C. Sun, et al. "Group velocity dispersion and self-phase modulation in silicon nitride waveguides," Appl. Phys. Lett., Vol. 96, 061101, 2010.        Google Scholar

96. Levy, J. S., A. Gondarenko, M. A. Foster, et al. "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nat. Photonics, Vol. 4, 37-40, 2010.        Google Scholar

97. Cardenas, J., S. Miller, Y. Okawachi, et al. "Parametric frequency conversion in silicon carbide waveguides," CLEO: Science and Innovations, 1-3, Optical Society of America, 2015.        Google Scholar

98. Jung, H., C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, "Optical frequency comb generation from aluminum nitride microring resonator," Opt. Lett., Vol. 38, 2810-2813, 2013.        Google Scholar

99. Belt, M., M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, "Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates," Optica, Vol. 4, 532-536, 2017.        Google Scholar

100. Guan, X., H. Hu, L. K. Oxenløwe, and L. H. Frandsen, "Compact titanium dioxide waveguides with high nonlinearity at telecommunication wavelengths," Opt. Express, Vol. 26, No. 2, 1055-1063, 2018.        Google Scholar

101. Hausmann, B. J. M., I. Bulu, V. Venkataraman, P. Deotare, et al. "Diamond nonlinear photonics," Nat. Photonics, Vol. 8, 369-374, 2014.        Google Scholar

102. Pu, M., H. Hu, L. Ottaviano, et al. "Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing," Laser & Photon. Rev., Vol. 12, 1800111, 2018.        Google Scholar

103. Dolgaleva, K., W. C. Ng, L. Qian, and J. S. Aitchison, "Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion," Opt. Express, Vol. 19, 12440-12455, 2011.        Google Scholar

104. Xiang, B.-X., et al., "Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching," Chinese Phys. Lett., Vol. 34, No. 2, 24203-024203, 2017.        Google Scholar

105. Fan, Z., K. Yan, L. Zhang, J. Qin, J. Chen, R. Wang, and X. Shen, "Design and fabrication of As2Se3 chalcogenide waveguides with low optical losses," Appl. Opt., Vol. 59, 1564-1568, 2020.        Google Scholar

106. Al-kadry, A., C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, "Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects," Opt. Lett., Vol. 38, 1185-1187, 2013.        Google Scholar

107. Duchesne, D., M. Ferrera, et al. "Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides," Opt. Express, Vol. 17, No. 3, 1865-1870, 2009.        Google Scholar

108. Kuyken, B., T. Ideguchi, S. Holzner, et al. "An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide," Nat. Commun., Vol. 6, No. 1, 1-6, 2015.        Google Scholar

109. Carlson, D. R., D. D. Hickstein, A. Lind, et al. "Self-referenced frequency combs using high-efficiency silicon-nitride waveguides," Opt. Lett., Vol. 42, No. 12, 2314-2317, 2017.        Google Scholar

110. Lee, K. F., N. Granzow, M. A. Schmidt, et al. "Mid-infrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation," Opt. Lett., Vol. 39, No. 7, 2056-2059, 2014.        Google Scholar

111. Guo, H., C. Herkommer, A. Billat, et al. "Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides," Nat. Photon., Vol. 12, No. 6, 330-335, 2018.        Google Scholar

112. Guo, H., W. Weng, J. Liu, et al. "Nanophotonic supercontinuum based mid-infrared dual-comb spectroscopy," Optica, Vol. 7, 1181-1188, 2020.        Google Scholar

113. Grassani, D., E. Tagkoudi, H. Guo, et al. "Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum," Nat. Commun., Vol. 10, No. 1, 1553, 2019.        Google Scholar

114. Tagkoudi, E., D. Grassani, F. Yang, et al. "Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si3N4 waveguide," Opt. Lett., Vol. 45, No. 7, 2195-2198, 2020.        Google Scholar

115. Jung, H., R. Stoll, X. Guo, et al. "Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator," Optica, Vol. 1, No. 6, 396-399, 2014.        Google Scholar

116. Kippenberg, T. J., A. L. Gaeta, M. Lipson, et al. "Dissipative Kerr solitons in optical microresonators," Science, Vol. 361, eaan8083, 2018.        Google Scholar

