Vol. 171
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-08-03 Featured Article
Non-Hermitian Electromagnetic Metasurfaces at Exceptional Points (Invited Review)
By
Progress In Electromagnetics Research, Vol. 171, 1-20, 2021
Abstract
Exceptional points are spectral singularities in non-Hermitian systems at which two or more eigenvalues and their corresponding eigenvectors simultaneously coalesce. Originating from quantum theory, exceptional points have attracted significant attention in optics and photonics because their emergence in systems with nonconservative gain and loss elements can give rise to many counterintuitive phenomena. Metasurfaces - two-dimensional artificial electromagnetic materials structured at the subwavelength scale - can provide a versatile platform for exploring such non-Hermitian phenomena through the addition of dissipation and amplification within their unit cells. These concepts enable a wide range of exotic phenomena, including unidirectional propagation, adiabatic mode conversion, and ultrasensitive measurements, which can be harnessed for technological applications. In this article, we review the recent advances in exceptional-point and non-Hermitian metasurfaces. We introduce the basic theory of exceptional point and non-Hermiticity in metasurfaces, highlight important achievements and applications, and discuss the future opportunities of non-Hermitian metasurfaces from basic science to emerging technologies.
Citation
Zhipeng Li, Guangtao Cao, Chenhui Li, Shaohua Dong, Yan Deng, Xinke Liu, John S. Ho, and Cheng-Wei Qiu, "Non-Hermitian Electromagnetic Metasurfaces at Exceptional Points (Invited Review)," Progress In Electromagnetics Research, Vol. 171, 1-20, 2021.
doi:10.2528/PIER21051703
References

1. Bender, C. M. and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT symmetry," Physical Review Letters, Vol. 80, No. 24, 5243, 1998.
doi:10.1103/PhysRevLett.80.5243        Google Scholar

2. Miri, M.-A. and A. Alù, "Exceptional points in optics and photonics," Science, Vol. 363, No. 6422, 2019.
doi:10.1126/science.aar7709        Google Scholar

3. Guo, A., et al. "Observation of PT-symmetry breaking in complex optical potentials," Physical Review Letters, Vol. 103, No. 9, 093902, 2009.
doi:10.1103/PhysRevLett.103.093902        Google Scholar

4. Bender, C. M., "Making sense of non-Hermitian Hamiltonians," Reports on Progress in Physics, Vol. 70, No. 6, 947, 2007.
doi:10.1088/0034-4885/70/6/R03        Google Scholar

5. Rüter, C. E., K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, "Observation of parity-time symmetry in optics," Nature Physics, Vol. 6, No. 3, 192-195, 2010.
doi:10.1038/nphys1515        Google Scholar

6. Zhao, H. and L. Feng, "Parity-time symmetric photonics," National Science Review, Vol. 5, No. 2, 183-199, 2018.
doi:10.1093/nsr/nwy011        Google Scholar

7. Peng, B., et al. "Chiral modes and directional lasing at exceptional points," Proceedings of the National Academy of Sciences, Vol. 113, No. 25, 6845-6850, 2016.
doi:10.1073/pnas.1603318113        Google Scholar

8. Feng, L., Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, "Single-mode laser by parity-time symmetry breaking," Science, Vol. 346, No. 6212, 972-975, 2014.
doi:10.1126/science.1258479        Google Scholar

9. Xu, H., D. Mason, L. Jiang, and J. Harris, "Topological energy transfer in an optomechanical system with exceptional points," Nature, Vol. 537, No. 7618, 80-83, 2016.
doi:10.1038/nature18604        Google Scholar

10. Regensburger, A., C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature, Vol. 488, No. 7410, 167-171, 2012.
doi:10.1038/nature11298        Google Scholar

11. Peng, B., et al. "Parity-time-symmetric whispering-gallery microcavities," Nature Physics, Vol. 10, No. 5, 394-398, 2014.
doi:10.1038/nphys2927        Google Scholar

