1. Lyke, J. C., C. G. Christodoulou, G. A. Vera, and A. H. Edwards, "An introduction to reconfigurable systems," Proceedings of the IEEE, Vol. 103, No. 3, 291-317, Mar. 2015, doi: 10.1109/JPROC.2015.2397832. Google Scholar
2. Oliveri, G., D. H.Werner, and A. Massa, "Reconfigurable electromagnetics through metamaterials - A review," Proceedings of the IEEE, Vol. 103, No. 7, 1034-1056, Jul. 2015, doi: 10.1109/JPROC.2015.2394292. Google Scholar
3. Motovilova, E. and S. Y. Huang, "A review on reconfigurable liquid dielectric antennas," Materials, Vol. 13, 1863, 2020. Google Scholar
4. Bernhard, J. T., "Reconfigurable antennas," Synthesis Lectures on Antennas, Vol. 2, No. 1, 1-66, Jan. 2007, doi: 10.2200/S00067ED1V01Y200707ANT004. Google Scholar
5. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, No. 7, 2250-2261, Jul. 2012, doi: 10.1109/JPROC.2012.2188249. Google Scholar
6. Ojaroudi Parchin, N., H. Jahanbakhsh Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, "Reconfigurable antennas: Switching techniques - A survey," Electronics, Vol. 9, No. 2, 336, Feb. 2020, doi: 10.3390/electronics9020336. Google Scholar
7. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas and Propagation Magazine, Vol. 55, No. 1, 49-61, Feb. 2013, doi: 10.1109/MAP.2013.6474484. Google Scholar
8. Joodaki, H., H. Valiee, and M. Bayat, "Reconfigurable dual frequency microstrip MIMO patch antenna using RF MEMS switches for WLAN application," 2013 25th Chinese Control and Decision Conference (CCDC), 3254-3258, Guiyang, China, May 2013, doi: 10.1109/CCDC.2013.6561508. Google Scholar
9. Soltani, S., P. Lotfi, and R. D. Murch, "A port and frequency reconfigurable MIMO slot antenna for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1209-1217, Apr. 2016, doi: 10.1109/TAP.2016.2522470. Google Scholar
10. Yuan, X., et al. IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2690-2701, Jun. 2012, doi: 10.1109/TAP.2012.2194663. Google Scholar
11. Abdulraheem, Y. I., et al. "Design of frequency reconfigurable multiband compact antenna using two PIN diodes for WLAN/WiMAX applications," IET Microwaves, Antennas and Propagation, Vol. 11, No. 8, 1098-1105, Jun. 2017, doi: 10.1049/iet-map.2016.0814. Google Scholar
12. Panagamuwa, C. J., A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using photoconducting switches," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 449-454, Feb. 2006, doi: 10.1109/TAP.2005.863393. Google Scholar
13. Bruce, E. and A. C. Beck, "Experiments with directivity steering for fading reduction," Proceedings of the Institute of Radio Engineers, Vol. 23, No. 4, 357-371, Apr. 1935, doi: 10.1109/JRPROC.1935.227992. Google Scholar
14. Zhu, H. L., X. H. Liu, S. W. Cheung, and T. I. Yuk, "Frequency-reconfigurable antenna using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 80-85, Jan. 2014, doi: 10.1109/TAP.2013.2288112. Google Scholar
15. Ma, W., G. Wang, B.-F. Zong, Y. Zhuang, and X. Zhang, "Mechanically reconfigurable antenna based on novel metasurface for frequency tuning-range improvement," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 629-631, 2016, doi: 10.1109/ICMMT.2016.7762390. Google Scholar
16. Zhu, H. L., S. W. Cheung, and T. I. Yuk, "Mechanically pattern reconfigurable antenna using metasurface," IET Microwaves, Antennas and Propagation, Vol. 9, No. 12, 1331-1336, 2015. Google Scholar
17. Filgueiras, H. R. D., I. F. da Costa, S. A. Cerqueira, R. A. Santos, and J. R. Kelly, 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1-5, 2017, doi: 10.1109/IMOC.2017.8121105. Google Scholar
18. Ma, X. and K. Li, "A low-profile broadband high-gain mechanically pattern reconfigurable antenna," 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), 1-3, 2020, doi: 10.1109/CSRSWTC50769.2020.9372532. Google Scholar
19. Lin, Y., W. Chen, C. Chen, C. Liao, N. Chuang, and H. Chen, "High-gain MIMO dipole antennas with mechanical steerable main beam for 5G small cell," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1317-1321, Jul. 2019, doi: 10.1109/LAWP.2019.2914673. Google Scholar
20. Lotfi, P., M. Azarmanesh, and S. Soltani, "Rotatable dual band-notched UWB/triple-band WLAN reconfigurable antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 104-107, 2013, doi: 10.1109/LAWP.2013.2242842. Google Scholar
21. Zhu, H. L., S. W. Cheung, X. H. Liu, and T. I. Yuk, "Design of polarization reconfigurable antenna using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2891-2898, Jun. 2014, doi: 10.1109/TAP.2014.2310209. Google Scholar