117. Haelterman, M., S. Trillo, and S. Wabnitz, "Dissipative modulation instability in a nonlinear dispersive ring cavity," Opt. Commun., Vol. 91, No. 5–6, 401-407, 1992.        Google Scholar

118. Kang, Z., F. Li, J. H. Yuan, et al. "Deterministic generation of single soliton Kerr frequency comb in microresonators by a single shot pulsed trigger," Opt. Express, Vol. 26, No. 14, 18563-18577, 2018.        Google Scholar

119. Coen, S., H. G. Randle, T. Sylvestre, et al. "Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model," Opt. Lett., Vol. 38, 37-39, 2013.        Google Scholar

120. Lau, R. K. W., M. R. E. Lamont, Y. Okawachi, et al. "Effects of multiphoton absorption on parametric comb generation in silicon microresonators," Opt. Lett., Vol. 40, No. 12, 2778-2781, 2015.        Google Scholar

121. Bao, C., L. Zhang, L. C. Kimerling, et al. "Soliton breathing induced by stimulated Raman scattering and self-steepening in octave-spanning Kerr frequency comb generation," Opt. Express, Vol. 23, No. 14, 18665-18670, 2015.        Google Scholar

122. Liu, X., C. Sun, B. Xiong, et al. "Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities," Appl. Phys. Lett., Vol. 113, No. 17, 171106, 2018.        Google Scholar

123. Wang, L., L. Chang, N. Volet, et al. "Frequency comb generation in the green using silicon nitride microresonators," Laser & Photonics Rev., Vol. 10, No. 4, 631-638, 2016.        Google Scholar

124. Guo, X., C.-L. Zou, H. Jung, et al. "Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb," Phys. Rev. Appl., Vol. 10, No. 1, 014012, 2018.        Google Scholar

125. Lee, S. H., D. Y. Oh, Q.-F. Yang, et al. "Towards visible soliton microcomb generation," Nat. Commun., Vol. 8, No. 1, 1295, 2017.        Google Scholar

126. Raja, A. S., A. S. Voloshin, H. Guo, et al. "Electrically pumped photonic integrated soliton microcomb," Nat. Commun., Vol. 10, No. 1, 1-16, 2019.        Google Scholar

127. Briles, T. C., S.-P. Yu, T. E. Drake, et al. "Generating octave-bandwidth soliton frequency combs with compact, low-power semiconductor lasers," Phys. Rev. Appl., Vol. 14, No. 1, 014006, 2020.        Google Scholar

128. Fujii, L., M. Inga, J. H. Soares, et al. "Dispersion tailoring in wedge microcavities for Kerr comb generation," Opt. Lett., Vol. 45, No. 12, 3232-3235, 2020.        Google Scholar

129. Yu, M., Y. Okawachi, A. G. Griffith, et al. "Mode-locked mid-infrared frequency combs in a silicon microresonator," Optica, Vol. 3, No. 8, 854-860, 2016.        Google Scholar

130. Yu, M., Y. Okawachi, A. G. Griffith, et al. "Silicon-chip-based mid-infrared dual-comb spectroscopy," Nat. Commun., Vol. 9, No. 1, 1869, 2018.        Google Scholar

131. Yu, M., Y. Okawachi, A. G. Griffith, et al. "Microfluidic mid-infrared spectroscopy via microresonator-based dual-comb source," Opt. Lett., Vol. 44, No. 17, 4259-4262, 2019.        Google Scholar

132. Gong, Z., X. Liu, Y. Xu, et al. "Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators," Opt. Lett., Vol. 44, No. 12, 3182, 2019.        Google Scholar

133. Guo, Y., J. Wang, Z. Han, et al. "Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator," Nanophotonics, Vol. 7, No. 8, 1461-1467, 2018.        Google Scholar

134. Fan, W., Z. Lu, W. Li, et al. "Low-threshold 4/5 octave-spanning mid-infrared frequency comb in a LiNbO3 microresonator," IEEE Photonics J., Vol. 11, No. 6, 1-7, 2019.        Google Scholar

135. Anashkina, E. A., M. P. Marisova, A. A. Sorokin, et al. "Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators," Photonics, Vol. 6, No. 2, 55, 2019.        Google Scholar