12. Zhang, L., S. Mei, K. Huang, and C. W. Qiu, "Advances in full control of electromagnetic waves with metasurfaces," Advanced Optical Materials, Vol. 4, No. 6, 818-833, 2016.
doi:10.1002/adom.201500690        Google Scholar

13. Ozcan, A. and C.-W. Qiu, eLight: Enlightening and Exploring Light, SpringerOpen, 2021.

14. Yu, N., et al. "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713        Google Scholar

15. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
doi:10.1126/science.aaf6644        Google Scholar

16. Mehmood, M., et al. "Visible-frequency metasurface for structuring and spatially multiplexing optical vortices," Advanced Materials, Vol. 28, No. 13, 2533-2539, 2016.
doi:10.1002/adma.201504532        Google Scholar

17. Li, H.-P., G.-M. Wang, J.-G. Liang, and X.-J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011        Google Scholar

18. Lin, B.-Q., J. Guo, Y. Wang, Z. Wang, B. Huang, and X. Liu, "A wide-angle and wide-band circular polarizer using a bi-layer metasurface," Progress In Electromagnetics Research, Vol. 161, 125-133, 2018.
doi:10.2528/PIER18010922        Google Scholar

19. Schurig, D., et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628        Google Scholar

20. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402        Google Scholar

21. Huang, L., et al. "Three-dimensional optical holography using a plasmonic metasurface," Nature Communications, Vol. 4, No. 1, 1-8, 2013.        Google Scholar

22. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T.-J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
doi:10.2528/PIER14022606        Google Scholar

23. Hsu, L. Y., T. Lepetit, and B. Kanté, "Extremely thin dielectric metasurface for carpet cloaking," Progress In Electromagnetics Research, Vol. 152, 33-40, 2015.
doi:10.2528/PIER15032005        Google Scholar

24. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

25. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847        Google Scholar

26. Feng, L., R. El-Ganainy, and L. Ge, "Non-Hermitian photonics based on parity-time symmetry," Nature Photonics, Vol. 11, No. 12, 752-762, 2017.
doi:10.1038/s41566-017-0031-1        Google Scholar

27. Shankar, R., Principles of Quantum Mechanics, Springer Science & Business Media, 2012.

28. Mostafazadeh, A., "Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian," Journal of Mathematical Physics, Vol. 43, No. 1, 205-214, 2002.
doi:10.1063/1.1418246        Google Scholar

29. Longhi, S., "Quantum-optical analogies using photonic structures," Laser & Photonics Reviews, Vol. 3, No. 3, 243-261, 2009.
doi:10.1002/lpor.200810055        Google Scholar

30. Klaiman, S., U. Günther, and N. Moiseyev, "Visualization of branch points in p t-symmetric waveguides," Physical Review Letters, Vol. 101, No. 8, 080402, 2008.
doi:10.1103/PhysRevLett.101.080402        Google Scholar

31. Haus, H. A. and W. Huang, "Coupled-mode theory," Proceedings of the IEEE, Vol. 79, No. 10, 1505-1518, 1991.        Google Scholar

32. Ghoshroy, A., S. K. Özdemir, and D. Ö. Güney, "Loss compensation in metamaterials and plasmonics with virtual gain," Optical Materials Express, Vol. 10, No. 8, 1862-1880, 2020.        Google Scholar

33. Gu, X., et al. "Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling," Optics Express, Vol. 25, No. 10, 11778-11787, 2017.        Google Scholar

34. Wang, D., et al. "Superconductive PT-symmetry phase transition in metasurfaces," Applied Physics Letters, Vol. 110, No. 2, 021104, 2017.        Google Scholar

35. Sakhdari, M., M. Farhat, and P.-Y. Chen, "PT-symmetric metasurfaces: Wave manipulation and sensing using singular points," New Journal of Physics, Vol. 19, No. 6, 065002, 2017.        Google Scholar

36. Feng, L., et al. "Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies," Nature Materials, Vol. 12, No. 2, 108-113, 2013.        Google Scholar

37. Ge, L., Y. Chong, and A. D. Stone, "Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures," Physical Review A, Vol. 85, No. 2, 023802, 2012.        Google Scholar