22. McMichael, T., "A mechanically reconfigurable patch antenna with polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1186-1189, Jul. 2018, doi: 10.1109/LAWP.2018.2837902. Google Scholar
23. Yao, S. and S. V. Georgakopoulos, "Origami segmented helical antenna with switchable sense of polarization," IEEE Access, Vol. 6, 4528-4536, 2018, doi: 10.1109/ACCESS.2017.2787724. Google Scholar
24. Liu, X., S. Yao, B. S. Cook, M. M. Tentzeris, and S. V. Georgakopoulos, "An origami reconfigurable axial-mode bifilar helical antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5897-5903, Dec. 2015, doi: 10.1109/TAP.2015.2481922. Google Scholar
25. Shah, S. I. H., M. M. Tentzeris, and S. Lim, "Low-cost circularly polarized origami antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2026-2029, 2017, doi: 10.1109/LAWP.2017.2694138. Google Scholar
26. Shah, S. I. H., D. Lee, M. M. Tentzeris, and S. Lim, "A novel high-gain tetrahedron origami," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 848-851, 2017, doi: 10.1109/LAWP.2016.2609898. Google Scholar
27. Hu, J., S. Lin, and F. Dai, "Pattern reconfigurable antenna based on morphing bistable composite laminates," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2196-2207, May 2017, doi: 10.1109/TAP.2017.2677258. Google Scholar
28. Campbell, S. D., et al. "Extending power-handling of high-power metamaterial phase-shifters using three-dimensional counter-rotated end-loaded dipoles," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 91-92, 2017, doi: 10.1109/APUSNCURSINRSM.2017.8072088. Google Scholar
29. Campbell, S. D., G. Makertich-Sengerdy, J. D. Binion, R. J. Chaky, R. P. Jenkins, R. J. Beneck, C. A. Mussman, E. B. Whiting, P. L. Werner, D. H. Werner, S. Parrish, D. Law, J. Pompeii, and S. Griffiths, "Metamaterial-enabled reflectarray antennas for high-power microwave applications," 2020 IEEE International Symposium on Antennas & Propagation - (APSURSI), Montreal, QC, Canada, Jul. 5-10, 2020. Google Scholar
30. Jouade, A., M. Himdi, A. Chauloux, and F. Colombel, "Mechanically pattern-reconfigurable bended horn antenna for high-power applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 457-460, 2017, doi: 10.1109/LAWP.2016.2583203. Google Scholar
31. Hua, C. and Z. Shen, "Shunt-excited sea-water monopole antenna of high efficiency," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5185-5190, Nov. 2015, doi: 10.1109/TAP.2015.2477418. Google Scholar
32. Xing, L., Y. Huang, S. S. Alja'afreh, and S. J. Boyes, "A monopole water antenna," 2012 Loughborough Antennas & Propagation Conference (LAPC), 1-4, 2012, doi: 10.1109/LAPC.2012.6402985. Google Scholar
33. Huff, G. H., D. L. Rolando, P. Walters, and J. McDonald, "A frequency reconfigurable dielectric resonator antenna using colloidal dispersions," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 288-290, 2010, doi: 10.1109/LAWP.2010.2046613. Google Scholar
34. Ren, J. and J. Y. Yin, "Cylindrical-water-resonator-based ultra-broadband microwave absorber," Opt. Mater. Express, Vol. 8, 2060-2071, 2018. Google Scholar
35. Kasiriga, T. S., Y. N. Erlas, and M. Bayindir, "Microfluidics for reconfigurable electromagnetic metamaterials," Appl. Phys. Lett., Vol. 95, Art. ID 214102, 2009. Google Scholar
36. Rodrigo, D., L. Jofre, and B. A. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1796-1802, Apr. 2012, doi: 10.1109/TAP.2012.2186235. Google Scholar
37. Su, W., S. A. Nauroze, B. Ryan, and M. M. Tentzeris, "Novel 3D printed liquid-metal-alloy microfluidics-based Zigzag and helical antennas for origami reconfigurable antenna ``Trees''," 2017 IEEE MTT-S International Microwave Symposium (IMS), 1579-1582, 2017, doi: 10.1109/MWSYM.2017.8058933. Google Scholar
38. Jiang, W., L. Zhou, F. Wang, J. Shi, and Y. Liang, "Structural design and realization of a mechanical reconfigurable antenna," 2018 International Conference on Electronics Technology (ICET), 349-353, 2018, doi: 10.1109/ELTECH.2018.8401401. Google Scholar
39. Moghadas, H., M. Zandvakili, D. Sameoto, and P. Mousavi, "Beam-reconfigurable aperture antenna by stretching or reshaping of a flexible surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1337-1340, 2017, doi: 10.1109/LAWP.2016.2633964. Google Scholar
40. Chaudhari, S., S. Alharbi, C. Zou, H. Shah, R. L. Harne, and A. Kiourti, "A new class of reconfigurable origami antennas based on E-textile embroidery," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 183-184, 2018, doi: 10.1109/APUSNCURSINRSM.2018.8608203. Google Scholar