136. Lamb, E. S., D. R. Carlson, D. D. Hickstein, et al. "Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum," Phys. Rev. Appl., Vol. 9, No. 2, 024030, 2018.        Google Scholar

137. Signorini, S., S. Piccione, M. Ghulinyan, et al. "Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides," Quantum Photonic Devices, Vol. 10733, 107330G, 2018.        Google Scholar

138. Signorini, S., M. Mancinelli, M. Borghi, et al. "Intermodal four-wave mixing in silicon waveguides," Photon. Res., Vol. 6, No. 8, 805-814, 2018.        Google Scholar

139. Lacava, C., M. A. Ettabib, T. D. Bucio, et al. "Intermodal bragg-scattering four wave mixing in silicon waveguides," J. Lightw. Technol., Vol. 37, No. 7, 1680-1685, 2019.        Google Scholar

140. Lacava, C., T. D. Bucio, A. Z. Khokhar, et al. "Intermodal frequency generation in silicon-rich silicon nitride waveguides," Photon. Res., Vol. 7, 615-621, 2019.        Google Scholar

141. Guo, H., E. Lucas, M. H. P. Pfeiffer, et al. "Intermode breather solitons in optical microresonators," Phys. Rev. X, Vol. 7, No. 4, 041055, 2017.        Google Scholar

142. Boscolo, S., A. I. Latkin, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber systems," J. Quantum Elect., Vol. 44, No. 12, 1196-1203, 2008.        Google Scholar

143. Boscolo, S. and C. Finot, "Nonlinear pulse shaping in fibers for pulse generation and optical processing," International Journal of Optics, 2012.        Google Scholar

144. Luo, A., M. Liu, X. Wang, et al. "Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser," Photon. Res., Vol. 3, No. 2, A69-A78, 2015.        Google Scholar

145. Boscolo, S. and C. Finot, "Artificial neural networks for nonlinear pulse shaping in optical fibers,", arXiv preprint arXiv:2002.08815, 2020.        Google Scholar

146. Boscolo, S. and C. Finot, "Nonlinear pulse shaping in optical fibres with a neural network," Nonlinear Photonics, NpTu1E. 1, Optical Society of America, 2020.        Google Scholar

147. Ataie, V., E. Myslivets, B. P.-P. Kuo, et al. "Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping," J. Lightw. Technol., Vol. 32, No. 4, 840-846, 2014.        Google Scholar

148. Weiner, A. M., "Ultrafast optical pulse shaping: A tutorial review," Opt. Commun., Vol. 284, No. 15, 3669-3692, 2011.        Google Scholar

149. Wang, D., L. Huo, Q. Wang, et al. "Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing," Opt. Commun., Vol. 364, 76-82, 2016.        Google Scholar

150. Mitrofanov, A. V., D. A. Sidorov-Biryukov, M. M. Nazarov, et al. "Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses," Optica, Vol. 7, No. 1, 15-19, 2020.        Google Scholar

151. Maiuri, M., M. Garavelli, and G. Cerullo, "Ultrafast spectroscopy: State of the art and open challenges," J. Am. Chem. Soc., Vol. 142, No. 1, 3-15, 2019.        Google Scholar

152. Mitra, K. and S. Miller, Short Pulse Laser Systems for Biomedical Applications, Springer, 2017.

153. Treacy, E., "Optical pulse compression with diffraction gratings," IEEE J. Quant. Electron., Vol. 5, No. 9, 454-458, 1969.        Google Scholar

154. Mei, C., K. Wang, J. Yuan, et al. "Self-similar propagation and compression of the parabolic pulse in silicon waveguide," J. Lightw. Technol., Vol. 37, No. 9, 1990-1999, 2019.        Google Scholar

155. Tan, D. T. H., P. C. Sun, and Y. Fainman, "Monolithic nonlinear pulse compressor on a silicon chip," Nat. Commun., Vol. 1, No. 1, 1-6, 2010.        Google Scholar

156. Colman, P., C. Husko, S. Combrie, et al. "Temporal solitons and pulse compression in photonic crystal waveguides," Nat. Photon., Vol. 4, No. 12, 862-868, 2010.        Google Scholar

