Vol. 170
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-01-21
Computational Investigation of Nanoscale Semiconductor Devices and Optoelectronic Devices from the Electromagnetics and Quantum Perspectives by the Finite Difference Time Domain Method (Invited Review)
By
Progress In Electromagnetics Research, Vol. 170, 63-78, 2021
Abstract
In the simulation of high frequency nanoscale semiconductor devices in which electromagnetic (EM) fields and carrier transport are coupled, and optoelectronic devices in which strong interactions between EM fields and charged particles exist, both the Maxwell's equations and the time-dependent Schrödinger equation (TDSE) need to be solved to capture the interactions between EM and quantum mechanics (QM). One of the numerical simulation methods for solving these equations is the finite difference time domain (FDTD) method. In this review paper, the development of FDTD method applied in EM and QM simulation is discussed. Several widely used FDTD techniques, i.e., explicit, implicit, explicit staggered-time, and Chebyshev methods, for solving the TDSE are introduced and compared. The hybrid approaches based on FDTD method, which are used to solve the Poisson-TDSE and Maxwell-TDSE coupled equations for EM-QM simulation, are also discussed. Furthermore, the applications of these simulation methods for nanoscale semiconductor devices and optoelectronic devices are introduced. Finally, a conclusion is given.
Citation
Huali Duan, Wenxiao Fang, Wen-Yan Yin, Erping Li, and Wenchao Chen, "Computational Investigation of Nanoscale Semiconductor Devices and Optoelectronic Devices from the Electromagnetics and Quantum Perspectives by the Finite Difference Time Domain Method (Invited Review)," Progress In Electromagnetics Research, Vol. 170, 63-78, 2021.
doi:10.2528/PIER20122201
References

1. Chen, Y., Y. Ouyang, J. Guo, and T. X. Wu, "Time-dependent quantum transport and nonquasistatic effects in carbon nanotube transistors," Applied Physics Letters, Vol. 89, 203122, 2006.
doi:10.1063/1.2388881        Google Scholar

2. Chen, Y. P., W. E. I. Sha, W. C. H. Choy, L. Jiang, and W. C. Chew, "Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function," Optics Express, Vol. 20, No. 18, 20210, 2012.
doi:10.1364/OE.20.020210        Google Scholar

3. Capua, A., O. Karni, and G. Eisenstein, "A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrodinger framework," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 5, 1-10, 2013.
doi:10.1109/JSTQE.2012.2237014        Google Scholar

4. Yankwich, P. E., "Introduction to quantum mechanics," Journal of the American Chemical Society, Vol. 82, No. 14, 3803-3803, 1960.
doi:10.1021/ja01499a096        Google Scholar

5. Rae, A. I. M., "The picture book of quantum mechanics," Physics Today, Vol. 49, No. 1, 65-66, 1996.
doi:10.1063/1.2807471        Google Scholar

6. Chan, T. F., D. Lee, and L. Shen, "Stable explicit schemes for equations of the Schrodinger type," SIAM Journal on Numerical Analysis, Vol. 23, No. 2, 274-281, 1986.
doi:10.1137/0723019        Google Scholar

7. Chen, J. B. and M. Z. Qinz, "Multi-symplectic Fourier pseudospectral method for the nonlinear Schrodinger equation," Electronic Transactions on Numerical Analysis Etna, Vol. 12, 193-204, 2001.        Google Scholar

8. Chang, Q. and G. Wang, "Multigrid and adaptive algorithm for solving the nonlinear Schrodinger equation," Journal of Computational Physics, Vol. 85, No. 2, 504, 1989.
doi:10.1016/0021-9991(89)90172-1        Google Scholar

9. Dai, W. Z. and R. Nassar, "A finite difference scheme for the generalized nonlinear Schrodinger equation with variable coefficients," Journal of Computational Mathematics, Vol. 18, No. 2, 123-132, 2000.        Google Scholar

10. Delfour, M., M. Fortin, and G. Payr, "Finite-difference solutions of a non-linear Schrodinger equation," Journal of Computational Physics, Vol. 44, No. 2, 277-288, 1981.
doi:10.1016/0021-9991(81)90052-8        Google Scholar

11. Herbst, B. M., J. Ll Morris, and A. R. Mitchell, "Numerical experience with the nonlinear Schrodinger equation," Journal of Computational Physics, Vol. 60, No. 2, 282-305, 1985.
doi:10.1016/0021-9991(85)90008-7        Google Scholar

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics (The Finite-difference Time-domain Method), 3rd Ed., Artech House, 2001.

13. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, 2nd Ed., Chapters 1–11, Wiley-IEEE Press, 2000.
doi:10.1109/9780470544518

14. Sullivan, D. and D. S. Citrin, "Time-domain simulation of two electrons in a quantum dot," Journal of Applied Physics, Vol. 89, No. 7, 3841-3846, 2001.
doi:10.1063/1.1352559        Google Scholar

15. Sullivan, D. M. and D. S. Citrin, "Determination of the eigenfunctions of arbitrary nanostructures using time domain simulation," Journal of Applied Physics, Vol. 91, No. 5, 3219-3226, 2002.
doi:10.1063/1.1445277        Google Scholar

16. Soriano, A., E. A. Navarro, J. A. Porti, and V. Such, "Analysis of the finite difference time domain technique to solve the Schrodinger equation for quantum devices," Journal of Applied Physics, Vol. 95, No. 12, 8011-8011, 2004.
doi:10.1063/1.1753661        Google Scholar

17. Sudiarta, I. W. and D. J. W. Geldart, "Solving the Schrodinger equation using the finite difference time domain method," Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 8, 1885-1896, 2007.
doi:10.1088/1751-8113/40/8/013        Google Scholar

18. Moxley, F. I., D. T. Chuss, and W. Dai, "A generalized finite-difference time-domain scheme for solving nonlinear Schrodinger equations," Computer Physics Communications, Vol. 184, No. 8, 1834-1841, 2013.
doi:10.1016/j.cpc.2013.03.006        Google Scholar

19. Tay, W. C. and E. L. Tan, "Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrodinger equation," Computer Physics Communications, Vol. 185, No. 7, 1886-1892, 2014.
doi:10.1016/j.cpc.2014.03.014        Google Scholar

20. Wilson, J. P. and W. Dai, "Generalized finite-difference time-domain method with absorbing boundary conditions for solving the nonlinear Schrodinger equation on a GPU," Computer Physics Communications, Vol. 235, 279-292, 2019.
doi:10.1016/j.cpc.2018.02.013        Google Scholar

21. Dai, W., G. Li, R. Nassar, and S. Su, "On the stability of the FDTD method for solving a time-dependent Schrodinger equation," Numerical Methods for Partial Differential Equations, Vol. 21, No. 6, 1140-1154, 2010.
doi:10.1002/num.20082        Google Scholar

22. Adamowski, J., "A numerical solution of the Poisson-Schr¨odinger problem for a vertical gated quantum dot," TASK Quarterly, Vol. 8, 603, 2004.        Google Scholar

23. Fiori, G. and G. Iannaccone, "The effect of quantum confinement and discrete dopants in nanoscale 50 nm n-MOSFETs: A three-dimensional simulation," IEEE Transactions on Nanotechnology, Vol. 13, No. 3, 294, 2002.
doi:10.1088/0957-4484/13/3/311        Google Scholar

24. Guo, J., et al., "Assessment of high-frequency performance potential of carbon nanotube transistors," IEEE Transactions on Nanotechnology, Vol. 4, No. 6, 715-721, 2005.
doi:10.1109/TNANO.2005.858601        Google Scholar

25. Stefanucci, G., S. Kurth, A. Rubio, and E. K. U. Gross, "Time-dependent approach to electron pumping in open quantum systems," Physical Review B, Vol. 77, 75339, 2008.
doi:10.1103/PhysRevB.77.075339        Google Scholar

26. Chen, Z.-D., J.-Y. Zhang, and Z.-P. Yu, "Time-dependent transport in nanoscale devices," Chinese Physics Letters, Vol. 26, No. 3, 37303-37306(4), 2009.
doi:10.1088/0256-307X/31/3/037303        Google Scholar