38. Chen, P.-Y. and J. Jung, "P T symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces," Physical Review Applied, Vol. 5, No. 6, 064018, 2016.        Google Scholar

39. Lawrence, M., et al. "Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces," Physical Review Letters, Vol. 113, No. 9, 093901, 2014.        Google Scholar

40. Droulias, S., I. Katsantonis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, "Chiral metamaterials with PT symmetry and beyond," Physical Review Letters, Vol. 122, No. 21, 213201, 2019.        Google Scholar

41. Kang, M., J. Chen, and Y. Chong, "Chiral exceptional points in metasurfaces," Physical Review A, Vol. 94, No. 3, 033834, 2016.        Google Scholar

42. Huang, Y., Y. Shen, C. Min, S. Fan, and G. Veronis, "Unidirectional reflectionless light propagation at exceptional points," Nanophotonics, Vol. 6, No. 5, 977-996, 2017.        Google Scholar

43. Hahn, C., S. H. Song, C. H. Oh, and P. Berini, "Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides," Optics Express, Vol. 23, No. 15, 19922-19931, 2015.        Google Scholar

44. Lin, Z., H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, "Unidirectional invisibility induced by P T-symmetric periodic structures," Physical Review Letters, Vol. 106, No. 21, 213901, 2011.        Google Scholar

45. Jia, Y., Y. Yan, S. V. Kesava, E. D. Gomez, and N. C. Giebink, "Passive parity-time symmetry in organic thin film waveguides," ACS Photonics, Vol. 2, No. 2, 319-325, 2015.        Google Scholar

46. Feng, L., et al. "Demonstration of a large-scale optical exceptional point structure," Optics Express, Vol. 22, No. 2, 1760-1767, 2014.        Google Scholar

47. Huang, Y., C. Min, and G. Veronis, "Broadband near total light absorption in non-PT-symmetric waveguide-cavity systems," Optics Express, Vol. 24, No. 19, 22219-22231, 2016.        Google Scholar

48. Huang, Y., G. Veronis, and C. Min, "Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points," Optics Express, Vol. 23, No. 23, 29882-29895, 2015.        Google Scholar

49. Min, S. Y., J. Y. Kim, S. Yu, S. G. Menabde, and M. S. Jang, "Exceptional points in plasmonic waveguides do not require gain or loss," Physical Review Applied, Vol. 14, No. 5, 054041, 2020.        Google Scholar

50. Wang, C., et al. "Electromagnetically induced transparency at a chiral exceptional point," Nature Physics, Vol. 16, No. 3, 334-340, 2020.        Google Scholar

51. Chen, H.-Z., et al. "Revealing the missing dimension at an exceptional point," Nature Physics, Vol. 16, No. 5, 571-578, 2020.        Google Scholar

52. Huang, X., C. Lu, C. Liang, H. Tao, and Y.-C. Liu, "Loss-induced nonreciprocity," Light: Science & Applications, Vol. 10, No. 1, 1-8, 2021.        Google Scholar

53. Peng, B., et al. "Loss-induced suppression and revival of lasing," Science, Vol. 346, No. 6207, 328-332, 2014.        Google Scholar

54. Dong, S., et al. "Loss-assisted metasurface at an exceptional point," ACS Photonics, 2020.        Google Scholar

55. Cao, G., et al. "Fano resonance in artificial photonic molecules," Advanced Optical Materials, Vol. 8, No. 10, 1902153, 2020.        Google Scholar

56. Chen, J., et al. "Manipulating mode degeneracy for tunable spectral characteristics in multi-microcavity photonic molecules," Optics Express, Vol. 29, No. 7, 11181-11193, 2021.        Google Scholar

57. Deng, Y., G. Cao, H. Yang, G. Li, X. Chen, and W. Lu, "Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities," Scientific Reports, Vol. 7, No. 1, 1-8, 2017.        Google Scholar

58. Lin, G., et al. "Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity," Optics Express, Vol. 27, No. 23, 33359-33368, 2019.        Google Scholar