157. Sahin, E., A. Blanco-Redondo, P. Xing, et al. "Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride," Laser & Photon. Rev., Vol. 13, 1900114, 2019.        Google Scholar

158. Choi, J. W., B. U. Sohn, G. F. R. Chen, et al. "Sub-ps optical pulse compression in ultra-silicon-rich nitride waveguides," Nonlinear Optics, NM3B. 4, OSA, 2019.        Google Scholar

159. Redondo, A. B., C. Husko, D. Eades, et al. "Observation of soliton compression in silicon photonic crystals," Nat. Commun., Vol. 5, No. 1, 1-8, 2014.        Google Scholar

160. Amine, B. S., C. Rim, and Z. Mourad, "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy," Opt. Express, Vol. 19, No. 21, 19955-19966, 2011.        Google Scholar

161. Lavdas, S., J. B. Driscoll, R. R. Grote, et al. "Pulse compression in adiabatically tapered silicon photonic wires," Opt. Express, Vol. 22, No. 6, 6296-6312, 2014.        Google Scholar

162. Li, Q., P. K. A. Wai, K. Senthilnathan, et al. "Modeling self-similar optical pulse compression in nonlinear fiber Bragg grating using coupled-mode equations," J. Lightw. Technol., Vol. 29, No. 9, 1293-1305, 2011.        Google Scholar

163. Kruglov, V. I., A. C. Peacock, and J. D. Harvey, "Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients," Phys. Rev. E, Vol. 71, No. 5, 056619, 2005.        Google Scholar

164. Li, F., Q. Li, J. Yuan, et al. "Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression," Opt. Express, Vol. 22, No. 22, 27339-27354, 2014.        Google Scholar

165. Mei, C., F. Li, J. Yuan, et al. "High degree picosecond pulse compression in chalcogenide-silicon slot waveguide taper," J. Lightw. Technol., Vol. 34, No. 16, 3843-3852, 2016.        Google Scholar

166. Huang, J., M. S. A. Gandhi, and Q. Li, "Self-similar chirped pulse compression in the tapered silicon ridge slot waveguide," IEEE J. Sel. Top. Quant. Electron., Vol. 26, No. 2, 1-8, 2019.        Google Scholar

167. Yuan, J., J. Chen, F. Li, et al. "Mid-infrared self-similar compression of picosecond pulse in an inversely tapered silicon ridge waveguide," Opt. Express, Vol. 25, No. 26, 33439-33450, 2017.        Google Scholar

168. Cheng, Y., J. Yuan, C. Mei, et al. "Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides," Opt. Commun., Vol. 454, 124380, 2020.        Google Scholar

169. Kang, Z., J. Yuan, S. Li, et al. "Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques," Chinese Phys. B, Vol. 22, No. 11, 114211, 2013.        Google Scholar

170. Huber, R., M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML, A new laser operating regime and applications for optical coherence tomography," Opt. Express, Vol. 14, No. 8, 3225-3237, 2006.        Google Scholar

171. Andresen, E. R., V. Birkedal, J. Thøgersen, et al. "Tunable light source for coherent anti-Stokes Raman scattering micro spectroscopy based on the soliton self-frequency shift," Opt. Lett., Vol. 31, No. 9, 1328-1330, 2006.        Google Scholar

172. Chuang, H. P. and C. B. Huang, "Wavelength-tunable spectral compression in a dispersion-increasing fiber," Opt. Lett., Vol. 36, No. 15, 2848-2850, 2011.        Google Scholar

173. Andresen, E. R., J. Thøgersen, and S. R. Keiding, "Spectral compression of femtosecond pulses in photonic crystal fibers," Opt. Lett., Vol. 30, No. 15, 2025-2027, 2005.        Google Scholar

174. Mei, C., J. Yuan, K. Wang, et al. "Chirp-free spectral compression of parabolic pulses in silicon nitride channel waveguides," 2016 21st Opto Electronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 1-3, IEEE, 2016.        Google Scholar

175. Mei, C., J. Yuan, F. Li, et al. "Efficient spectral compression of wavelength-shifting soliton and its application in integratable all-optical quantization," IEEE Photonics J., Vol. 11, No. 1, 1-15, 2019.        Google Scholar