27. Yang, J. and W. Sui, "Solving Maxwell-Schrodinger equations for analyses of nano-scale devices," European Microwave Conference, 2007.        Google Scholar

28. Ahmed, I., E. H. Khoo, E. Li, and R. Mittra, "A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 914-917, 2010.
doi:10.1109/LAWP.2010.2076411        Google Scholar

29. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electronics Letters, Vol. 41, No. 19, 1046-1047, 2006.
doi:10.1049/el:20052381        Google Scholar

30. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally stable LOD-FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 832-837, 2010.
doi:10.1109/TAP.2009.2039334        Google Scholar

31. Pierantoni, L., D. Mencarelli, and T. Rozzi, "A new 3-D transmission line matrix scheme for the combined Schrodinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 3, 654-662, 2008.
doi:10.1109/TMTT.2008.916883        Google Scholar

32. Xiang, C., F. Kong, K. Li, and M. Liu, "A high-order symplectic FDTD scheme for the Maxwell-Schrodinger system," IEEE Journal of Quantum Electronics, Vol. 54, No. 1, 1-8, 2018.
doi:10.1109/JQE.2017.2782839        Google Scholar

33. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11042002        Google Scholar

34. Chen, Y. P., Y. M.Wu, and W. E. I. Sha, "Modeling Rabi oscillation by rigorously solving Maxwell-Schrodinger equation," IEEE International Symposium on Microwave, 2016.        Google Scholar

35. Hatori, N., M. Sugawara, T. Akiyama, and Y. Nakata, "Low frequency chirp self-assembled InGaAs/GaAs quantum dot lasers," Lasers & Electro-optics Society, Leos the Meeting of the IEEE, 2001.        Google Scholar

36. Yang, Z. D., L. Zhang, H. Zeng, D. Z. Ding, and R. S. Chen, "Multi-quantum state control of nano-tube by the Maxwell-Schrodinger hybrid method," 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2018.        Google Scholar

37. Takeuchi, T., S. Ohnuki, and T. Sako, "Maxwell-Schrodinger hybrid simulation for optically controlling quantum states: A scheme for designing control pulses," Physical Review A, Vol. 91, No. 3, 033401, 2015.
doi:10.1103/PhysRevA.91.033401        Google Scholar

38. Meshulach, D. and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature, Vol. 396, No. 6708, 239-242, 1998.
doi:10.1038/24329        Google Scholar

39. Chen, Z., J. Zhang, and Z. Yu, "Solution of the time-dependent Schrodinger equation with absorbing boundary conditions," Journal of Semiconductors, Vol. 30, No. 1, 1-6, 2009.        Google Scholar

40. Subasi, M., "On the finite-differences schemes for the numerical solution of two dimensional Schrodinger equation," Numerical Methods for Partial Differential Equations, Vol. 18, No. 6, 752-758, 2002.
doi:10.1002/num.10029        Google Scholar

41. Burden, R. L. and J. D. Faires, Numerical Analysis, 5th Ed., PWS Publishing Co., 1988.

42. Visscher, P. B., "A fast explicit algorithm for the time-dependent Schrodinger equation," Computers in Physics, Vol. 5, No. 6, 596-598, 1991.
doi:10.1063/1.168415        Google Scholar

43. Tal-Ezer, H. and R. Kosloff, "An accurate and efficient scheme for propagating the time dependent Schrodinger equation," Journal of Chemical Physics, Vol. 81, No. 9, 3967-3971, 1984.
doi:10.1063/1.448136        Google Scholar

44. Leforestier, C., et al., "A comparison of different propagation schemes for the time dependent Schrodinger equation," Journal of Computational Physics, Vol. 94, No. 1, 59-80, 1991.
doi:10.1016/0021-9991(91)90137-A        Google Scholar

45. Leforestier, C., R. H. Bisseling, C. Cerjan, M. D. Feit, and R. Kosloff, "A comparison of different propagation schemes for the time dependent Schrodinger equation," Journal of Computational Physics, Vol. 89, No. 1, 490-491, 1991.        Google Scholar