59. Liu, Q., B. Wang, S. Ke, H. Long, K. Wang, and P. Lu, "Exceptional points in Fano-resonant graphene metamaterials," Optics Express, Vol. 25, No. 7, 7203-7212, 2017.        Google Scholar

60. Zhao, Y. and A. Alù, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Physical Review B, Vol. 84, No. 20, 205428, 2011.        Google Scholar

61. Yang, H., G. Cao, X. Shang, T. Li, G. Yang, and G. Li, "Anisotropic metasurfaces for efficient polarization independent wavefront steering," Journal of Physics D: Applied Physics, Vol. 53, No. 4, 045104, 2019.        Google Scholar

62. Ou, K., et al. "High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces," Nanoscale, Vol. 10, No. 40, 19154-19161, 2018.        Google Scholar

63. Yang, H., et al. "Polarization-independent metalens constructed of antennas without rotational invariance," Optics Letters, Vol. 42, No. 19, 3996-3999, 2017.        Google Scholar

64. Cao, T., Y. Cao, and L. Fang, "Reconfigurable parity-time symmetry transition in phase change metamaterials," Nanoscale, Vol. 11, No. 34, 15828-15835, 2019.        Google Scholar

65. Park, S. H., et al. "Observation of an exceptional point in a non-Hermitian metasurface," Nanophotonics, Vol. 9, No. 5, 1031-1039, 2020.        Google Scholar

66. Dembowski, C., et al. "Experimental observation of the topological structure of exceptional points," Physical Review Letters, Vol. 86, No. 5, 787, 2001.        Google Scholar

67. Doppler, J., et al. "Dynamically encircling an exceptional point for asymmetric mode switching," Nature, Vol. 537, No. 7618, 76-79, 2016.        Google Scholar

68. Wu, T., et al. "Vector exceptional points with strong superchiral fields," Physical Review Letters, Vol. 124, No. 8, 083901, 2020.        Google Scholar

69. Li, J., J. Fu, Q. Liao, and S. Ke, "Exceptional points in chiral metasurface based on graphene strip arrays," JOSA B, Vol. 36, No. 9, 2492-2498, 2019.        Google Scholar

70. Leung, H. M., et al. "Exceptional point-based plasmonic metasurfaces for vortex beam generation," Optics Express, Vol. 28, No. 1, 503-510, 2020.        Google Scholar

71. Kang, M., W. Zhu, and I. D. Rukhlenko, "Experimental observation of the topological structure of exceptional points in an ultrathin hybridized metamaterial," Physical Review A, Vol. 96, No. 6, 063823, 2017.        Google Scholar

72. Li, S., et al. "Exceptional point in a metal-graphene hybrid metasurface with tunable asymmetric loss," Optics Express, Vol. 28, No. 14, 20083-20094, 2020.        Google Scholar

73. Chen, H.-T., A. J. Taylor, and N. Yu, "A review of metasurfaces: Physics and applications," Reports on Progress in Physics, Vol. 79, No. 7, 076401, 2016.        Google Scholar

74. Jahani, S. and Z. Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, No. 1, 23-36, 2016.        Google Scholar

75. Nye, N., A. Halawany, C. Markos, M. Khajavikhan, and D. Christodoulides, "Flexible PT-symmetric optical metasurfaces," Physical Review Applied, Vol. 13, No. 6, 064005, 2020.        Google Scholar

76. Zhao, B., L.-S. Sun, and J. Chen, "Hybrid parity-time modulation phase and geometric phase in metasurfaces," Optics Express, Vol. 28, No. 20, 28896-28905, 2020.        Google Scholar

77. Wiersig, J., "Sensors operating at exceptional points: General theory," Physical Review A, Vol. 93, No. 3, 033809, 2016.        Google Scholar

78. Chen, W., S. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, No. 7666, 192-196, 2017.        Google Scholar

79. Dong, Z., Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, "Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point," Nature Electronics, Vol. 2, No. 8, 335-342, 2019.        Google Scholar

80. Jin, B., et al. "High-performance terahertz sensing at exceptional points in a bilayer structure," Advanced Theory and Simulations, Vol. 1, No. 9, 1800070, 2018.        Google Scholar