41. Kowalewski, J., J. Mayer, T. Mahler, and T. Zwick, "A compact pattern reconfigurable antenna utilizing multiple monopoles," 2016 International Workshop on Antenna Technology (iWAT), 1-4, Cocoa Beach, FL, USA, Feb. 2016, doi: 10.1109/IWAT.2016.7434783. Google Scholar
42. Rajagopalan, H., J. M. Kovitz, and Y. Rahmat-Samii, "MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1056-1064, Mar. 2014, doi: 10.1109/TAP.2013.2292531. Google Scholar
43. Yang, X., J. Lin, G. Chen, and F. Kong, "Frequency reconfigurable antenna for wireless communications using GaAs FET switch," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 807-810, Dec. 2015, doi: 10.1109/LAWP.2014.2380436. Google Scholar
44. Bhattacharya, A. and R. Jyoti, "Frequency reconfigurable patch antenna using PIN diode at X-band," 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), 81-86, Kolkata, India, Jul. 2015, doi: 10.1109/ReTIS.2015.7232857. Google Scholar
45. Ali, M., A. T. M. Sayem, and V. K. Kunda, "A reconfigurable stacked microstrip patch antenna for satellite and terrestrial links," IEEE Trans. Veh. Technol., Vol. 56, No. 2, 426-435, Mar. 2007, doi: 10.1109/TVT.2007.891412. Google Scholar
46. Lotfi, P., S. Soltani, and R. D. Murch, "Printed endfire beam-steerable pixel antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 3913-3923, Aug. 2017, doi: 10.1109/TAP.2017.2716399. Google Scholar
47. George, R., S. Kumar, S. A. Gangal, and M. Joshi, "Frequency reconfigurable pixel antenna with PIN diodes," Progress In Electromagnetics Research Letters, Vol. 86, 59-65, 2019. Google Scholar
48. Sulakshana, C. and L. Anjaneyulu, "A compact reconfigurable antenna with frequency, polarization and pattern diversity," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 15, 1953-1964, Oct. 2015, doi: 10.1080/09205071.2015.1068229. Google Scholar
49. Wang, M., et al. "Design and measurement of a Ku-band pattern-reconfigurable array antenna using 16 O-slot patch elements with p-i-n diodes," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2373-2377, Dec. 2020, doi: 10.1109/LAWP.2020.3033355. Google Scholar
50. Yashchyshyn, Y., et al. "28 GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 225-228, Feb. 2018, doi: 10.1109/LAWP.2017.2781262. Google Scholar
51. Xiao, Y., B. Xi, M. Xiang, F. Yang, and Z. Chen, "1-bit wideband reconfigurable transmitarray unit cell based on PIN diodes in Ku-band," IEEE Antennas and Wireless Propagation Letters, 1, 2021, doi: 10.1109/LAWP.2021.3100494. Google Scholar
52. Gregory, M. D., S. V. Martin, and D. H. Werner, "Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy," IEEE Antennas and Propagation Magazine, Vol. 57, No. 3, 48-59, Jun. 2015, doi: 10.1109/MAP.2015.2437277. Google Scholar
53. Srivastava, S., P. Mishra, and R. K. Singh, "Design of a reconfigurable antenna with fractal geometry," 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON), 1-6, Allahabad, India, Dec. 2015, doi: 10.1109/UPCON.2015.7456687. Google Scholar
54. Scarborough, C. P., D. H. Werner, and D. E. Wolfe, "Compact low-profile tunable metasurface-enabled antenna with near-arbitrary polarization," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2775-2783, Jul. 2016, doi: 10.1109/TAP.2016.2562666. Google Scholar
55. Scarborough, C. P., D. H. Werner, and D. E. Wolfe, "Functionalized metamaterials enable frequency and polarization agility in a miniaturized lightweight antenna package," Advanced Electronic Materials, Vol. 2, No. 2, Art. no. 1500295, Feb. 2016. Google Scholar
56. Luxey, C. and J.-M. Laheurte, "Effect of reactive loading in microstrip leaky wave antennas," Electronics Letters, Vol. 36, No. 15, 1259-1260, 2000, doi: 10.1049/el:20000932. Google Scholar
57. Ouedraogo, R. O., E. J. Rothwell, and B. J. Greetis, "A reconfigurable microstrip leaky-wave antenna with a broadly steerable beam," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 3080-3083, Aug. 2011, doi: 10.1109/TAP.2011.2158970. Google Scholar
58. Suntives, A. and S. V. Hum, "A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2540-2544, May 2012, doi: 10.1109/TAP.2012.2189726. Google Scholar
59. Suntives, A. and S. V. Hum, "An electronically tunable half-mode substrate integrated waveguide leaky-wave antenna," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 3670-3674, 2011. Google Scholar