46. De Raedt, H., K. Michielsen, J. S. Kole, and M. T. Figge, "One-step finite-difference time-domain algorithm to solve the Maxwell equations," Physical Review E Statal Nonlinear & Soft Matter Physics, Vol. 67, No. 5, Pt. 2, 056706, 2003.        Google Scholar

47. Bar-On, I. and M. Leoncini, "Stable solution of tridiagonal systems," Numerical Algorithms, Vol. 18, No. 3, 361-388, 1998.
doi:10.1023/A:1019137919461        Google Scholar

48. Zhang, Y., J. Cohen, A. A. Davidson, and J. D. Owens, "A hybrid method for solving tridiagonal systems on the GPU," GPU Computing Gems Jade Edition, 117-132, 2012.
doi:10.1016/B978-0-12-385963-1.00011-3        Google Scholar

49. Chen, Y. C. and C. R. Lee, Augmented Block Cimmino Distributed Algorithm for Solving Tridiagonal Systems on GPU, Chapter 9, Advances in GPU Research and Practice, 2017.

50. Chen, Y., Finite element method modeling of advanced electronic devices, Electronic Theses and Dissertations, 2006.

51. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. El-Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time-domain model," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 6, 799-808, 1996.
doi:10.1109/22.506437        Google Scholar

52. Grondin, R. O., S. M. El-Ghazaly, and S. M. Goodnick, "A review of global modeling of charge transport in semiconductors and full-wave electromagnetics," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2167-2167, 2002.
doi:10.1109/TMTT.1999.798017        Google Scholar

53. Naeemi, A., R. Sarvari, and J. D. Meindl, "Performance comparison between carbon nanotube and copper interconnects for GSI," IEEE International Electron Devices Meeting, 2005.        Google Scholar

54. Kim, G., E. Arvas, V. Demir, and A. Z. Elsherbeni, "A novel nonuniform subgridding scheme for FDTD using an optimal interpolation technique," Progress In Electromagnetics Research B, Vol. 44, 137-161, 2012.
doi:10.2528/PIERB12071013        Google Scholar

55. Mailloux, R., "Theory of electromagnetic waves," IEEE Antennas & Propagation Society Newsletter, Vol. 26, No. 2, 13-14, 1984.
doi:10.1109/MAP.1984.27739        Google Scholar

56. Ahmed, I. and E. Li, "A hybrid FDTD and ADI-FDTD technique for coupled Maxwell’s and Schrodinger’s equations," IEEE Antennas & Propagation Society International Symposium, 2010.        Google Scholar

57. Ren, X., et al., "High-order unified symplectic FDTD scheme for the metamaterials," Computer Physics Communications, Vol. 183, No. 6, 1192-1200, 2012.
doi:10.1016/j.cpc.2012.01.021        Google Scholar

58. Ryu, C. J., A. Liu, W. E. I. Sha, and W. C. Chew, "Finite-difference time-domain simulation of the Maxwell-Schrodinger system," IEEE Journal on Multiscale & Multiphysics Computational Techniques, Vol. 1, 40-47, 2016.
doi:10.1109/JMMCT.2016.2605378        Google Scholar

59. Turati, P., "FDTD modelling of nanostructures at microwave frequency," Surface & Coatings Technology, Vol. 254, No. 10, 402-409, 2014.        Google Scholar

60. Pierantoni, L., D. Mencarelli, and T. Rozzi, "The combined Schrodinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices," Time Domain Methods in Electrodynamics, 105-133, 2008.
doi:10.1007/978-3-540-68768-9_9        Google Scholar

61. Xie, G., Z. Huang, M. Fang, and W. Sha, "Simulating Maxwell-Schrodinger equations by high-order symplectic FDTD algorithm," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 143-151, 2019.
doi:10.1109/JMMCT.2019.2920101        Google Scholar

62. Zheng, F. and Z. Chen, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026        Google Scholar

63. Ravi, K., Y. Huang, and S. Ho, "A computationally efficient, non-equilibrium, carrier temperature dependent semiconductor gain model for FDTD simulation of optoelectronic devices," 2011 Numerical Simulation of Optoelectronic Devices, 113-114, Sep. 5–8, 2011.        Google Scholar