176. Cheng, Y., J. Yuan, C. Mei, et al. "Mid-infrared spectral compression of soliton pulse in an adiabatically suspended silicon waveguide taper," IEEE Photonics J., Vol. 11, No. 4, 4500911, 2019.        Google Scholar

177. Fermann, M. E., V. I. Kruglov, B. C. Thomsen, et al. "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett., Vol. 84, No. 26, 6010, 2000.        Google Scholar

178. Limpert, J., T. Schreiber, T. Clausnitzer, et al. "High-power femtosecond Yb-doped fiber amplifier," Opt. Express, Vol. 10, No. 14, 628-638, 2002.        Google Scholar

179. Ozeki, Y., Y. Takushima, K. Aiso, et al. "High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources," IEICE T. Electron., Vol. 88, No. 5, 904-911, 2005.        Google Scholar

180. Finot, C., G. Millot, C. Billet, et al. "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express, Vol. 11, No. 13, 1547-1552, 2003.        Google Scholar

181. Boscolo, S., A. I. Latkin, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber systems," IEEE J. Quant. Electron., Vol. 44, No. 12, 1196-1203, 2008.        Google Scholar

182. Kruglov, V. I. and J. D. Harvey, "Asymptotically exact parabolic solutions of the generalized nonlinear Schrodinger equation with varying parameters," J. Opt. Soc. Am. B, Vol. 23, No. 12, 2541-2550, 2006.        Google Scholar

183. Hirooka, T. and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Opt. Lett., Vol. 29, No. 5, 498-500, 2004.        Google Scholar

184. Jiang, G., Y. Fu, Y. Huang, et al. "Generation of the self-similar parabolic pulses by designing comb-like profiled dispersion fiber based on alternately arranged single-mode fibers and dispersion-shifted fibers," Optik, Vol. 124, 5328-5331, 2013.        Google Scholar

185. Finot, C., L. Provost, P. Petropoulos, et al. "Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device," Opt. Express, Vol. 15, No. 3, 852-864, 2007.        Google Scholar

186. Lavdas, S., J. B. Driscoll, H. Jiang, et al. "Generation of parabolic similaritons in tapered silicon photonic wires: Comparison of pulse dynamics at telecom and mid-infrared wavelengths," Opt. Lett., Vol. 38, No. 19, 3953-3956, 2013.        Google Scholar

187. Lavdas, S., J. B. Driscoll, et al. "Generation and collision of optical similaritons in dispersion-engineered silicon photonic nanowires," Nanoengineering: Fabrication, Properties, Optics, and Devices X. International Society for Optics and Photonics, Vol. 8816, 8816DJ, 2013.        Google Scholar

188. Mei, C., F. Li, J. Yuan, et al. "Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires," Sci. Rep., Vol. 7, No. 1, 3814-1-14, 2017.        Google Scholar

189. Mei, C., J. Yuan, F. Li, et al. "Generation of parabolic pulse in a dispersion and nonlinearity jointly engineered silicon waveguide taper," Opt. Commun., Vol. 448, 48-54, 2019.        Google Scholar

190. Mei, C., J. Yuan, F. Li, et al. "Passive generation of the multi-wavelength parabolic pulses in tapered silicon nanowires," IEEE Access, Vol. 8, 77631-77641, 2020.        Google Scholar

191. Jones, N., "How to stop data centres from gobbling up the world’s electricity," Nature, Vol. 561, No. 7722, 163-167, 2018.        Google Scholar

192. Minzioni, P., C. Lacava, T. Tanabe, et al. "Roadmap on all-optical processing," J. Opt., Vol. 21, No. 6, 063001, 2019.        Google Scholar

193. Willner, A. E., D. Gurkan, A. B. Sahin, et al. "All-optical address recognition for optically-assisted routing in next-generation optical networks," IEEE Commun. Mag., Vol. 41, No. 5, S38-S44, 2003.        Google Scholar

194. Mahjoubfar, A., D. V. Churkin, S. Barland, et al. "Time stretch and its applications," Nat. Photon., Vol. 11, No. 6, 341, 2017.        Google Scholar

195. Kang, Z., X. Zhang, J. Yuan, et al. "Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation," Opt. Express, Vol. 22, No. 18, 21441-21453, 2014.        Google Scholar