60. Mohsen, M. K., M. S. M. Isa, A. A. M. Isa, M. K. Abdulhameed, and M. L. Attiah, "Achieving fixed-frequency beam scanning with a microstrip leaky-wave antenna using double-gap capacitor technique," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1502-1506, Jul. 2019, doi: 10.1109/LAWP.2019.2920940. Google Scholar
61. Maryam, S. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015. Google Scholar
62. Prasad, G. R., et al. "Concentric ring structured reconfigurable antenna using MEMS switches for wireless communication applications," Wireless Personal Communications, Vol. 120, No. 1, 587-608, Sep. 2021, doi: 10.1007/s11277-021-08480-6. Google Scholar
63. Xu, Y., Y. Tian, B. Zhang, J. Duan, and L. Yan, "A novel RF MEMS switch on frequency reconfigurable antenna application," Microsystem Technologies, Vol. 24, No. 9, 3833-3841, Sep. 2018, doi: 10.1007/s00542-018-3863-9. Google Scholar
64. Bray, M. G. and D. H. Werner, "Passive switching of electromagnetic devices with memristors," Appl. Phys. Lett., Vol. 96, 073504/1-3, Feb. 2010, doi: 10.1063/1.3299020. Google Scholar
65. Gregory, M. D. and D. H. Werner, "Application of the memristor in reconfigurable electromagnetic devices," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 239-248, Feb. 2015, doi: 10.1109/MAP.2015.2397153. Google Scholar
66. Strukov, D. B., G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, Vol. 453, No. 7191, 80-83, May 2008, doi: 10.1038/nature06932. Google Scholar
67. Werner, D. H. and M. D. Gregory, "The memristor in reconfigurable radio frequency devices," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, 2012, doi: 10.1109/APS.2012.6349274. Google Scholar
68. Gregory, M. D. and D. H. Werner, "Reconfigurable electromagnetics devices enabled by a non-linear dopant drift memristor," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 563-564, 2014, doi: 10.1109/APS.2014.6904612. Google Scholar
69. Zhao, G. and B. You, "A tunable bandpass-to-bandstop filter using memristor and varactors," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, Hangzhou, China, Dec. 2020, doi: 10.1109/NEMO49486.2020.9343581. Google Scholar
70. Pi, S., M. Ghadiri-Sadrabadi, J. C. Bardin, and Q. Xia, "Nanoscale memristive radiofrequency switches," Nat. Commun., Vol. 6, No. 1, 7519, Nov. 2015, doi: 10.1038/ncomms8519. Google Scholar
71. Wu, X., R. Ge, M. Kim, D. Akinwande, and J. C. Lee, "Atomristors: Non-volatile resistance switching in 2D monolayers," 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), 1-6, HI, USA, Feb. 2020, doi: 10.23919/PanPacific48324.2020.9059369. Google Scholar
72. Kim, M., et al. "Zero-static power radio-frequency switches based on MoS2 atomristors," Nat. Commun., Vol. 9, No. 1, 2524, Dec. 2018, doi: 10.1038/s41467-018-04934-x. Google Scholar
73. Wang, M., F. Lin, and M. Rais-Zadeh, "Need a change? Try GeTe: A reconfigurable filter using germanium telluride phase change RF switches," IEEE Microwave, Vol. 17, No. 12, 70-79, Dec. 2016, doi: 10.1109/MMM.2016.2608699. Google Scholar
74. Chau, L., J. G. Ho, X. Lan, G. Altvater, R. M. Young, N. El-Hinnawy, et al. "Optically controlled GeTe phase change switch and its applications in recongurable antenna arrays," Proc. SPIE, Vol. 9479, 947905, 2015, doi: 10.1117/12.2179852. Google Scholar
75. Dumas-Bouchiat, F., C. Champeaux, A. Catherinot, A. Crunteanu, and P. Blondy, "RF-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition," Appl. Phys. Lett., Vol. 91, No. 22, 223505, Nov. 2007, doi: 10.1063/1.2815927. Google Scholar
76. Hillman, C., P. A. Stupar, J. B. Hacker, Z. Griffith, M. Field, and M. Rodwell, "An ultra-low loss millimeter-wave solid state switch technology based on the metal-insulator-transition of vanadium dioxide," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-4, Jun. 2014, doi: 10.1109/MWSYM.2014.6848479. Google Scholar
77. Field, M., C. Hillman, P. Stupar, J. Hacker, Z. Griffith, and K.-J. Lee, "Vanadium dioxide phase change switches," Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2015, Vol. 9479, 947908, May 2015, doi: 10.1117/12.2179851. Google Scholar
78. Hillman, C., P. A. Stupar, and Z. Griffith, "VO2 switches for millimeter and submillimeter-wave applications," 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, Oct. 2015, doi: 10.1109/CSICS.2015.7314528. Google Scholar
79. Liu, L., L. Kang, T. S. Mayer, and D. H. Werner, "Hybrid metamaterials for electrically triggered multifunctional control," Nature Communications, Vol. 7, No. 13236, 1-8, 2016. Google Scholar