81. Ma, Y., et al. "Semiconductor-based plasmonic interferometers for ultrasensitive sensing in a terahertz regime," Optics Letters, Vol. 42, No. 12, 2338-2341, 2017.        Google Scholar

82. Grognot, M. and G. Gallot, "Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection," Applied Physics Letters, Vol. 107, No. 10, 103702, 2015.        Google Scholar

83. Farhat, M., M. Yang, Z. Ye, and P.-Y. Chen, "PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity," ACS Photonics, Vol. 7, No. 8, 2080-2088, 2020.        Google Scholar

84. Xiao, S., J. Gear, S. Rotter, and J. Li, "Effective PT-symmetric metasurfaces for subwavelength amplified sensing," New Journal of Physics, Vol. 18, No. 8, 085004, 2016.        Google Scholar

85. Park, J.-H., et al. "Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing," Nature Physics, Vol. 16, No. 4, 462-468, 2020.        Google Scholar

86. Mortensen, N. A., P. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, "Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems," Optica, Vol. 5, No. 10, 1342-1346, 2018.        Google Scholar

87. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of Img Align = Absmiddle Alt = ε Eps/Img and μ," Physics-Uspekhi, Vol. 10, No. 4, 509-514, 1968.        Google Scholar

88. Fleury, R., D. L. Sounas, and A. Alú, "Negative refraction and planar focusing based on parity-time symmetric metasurfaces," Physical Review Letters, Vol. 113, No. 2, 023903, 2014.        Google Scholar

89. Valagiannopoulos, C., F. Monticone, and A. Alù, "PT-symmetric planar devices for field transformation and imaging," Journal of Optics, Vol. 18, No. 4, 044028, 2016.        Google Scholar

90. Sounas, D. L., R. Fleury, and A. Alù, "Unidirectional cloaking based on metasurfaces with balanced loss and gain," Physical Review Applied, Vol. 4, No. 1, 014005, 2015.        Google Scholar

91. Monticone, F., C. A. Valagiannopoulos, and A. Alù, "Parity-time symmetric nonlocal metasurfaces: All-angle negative refraction and volumetric imaging," Physical Review X, Vol. 6, No. 4, 041018, 2016.        Google Scholar

92. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.        Google Scholar

93. Tian, X., et al. "Wireless body sensor networks based on metamaterial textiles," Nature Electronics, Vol. 2, No. 6, 243-251, 2019.        Google Scholar

94. Pendry, J., L. Martin-Moreno, and F. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.        Google Scholar

95. Coppolaro, M., M. Moccia, G. Castaldi, A. Alù, and V. Galdi, "Surface-wave propagation on non-hermitian metasurfaces with extreme anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 4, 2060-2071, 2021.        Google Scholar

96. Gomez-Diaz, J. S., M. Tymchenko, and A. Alù, "Hyperbolic plasmons and topological transitions over uniaxial metasurfaces," Physical Review Letters, Vol. 114, No. 23, 233901, 2015.        Google Scholar

97. Gomez-Diaz, J., M. Tymchenko, and A. Alù, "Hyperbolic metasurfaces: Surface plasmons, light-matter interactions, and physical implementation using graphene strips," Optical Materials Express, Vol. 5, No. 10, 2313-2329, 2015.        Google Scholar

98. Moccia, M., G. Castaldi, A. Alù, and V. Galdi, "Line waves in non-hermitian metasurfaces," ACS Photonics, Vol. 7, No. 8, 2064-2072, 2020.        Google Scholar

99. Horsley, S. and I. R. Hooper, "One dimensional electromagnetic waves on flat surfaces," Journal of Physics D: Applied Physics, Vol. 47, No. 43, 435103, 2014.        Google Scholar

100. Dia’aaldin, J. B. and D. F. Sievenpiper, "Guiding waves along an infinitesimal line between impedance surfaces," Physical Review Letters, Vol. 119, No. 10, 106802, 2017.        Google Scholar