196. Tian, Y., J. Qiu, Z. Huang, et al. "On-chip integratable all-optical quantizer using cascaded step-size MMI," Opt. Express, Vol. 26, No. 3, 2453-2461, 2018.        Google Scholar

197. Valley, G. C., "Photonic analog-to-digital converters," Opt. Express, Vol. 15, No. 5, 1955-1982, 2007.        Google Scholar

198. Miyoshi, Y., S. Namiki, and K. I. Kitayama, "Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 2, 779-784, 2012.        Google Scholar

199. Andrekson, P. A. and M. Westlund, "Nonlinear optical fiber based high resolution all-optical waveform sampling," Laser & Photonics Rev., Vol. 1, No. 3, 231-248, 2007.        Google Scholar

200. Nuno, J., M. Gilles, M. Guasoni, et al. "All-optical sampling and magnification based on XPM-induced focusing," Opt. Express, Vol. 24, No. 22, 24921-24929, 2016.        Google Scholar

201. Nishitani, T., T. Konishi, and K. Itoh, "Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression," IEEE J. Sel. Top. Quant. Electron., Vol. 14, No. 3, 724-732, 2008.        Google Scholar

202. Li, Y., K. Zhu, Z. Kang, et al. "CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion," Photon. Res., Vol. 7, No. 10, 1200-1208, 2019.        Google Scholar

203. Bres, C. S., N. Alic, A. H. Gnauck, et al. "Multicast parametric synchronous sampling," IEEE Photon. Technol. Lett., Vol. 20, No. 14, 1222-1224, 2008.        Google Scholar

204. Miao, B., C. Chen, A. Sharkway, et al. "Two-bit optical analog-to-digital converter based on photonic crystals," Opt. Express, Vol. 14, No. 17, 7966-7973, 2006.        Google Scholar

205. Kang, Z., J. Yuan, X. Zhang, et al. "On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide," Sci. Rep., Vol. 6, No. 1, 1-12, 2016.        Google Scholar

206. Kang, Z., J. Yuan, X. Zhang, et al. "CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide," Sci. Rep., Vol. 4, No. 1, 1-9, 2014.        Google Scholar

207. Kang, S., J. Yuan, Z. Kang, et al. "All-optical quantization scheme by slicing the supercontinuum in a chalcogenide horizontal slot waveguide," J. Opt., Vol. 17, No. 8, 085502, 2015.        Google Scholar

208. Kang, X., J. Yuan, Z. Kang Z, et al. "Integratable all-optical spectral quantization scheme based on chalcogenide-silicon slot waveguide," Opt. Commun., Vol. 355, 479-484, 2015.        Google Scholar

209. Zhang, J., K. Wang, J. Yuan, et al. "All-optical spectral quantization scheme based on cascaded chalcogenide-silicon slot waveguides," Opt. Eng., Vol. 57, No. 4, 045102, 2018.        Google Scholar

210. Keyes, R. W., "Optical logic-in the light of computer technology," Optica Acta: Int. J. Opt., Vol. 32, No. 5, 525-535, 1985.        Google Scholar

211. Tsuda, H. and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett., Vol. 57, No. 17, 1724-1726, 1990.        Google Scholar

212. Wang, J. M., M, Luo, Y, Qiu et al. "Dual-channel AND logic gate based on four-wave mixing in a multimode silicon waveguide," IEEE Photonics J., Vol. 9, No. 4, 1-6, 2017.        Google Scholar

213. Wu, W., Q. B. Sun, L. R. Wang, et al. "Influence of two-photon absorption and free-carrier effects on all-optical logic gates in silicon waveguides," Appl. Phys. Express, Vol. 12, 042005, 2019.        Google Scholar

214. Moroney, N., L. D. Bino, M. T. M. Woodley, et al. "Logic gates based on interaction of counterpropagating light in microresonators," J. Lightw. Technol., Vol. 38, No. 6, 1414-1419, 2020.        Google Scholar

215. Jandieri, V., R. Khomeriki, and D. Erni, "Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides," Opt. Express, Vol. 26, No. 16, 19845-19853, 2018.        Google Scholar