80. Vaseem, M., Z. Su, S. Yang, and A. Shamim, "Fully printed flexible and reconfigurable antenna with novel phase change VO2 Ink based switch," 2018 International Flexible Electronics Technology Conference (IFETC), 1-2, Aug. 2018, doi: 10.1109/IFETC.2018.8583904. Google Scholar
81. Yang, S., M. Vaseem, and A. Shamim, "Fully inkjet-printed VO2-based radio-frequency switches for flexible reconfigurable components," Advanced Materials Technologies, Vol. 4, No. 1, 1800276, 2019, doi: 10.1002/admt.201800276. Google Scholar
82. Vaseem, M., S. Zhen, S. Yang, and A. Shamim, "A fully printed switch based on VO2 ink for reconfigurable RF components," 2018 48th European Microwave Conference (EuMC), 487-490, Sep. 2018, doi: 10.23919/EuMC.2018.8541794. Google Scholar
83. Chua, E. K., et al. "Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications," Appl. Phys. Lett., Vol. 97, No. 18, 183506, Nov. 2010, doi: 10.1063/1.3508954. Google Scholar
84. Lo, H., et al. "Three-terminal probe reconfigurable phase-change material switches," IEEE Transactions on Electron Devices, Vol. 57, No. 1, 312-320, Jan. 2010, doi: 10.1109/TED.2009.2035533. Google Scholar
85. El-Hinnawy, N., et al. "A 7.3 THz cut-off frequency, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation," 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, Oct. 2013, doi: 10.1109/CSICS.2013.6659195. Google Scholar
86. El-Hinnawy, N., et al. "A four-terminal, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation," IEEE Electron Device Letters, Vol. 34, No. 10, 1313-1315, Oct. 2013, doi: 10.1109/LED.2013.2278816. Google Scholar
87. El-Hinnawy, N., et al. "12.5 THz Fco GeTe inline phase-change switch technology for reconfigurable RF and switching applications," 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-3, Oct. 2014, doi: 10.1109/CSICS.2014.6978522. Google Scholar
88. Shim, Y., G. Hummel, and M. Rais-Zadeh, "RF switches using phase change materials," 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 237-240, Taipei, Taiwan, Jan. 2013, doi: 10.1109/MEMSYS.2013.6474221. Google Scholar
89. Léon, A., et al. "In-depth caracterisation of the structural phase change of germanium telluride for RF switches," 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Sep. 2017, doi: 10.1109/IMWS-AMP.2017.8247378. Google Scholar
90. Moon, J.-S., H.-C. Seo, and D. Le, "Development toward high-power sub-1-ohm DC-67 GHz RF switches using phase change materials for reconfigurable RF front-end," 2014 IEEE MTT-S International Microwave Symposium (IMS 2014), 1-3, Jun. 2014, doi: 10.1109/MWSYM.2014.6848334. Google Scholar
91. Moon, J.-S., H.-C. Seo, and D. Le, "High linearity 1-Ohm RF switches with phase-change materials," 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 7-9, Jan. 2014, doi: 10.1109/SiRF.2014.6828512. Google Scholar
92. Moon, J.-S., et al. "11 THz figure-of-merit phase-change RF switches for reconfigurable wireless front-ends," 2015 IEEE MTT-S International Microwave Symposium, 1-4, May 2015, doi: 10.1109/MWSYM.2015.7167005. Google Scholar
93. Léon, A., B. Reig, V. Puyal, E. Perret, P. Ferrari, and F. Podevin, "High performance and low energy consumption in phase change material RF switches," 2018 48th European Microwave Conference (EuMC), 491-494, Sep. 2018, doi: 10.23919/EuMC.2018.8541622. Google Scholar
94. Moon, J.-S., H.-C. Seo, K.-A. Son, K. Lee, D. Zehnder, and H. Tai, "5 THz figure-of-merit reliable phase-change RF switches for millimeter-wave applications," 2018 IEEE/MTT-S International Microwave Symposium - IMS, 836-838, Jun. 2018, doi: 10.1109/MWSYM.2018.8439479. Google Scholar
95. Iskander, M. F., Z. Yun, Z. Zhang, R. Jensen, and S. Redd, "Design of a low-cost 2-D beam-steering antenna using ferroelectric material and CTS technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 5, 1000-1003, May 2001, doi: 10.1109/22.920163. Google Scholar
96. Lovat, G., P. Burghignoli, and S. Celozzi, "A tunable ferroelectric antenna for fixed-frequency scanning applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 353-356, 2006, doi: 10.1109/LAWP.2006.880694. Google Scholar
97. Sazegar, M., et al. "Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 5, 1265-1273, May 2011, doi: 10.1109/TMTT.2010.2103092. Google Scholar