64. Bhardwaj, S., "Electronic-electromagnetic multiphysics modeling for terahertz plasmonics: A review," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 307-316, 2019.
doi:10.1109/JMMCT.2019.2957361        Google Scholar

65. Wang, G., et al., "The numerical modeling of 3D microfiber couplers and resonators," IEEE Photonics Technology Letters, Vol. 28, No. 15, 1707-1710, 2016.
doi:10.1109/LPT.2016.2551323        Google Scholar

66. Tan, E. L. and D. Y. Heh, "Multiple 1-D fundamental ADI-FDTD method for coupled transmission lines on mobile devices," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 198-206, 2019.
doi:10.1109/JMMCT.2019.2945187        Google Scholar

67. Zhai, M., H. Peng, J. Mao, and W. Yin, "Modeling tunable graphene-based filters using leapfrog ADI-FDTD method," 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Jul. 1–3, 2015.        Google Scholar

68. Bahl, M., et al., "Mixed-level simulation of opto-electronic devices," 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 101-102, Jul. 11–15, 2016.        Google Scholar

69. Bandrauk, E. L. C., "A numerical Maxwell-Schrodinger model for intense laser-matter interaction and propagation," Computer Physics Communications, 2007.        Google Scholar

70. Navarro, D., "A carrier-transit-delay-based nonquasi-static MOSFET model for circuit simulation and its application to harmonic distortion analysis," IEEE Transactions on Electron Devices, Vol. 53, No. 9, 2025-2034, 2006.
doi:10.1109/TED.2006.880827        Google Scholar

71. Chen, Y. P., W. E. I. Sha, L. Jiang, M. Meng, Y. M. Wu, and W. C. Chew, "A unified Hamiltonian solution to Maxwell-Schrodinger equations for modeling electromagnetic field-particle interaction," Computer Physics Communications, Vol. 215, 63-70, 2017.
doi:10.1016/j.cpc.2017.02.006        Google Scholar

72. Takeuchi, T., S. Ohnuki, and T. Sako, "A simple formula to predict the influence of the near-field in the optical control of confined electron systems," Journal of Physics B Atomic Molecular & Optical Physics, Vol. 50, No. 4, 045002, 2017.
doi:10.1088/1361-6455/aa55f4        Google Scholar

73. Gerry, C., Introductory Quantum Optics, 1st Ed., Cambridge University Press, 2004.
doi:10.1017/CBO9780511791239

74. Rabitz, H., "Whither the future of controlling quantum phenomena?," Science, Vol. 288, No. 5467, 824-828, 2000.
doi:10.1126/science.288.5467.824        Google Scholar

75. Townsend, D., et al., "A Stark future for quantum control," The Journal of Physical Chemistry A, Vol. 4, No. 115, 357-373, 2011.
doi:10.1021/jp109095d        Google Scholar

76. Rangan, C. and P. H. Bucksbaum, "Optimally shaped terahertz pulses for phase retrieval in a Rydberg-atom data register," Physical Review A, Vol. 64, No. 3, 033417, 2001.
doi:10.1103/PhysRevA.64.033417        Google Scholar

77. Palao, J. P. and R. Kosloff, "Quantum computing by an optimal control algorithm for unitary transformations," Physical Review Letters, Vol. 89, No. 18, 188301, 2002.
doi:10.1103/PhysRevLett.89.188301        Google Scholar

78. Nunn, J., et al., "Mapping broadband single-photon wave packets into an atomic memory," Physical Review A, Vol. 75, No. 1, 011401, 2007.
doi:10.1103/PhysRevA.75.011401        Google Scholar

79. Lewis, A. and K. Lieberman, "Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions," Nature, Vol. 354, No. 6350, 214-216, 1991.
doi:10.1038/354214a0        Google Scholar

80. Zenhausern, F., "Apertureless near-field optical microscope," Applied Physics Letters, Vol. 65, No. 13, 1623-1625, 1994.
doi:10.1063/1.112931        Google Scholar

81. Choi, S., et al., "Active tailoring of nanoantenna plasmonic fields using few-cycle laser pulses," Physical Review A, Vol. 93, No. 2, 021405, 2016.
doi:10.1103/PhysRevA.93.021405        Google Scholar