216. Kumar, S. and M. Sen, "Integrable all-optical NOT gate using nonlinear photonic crystal MZI for photonic integrated circuit," J. Opt. Soc. Am. B, Vol. 37, No. 2, 359-369, 2020.        Google Scholar

217. Vakhtang, J., K. Ramaz, O. Tornike, et al. "Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides," Opt. Express, Vol. 28, No. 12, 18317-18331, 2020.        Google Scholar

218. Dimitriadou, E. and K. E. Zoiros, "All-optical XOR gate using single quantum-dot SOA and optical filter," J. Lightw. Technol., Vol. 31, No. 23, 3813-3821, 2013.        Google Scholar

219. Kotb, A., K. E. Zoiros, and C. Guo, "1Tb/s all-optical XOR and AND gates using quantum-dot semiconductor optical amplifier-based turbo-switched Mach-Zehnder interferometer," J. Comput. Electron., Vol. 18, No. 2, 628-639, 2019.        Google Scholar

220. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nat. Photon., Vol. 1, No. 6, 319-330, 2007.        Google Scholar

221. Supradeepa, V. R., et al., "Comb-based radio frequency photonic filters with rapid tunability and high selectivity," Nat. Photon., Vol. 6, No. 3, 186-194, 2012.        Google Scholar

222. Li, J., H. Lee, T. Chen, et al. "Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs," Phys. Rev. Lett., Vol. 109, No. 23, 233901, 2012.        Google Scholar

223. Liang, W., D. Eliyahu, V. S. Ilchenko, et al. "High spectral purity Kerr frequency comb radio frequency photonic oscillator," Nat. Commun., Vol. 6, No. 1, 1-8, 2015.        Google Scholar

224. Nguyen, T. G., M. Shoeiby, S. T. Chu, et al. "Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis," Opt. Express, Vol. 23, No. 17, 22087-22097, 2015.        Google Scholar

225. Xue, X., Y. Xuan, H. J. Kim, et al. "Programmable single-bandpass photonic RF filter based on Kerr comb from a microring," J. Light. Technol., Vol. 32, No. 20, 3557-3565, 2014.        Google Scholar

226. Xu, X., J. Wu, T. G. Nguyen, et al. "Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source," Photon. Res., Vol. 6, No. 5, B30-B36, 2018.        Google Scholar

227. Wu, J., X. Xu, T. G. Nguyen, et al. "RF photonics: An optical microcombs’ perspective," IEEE J. Sel. Top. Quant. Electron., Vol. 24, No. 4, 1-20, 2018.        Google Scholar

228. Xu, X., J. Wu, T. G. Nguyen, et al. "Broadband RF channelizer based on an integrated optical frequency Kerr comb source," J. Lightw. Technol., Vol. 36, No. 19, 4519-4526, 2018.        Google Scholar

229. Hu, J., J. He, J. Liu, et al. "Reconfigurable radiofrequency filters based on versatile soliton microcombs," Nat. Commun., Vol. 11, No. 1, 1-9, 2020.        Google Scholar

230. Yu, X., B. Ding, H. Lu, et al. "Third-order optical nonlinearity in nonstoichiometric amorphous silicon carbide films," J. Alloy. Compd., Vol. 794, 518-524, 2019.        Google Scholar

231. Tumuluri, A., M. S. S. Bharati, S. V. Rao, et al. "Structural, optical and femtosecond third-order nonlinear optical properties of LiNbO3 thin films," Mater. Res. Bull., Vol. 94, 342-351, 2017.        Google Scholar

232. Sierra, J. H., R. C. Rangel, R. E. Samad, et al. "Low-loss pedestal Ta2O5 nonlinear optical waveguides," Opt. Express, Vol. 27, No. 26, 37516-37521, 2019.        Google Scholar

233. Zhang, L., Q. Lin, Y. Yue, et al. "Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation," Opt. Express, Vol. 20, No. 2, 1685-1690, 2012.        Google Scholar

234. Guo, Y., Z. Jafari, L. J. Xu, et al. "Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics," Photon. Res., Vol. 7, No. 11, 1279-1286, 2019.        Google Scholar

235. Shao, L., M. Yu, S. Maity, et al. "Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators," Optica, Vol. 6, No. 12, 1498-1505, 2019.        Google Scholar