98. Sazegar, M., Y. Zheng, H. Maune, X. Zhou, C. Damm, and R. Jakoby, "Compact left handed coplanar strip line phase shifter on screen printed BST," 2011 IEEE MTT-S International Microwave Symposium, 1-4, Jun. 2011, doi: 10.1109/MWSYM.2011.5972805. Google Scholar
99. Aspe, B., et al. "Frequency-tunable slot-loop antenna based on KNN ferroelectric interdigitated varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1414-1418, Aug. 2021, doi: 10.1109/LAWP.2021.3084320. Google Scholar
100. Giddens, H., H. Zhang, C. Yu, and Y. Hao, "Bulk ferroelectric materials for reconfigurable antenna applications," 12th European Conference on Antennas and Propagation (EuCAP 2018), 316 (4 pp.)-316 (4 pp.), London, UK, 2018, doi: 10.1049/cp.2018.0675. Google Scholar
101. Hu, W., M. Y. Ismail, R. Cahill, J. A. Encinar, V. Fusco, H. S. Gamble, D. Linton, R. Dickie, N. Grant, and S. P. Rea, "Liquid-crystal-based reflectarray antenna with electronically switchable monopulse patterns," Electronics Letters, Vol. 43, No. 14, 744-745, Jul. 2007, doi: 10.1049/EL:20071098. Google Scholar
102. Yang, F. and J. R. Sambles, "Determination of the permittivity of nematic liquid crystals in the microwave region," Liquid Crystals, Vol. 30, No. 5, 599-602, May 2003, doi: 10.1080/0267829031000097466. Google Scholar
103. Mueller, S., et al. "Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1937-1945, Jun. 2005, doi: 10.1109/TMTT.2005.848842. Google Scholar
104. Hu, W., et al. "Liquid crystal tunable mmWave frequency selective surface," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 9, 667-669, Sep. 2007, doi: 10.1109/LMWC.2007.903455. Google Scholar
105. Bossard, J. A., et al. "Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1308-1320, May 2008, doi: 10.1109/TAP.2008.922174. Google Scholar
106. Wang, X., D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Applied Physics Letters, Vol. 91, 143122/1-3, Oct. 2007, doi: 10.1063/1.2795345. Google Scholar
107. Kwon, D.-H., D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad metamaterial with a tunable negative-zero-positive index of refraction," Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, 2828-2831, Honolulu, Hawaii, USA, Jun. 10-15, 2007. Google Scholar
108. Wang, X., D.-H. Kwon, D. H. Werner, and I.-C. Khoo, "Anisotropic liquid crystals for tunable optical negative-index metamaterials," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008, doi: 10.1109/APS.2008.4619734. Google Scholar
109. Werner, D. H., D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Optics Express, Vol. 15, No. 6, 3342-3347, Mar. 19, 2007, doi: 10.1364/OE.15.003342. Google Scholar
110. Liu, L. and R. J. Langley, "Liquid crystal tunable microstrip patch antenna," Electronics Letters, Vol. 44, No. 20, 1179-1180, Sep. 2008, doi: 10.1049/el:20081995. Google Scholar
111. Perez-Palomino, G., et al. "Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015, doi: 10.1109/TAP.2015.2434421. Google Scholar
112. Gibson, J. and S. V. Georgakopoulos, "Reconfigurable antenna using shape memory polymers," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1673-1674, Jun. 2016, doi: 10.1109/APS.2016.7696543. Google Scholar
113. Dai, J.-W., H.-L. Peng, Y.-P. Zhang, and J.-F. Mao, "A novel tunable microstrip patch antenna using liquid crystal," Progress In Electromagnetics Research C, Vol. 71, 101-109, 2017. Google Scholar
114. Xu, G., H.-L. Peng, C. Sun, J.-G. Lu, Y. Zhang, and W.-Y. Yin, "Differential probe fed liquid crystal-based frequency tunable circular ring patch antenna," IEEE Access, Vol. 6, 3051-3058, 2018, doi: 10.1109/ACCESS.2017.2786870. Google Scholar
115. Sboui, F., J. Machac, L. Latrach, and A. Gharsallah, "Triple band tunable SIW cavity antenna with cristal liquid materials for wireless applications," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 1-4, Hammamet, Tunisia, Oct. 2019, doi: 10.1109/MMS48040.2019.9157250. Google Scholar
116. Jiang, D., et al. "Liquid crystal-based wideband reconfigurable leaky wave X-band antenna," IEEE Access, Vol. 7, 127320-127326, 2019, doi: 10.1109/ACCESS.2019.2939097. Google Scholar
117. Hu, Z., S. Wang, Z. Shen, and W. Wu, "Broadband polarization-reconfigurable water spiral antenna of low profile," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1377-1380, 2017, doi: 10.1109/LAWP.2016.2636923. Google Scholar
118. Wang, S., L. Zhu, and W. Wu, "A novel frequency-reconfigurable patch antenna using low-loss transformer oil," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7316-7321, Dec. 2017, doi: 10.1109/TAP.2017.2758204. Google Scholar