101. Sakhdari, M., N. M. Estakhri, H. Bagci, and P.-Y. Chen, "Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures," Physical Review Applied, Vol. 10, No. 2, 024030, 2018.        Google Scholar

102. Lodahl, P., et al. "Chiral quantum optics," Nature, Vol. 541, No. 7638, 473-480, 2017.        Google Scholar

103. Zhang, Y.-R., J.-Q. Yuan, Z.-Z. Zhang, M. Kang, and J. Chen, "Exceptional singular resonance in gain mediated metamaterials," Optics Express, Vol. 27, No. 5, 6240-6248, 2019.        Google Scholar

104. Xiao, L., et al. "Non-Hermitian bulk-boundary correspondence in quantum dynamics," Nature Physics, 1-6, 2020.        Google Scholar

105. Okuma, N., K. Kawabata, K. Shiozaki, and M. Sato, "Topological origin of non-Hermitian skin effects," Physical Review Letters, Vol. 124, No. 8, 086801, 2020.        Google Scholar

106. Wang, K., A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, and S. Fan, "Generating arbitrary topological windings of a non-Hermitian band," Science, Vol. 371, No. 6535, 1240-1245, 2021.        Google Scholar

107. Budich, J. C. and E. J. Bergholtz, "Non-Hermitian topological sensors," Physical Review Letters, Vol. 125, No. 18, 180403, 2020.        Google Scholar

108. Song, J., et al. "Wireless power transfer via topological modes in dimer chains," Physical Review Applied, Vol. 15, No. 1, 014009, 2021.        Google Scholar

109. Li, H., H. Moussa, D. Sounas, and A. Alù, "Parity-time symmetry based on time modulation," Physical Review Applied, Vol. 14, No. 3, 031002, 2020.        Google Scholar

110. Wong, Z. J., et al. "Lasing and anti-lasing in a single cavity," Nature Photonics, Vol. 10, No. 12, 796-801, 2016.        Google Scholar

111. Wang, J., F. Sciarrino, A. Laing, and M. G. Thompson, "Integrated photonic quantum technologies," Nature Photonics, Vol. 14, No. 5, 273-284, 2020.        Google Scholar

112. Wang, H., S. Assawaworrarit, and S. Fan, "Dynamics for encircling an exceptional point in a nonlinear non-Hermitian system," Optics Letters, Vol. 44, No. 3, 638-641, 2019.        Google Scholar

113. Shaltout, A. M., V. M. Shalaev, and M. L. Brongersma, "Spatiotemporal light control with active metasurfaces," Science, Vol. 364, No. 6441, 2019.        Google Scholar

114. Zhong, Q., J. Ren, M. Khajavikhan, D. N. Christodoulides, S. Özdemir, and R. El-Ganainy, "Sensing with exceptional surfaces in order to combine sensitivity with robustness," Physical Review Letters, Vol. 122, No. 15, 153902, 2019.        Google Scholar

115. Gu, Z., et al. "Topologically protected exceptional point with local non-hermitian modulation in an acoustic crystal," Physical Review Applied, Vol. 15, No. 1, 014025, 2021.        Google Scholar

116. Moskovits, M., "Surface-enhanced spectroscopy," Reviews of Modern Physics, Vol. 57, No. 3, 783, 1985.        Google Scholar

117. Alaee, R., B. Gurlek, J. Christensen, and M. Kadic, "Optical force rectifiers based on PT-symmetric metasurfaces," Physical Review B, Vol. 97, No. 19, 195420, 2018.        Google Scholar

118. Li, Z., X. Tian, C.-W. Qiu, and J. S. Ho, "Metasurfaces for bioelectronics and healthcare," Nature Electronics, 1-10, 2021.        Google Scholar

119. Barchiesi, E., M. Spagnuolo, and L. Placidi, "Mechanical metamaterials: A state of the art," Mathematics and Mechanics of Solids, Vol. 24, No. 1, 212-234, 2019.        Google Scholar

120. Li, Y., et al. "Transforming heat transfer with thermal metamaterials and devices," Nature Reviews Materials, 1-20, 2021.        Google Scholar