236. Chauvet, M., F. Henrot, L. Gauthier-Manuel, et al. "Periodically poled LiNbO3 ridge waveguides on silicon for second-harmonic generation," Silicon Photonics and Photonic Integrated Circuits V. International Society for Optics and Photonics, Vol. 9891, 98910S, 2016.        Google Scholar

237. Autere, A., H. Jussila, Y. Dai, et al. "Nonlinear optics with 2D layered materials," Adv. Mater., Vol. 30, No. 24, 1705963, 2018.        Google Scholar

238. Alam, M. Z., I. De Leon, and R. W. Boyd, "Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region," Science, Vol. 352, No. 6287, 795-797, 2016.        Google Scholar

239. Kauranen, M. and A. V. Zayats, "Nonlinear plasmonics," Nat. Photon., Vol. 6, No. 11, 737, 2012.        Google Scholar

240. Feng, M., H. Zhan, and Y. Chen, "Nonlinear optical and optical limiting properties of graphene families," Appl. Phys. Lett., Vol. 96, No. 3, 033107, 2010.        Google Scholar

241. Liu, Z., Y. Wang, X. Zhang, et al. "Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes," Appl. Phys. Lett., Vol. 94, No. 2, 021902, 2009.        Google Scholar

242. Liu, L., K. Xu, X. Wan, et al. "Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides," Photon. Res., Vol. 3, No. 5, 206-209, 2015.        Google Scholar

243. Alam, M. Z., S. A. Schulz, J. Upham, et al. "Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material," Nat. Photon., Vol. 12, No. 2, 79-83, 2018.        Google Scholar

244. Neira, A. D., N. Olivier, M. E. Nasir, et al. "Eliminating material constraints for nonlinearity with plasmonic metamaterials," Nat. Commun., Vol. 6, No. 1, 1-8, 2015.        Google Scholar

245. Li, G., S. Zhang, and T. Zentgraf, "Nonlinear photonic metasurfaces," Nat. Rev. Mater., Vol. 2, No. 5, 1-14, 2017.        Google Scholar

246. Lee, J., M. Tymchenko, C. Argyropoulos, et al. "Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions," Nature, Vol. 511, No. 7507, 65-69, 2014.        Google Scholar

247. Horak, P. and F. Poletti, "Multimode nonlinear fibre optics: Theory and applications," Recent Progress in Optical Fiber Research, 3-25, 2012.        Google Scholar

248. Gloge, D. and E. A. J. Marcatili, "Multimode theory of graded-core fibers," Bell System Technical Journal, Vol. 52, No. 9, 1563-1578, 1973.        Google Scholar

249. Wright, L. G., D. N. Christodoulides, and F. W. Wise, "Controllable spatiotemporal nonlinear effects in multimode fibres," Nat. Photon., Vol. 9, No. 5, 306-310, 2015.        Google Scholar

250. Renninger, W. H. and F. W. Wise, "Optical solitons in graded-index multimode fibres," Nat. Commun., Vol. 4, No. 1, 1-6, 2013.        Google Scholar

251. Krupa, K., A. Tonello, B. M. Shalaby, et al. "Spatial beam self-cleaning in multimode fibres," Nat. Photon., Vol. 11, No. 4, 237-241, 2017.        Google Scholar

252. Demas, J., P. Steinvurzel, B. Tai, et al. "Intermodal nonlinear mixing with Bessel beams in optical fiber," Optica, Vol. 2, No. 1, 14-17, 2015.        Google Scholar

253. Wright, L. G., S. Wabnitz, D. N. Christodoulides, et al. "Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves," Phys. Rev. Lett., Vol. 115, No. 22, 223902, 2015.        Google Scholar

254. Krupa, K., A. Tonello, A. Barthelemy, et al. "Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves," Phys. Rev. Lett., Vol. 116, No. 18, 183901, 2016.        Google Scholar

255. Elshaari, A. W., W. Pernice, K. Srinivasan, et al. "Hybrid integrated quantum photonic circuits," Nat. Photon., Vol. 14, 285-298, 2020.        Google Scholar

256. Singh, A., Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, et al. "Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip," Optica, Vol. 6, No. 5, 563-569, 2019.        Google Scholar