119. Singh, A., I. Goode, and C. E. Saavedra, "A multistate frequency reconfigurable monopole antenna using fluidic channels," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 856-860, May 2019, doi: 10.1109/LAWP.2019.2903781. Google Scholar
120. Chen, Z., H.-Z. Li, H. Wong, X. Zhang, and T. Yuan, "A circularly-polarized-reconfigurable patch antenna with liquid dielectric," IEEE Open J. Antennas Propag., Vol. 2, 396-401, 2021, doi: 10.1109/OJAP.2021.3064996. Google Scholar
121. Schwering, F. K. and S.-T. Peng, "Design of dielectric grating antennas for millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, No. 2, 199-209, Feb. 1983, doi: 10.1109/TMTT.1983.1131458. Google Scholar
122. Hammad, H. F., Y. M. M. Antar, A. P. Freundorfer, and M. Sayer, "A new dielectric grating antenna at millimeter wave frequency," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 36-44, Jan. 2004, doi: 10.1109/TAP.2003.820977. Google Scholar
123. Ma, Z. L., K. B. Ng, C. H. Chan, and L. J. Jiang, "A novel supercell-based dielectric grating dual-beam leaky-wave antenna for 60-GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5521-5526, Dec. 2016, doi: 10.1109/TAP.2016.2621031. Google Scholar
124. Li, J., M. He, C. Wu, and C. Zhang, "Radiation-pattern-reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1771-1775, 2017, doi: 10.1109/LAWP.2017.2676121. Google Scholar
125. Li, J., M. He, C. Zhang, and H. Sun, "Design of reconfigurable graphene leaky-wave antenna based on dielectric grating," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 104-106, 2016, doi: 10.1109/ICMMT.2016.7761691. Google Scholar
126. Hu, Z., Z. Shen, and W. Wu, "Reconfigurable leaky-wave antenna based on periodic water grating," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 134-137, 2014, doi: 10.1109/LAWP.2014.2298245. Google Scholar
127. Lee, C., P. Mak, and A. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE Journal of Quantum Electronics, Vol. 16, No. 3, 277-288, Mar. 1980, doi: 10.1109/JQE.1980.1070468. Google Scholar
128. Pendharker, S., R. K. Shevgaonkar, and A. N. Chandorkar, "Optically controlled frequency switching band stop filter," 2012 IEEE Asia-Pacific Conference on Antennas and Propagation, 151-152, Aug. 2012, doi: 10.1109/APCAP.2012.6333201. Google Scholar
129. Ojaroudi Parchin, N., H. Jahanbakhsh Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, "Reconfigurable antennas: Switching techniques - A survey," Electronics, Vol. 9, No. 2, 336, Feb. 2020. Google Scholar
130. Tawk, Y., A. R. Albrecht, S. Hemmady, G. Balakrishnan, and C. G. Christodoulou, "Optically pumped frequency reconfigurable antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 280-283, 2010, doi: 10.1109/LAWP.2010.2047373. Google Scholar
131. Tawk, Y., J. Costantine, S. Hemmady, G. Balakrishnan, K. Avery, and C. G. Christodoulou, "Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS)," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1075-1083, Feb. 2012, doi: 10.1109/TAP.2011.2173139. Google Scholar
132. Zhao, D., Y. Han, F. Liang, Q. Zhang, and B.-Z. Wang, "Low-power optically controlled patch antenna of reconfigurable beams," International Journal of Antennas and Propagation, Aug. 28, 2014, https://www.hindawi.com/journals/ijap/2014/978258/ (accessed Jan. 22, 2021). Google Scholar
133. Pendharker, S., R. K. Shevgaonkar, and A. N. Chandorkar, "Optically controlled frequency-reconfigurable microstrip antenna with low photoconductivity," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 99-102, 2014, doi: 10.1109/LAWP.2013.2296621. Google Scholar
134. Silva, L. G., A. A. C. Alves, and A. C. Sodré, "Optically controlled reconfigurable filtenna," International Journal of Antennas and Propagation, Vol. 2016, Article ID 7161070, 9 pages, Mar. 2016, doi: 10.1155/2016/7161070. Google Scholar
135. Sodré, A. C., I. Feliciano da Costa, L. T. Manera, and J. A. Diniz, "Optically controlled reconfigurable antenna array based on E-shaped elements," International Journal of Antennas and Propagation, Apr. 27, 2014, https://www.hindawi.com/journals/ijap/2014/750208/ (accessed Jan. 18, 2021). Google Scholar
136. Shepeleva, E., M. Makurin, A. Vilenskiy, and S. Chernyshev, "MM-wave patch antenna with embedded photoconductive elements for 1-bit phase shifting," 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), 578-581, Rome, Italy, Jun. 17-20, 2019. Google Scholar
137. Zhao, D., Y. Han, Q. Zhang, and B.-Z. Wang, "Experimental study of silicon-based microwave switches optically driven by LEDs," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2768-2774, 2015, doi: https://doi.org/10.1002/mop.29435. Google Scholar
138. Patron, D., A. S. Daryoush, and K. R. Dandekar, "Optical control of reconfigurable antennas and application to a novel pattern-reconfigurable planar design," Journal of Lightwave Technology, Vol. 32, No. 20, 3394-3402, Oct. 2014, doi: 10.1109/JLT.2014.2321406. Google Scholar
139. Da Costa, I. F., C. S. Arismar, E. Reis, D. H. Spadoti, and J. R. M. Neto, "Optically controlled reconfigurable antenna array based on a slotted circular waveguide," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-4, Apr. 2015. Google Scholar
140. Da Costa, I. F., A. C. S, D. H. Spadoti, L. G. da Silva, J. A. J. Ribeiro, and S. E. Barbin, "Optically controlled reconfigurable antenna array for mm-Wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2142-2145, 2017, doi: 10.1109/LAWP.2017.2700284. Google Scholar
141. Da Costa, I. F., et al. "Photonics-assisted wireless link based on mm-Wave reconfigurable antennas," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 2071-2076, 2017, doi: 10.1049/iet-map.2017.0178. Google Scholar
142. Da Costa, I. F., et al. "Optically controlled reconfigurable antenna for 5G future broadband cellular communication networks," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 1, 208-217, Mar. 2017, doi: 10.1590/2179-10742017v16i1883. Google Scholar
143. Collett, M. A., C. D. Gamlath, and M. Cryan, "An optically tunable cavity-backed slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6134-6139, Nov. 2017, doi: 10.1109/TAP.2017.2755726. Google Scholar
144. Zhang, Y., A. W. Pang, and M. J. Cryan, "Optically controlled millimetre-wave switch with stepped-impedance lines," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1737-1741, 2019, doi: https://doi.org/10.1049/iet-map.2018.6191. Google Scholar
145. Fang, C.-Y., H.-H. Lin, M. Alouini, Y. Fainman, and A. El Amili, "Microwave signal switching on a silicon photonic chip," Scientific Reports, Vol. 9, No. 1, Art. no. 1, Aug. 2019, doi: 10.1038/s41598-019-47683-7. Google Scholar
146. Drisko, J. A., A. D. Feldman, F. Quinlan, J. C. Booth, N. D. Orloff, and C. J. Long, "Impedance tuning with photoconductors to 40 GHz," IET Optoelectronics, Vol. 13, No. 4, 177-182, 2019, doi: https://doi.org/10.1049/iet-opt.2018.5102. Google Scholar
147. Hum, S. V., M. Okoniewski, and R. J. Davies, "Modeling and design of electronically tunable reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2200-2210, Aug. 2007, doi: 10.1109/TAP.2007.902002. Google Scholar
148. Martinez-De-Rioja, D., E. Martinez-De-Rioja, J. A. Encinar, R. Florencio, and G. Toso, "Reflectarray to generate four adjacent beams per feed for multispot satellite antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1265-1269, Feb. 2019, doi: 10.1109/TAP.2018.2880117. Google Scholar
149. Martinez-de-Rioja, D., R. Florencio, J. A. Encinar, E. Carrasco, and R. R. Boix, "Dual-frequency reflectarray cell to provide opposite phase shift in dual circular polarization with application in multibeam satellite antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1591-1595, Aug. 2019, doi: 10.1109/LAWP.2019.2924354. Google Scholar
150. Martinez-de-Rioja, E., et al. "Advanced multibeam antenna configurations based on reflectarrays: Providing multispot coverage with a smaller number of apertures for satellite communications in the K and Ka bands," IEEE Antennas and Propagation Magazine, Vol. 61, No. 5, 77-86, Oct. 2019, doi: 10.1109/MAP.2019.2932311. Google Scholar
151. Martinez-de-Rioja, D., R. Florencio, E. Martinez-de-Rioja, M. Arrebola, J. A. Encinar, and R. R. Boix, "Dual-band reflectarray to generate two spaced beams in orthogonal circular polarization by variable rotation technique," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4617-4626, Jun. 2020, doi: 10.1109/TAP.2020.2975294. Google Scholar
152. Zhang, M., et al. "Design of novel reconfigurable reflectarrays with single-bit phase resolution for Ku-band satellite antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1634-1641, May 2016, doi: 10.1109/TAP.2016.2535166. Google Scholar
153. Martinez, I., A. H. Panaretos, and D. H. Werner, "Reconfigurable ultrathin beam redirecting metasurfaces for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1915-1918, 2017, doi: 10.1109/LAWP.2017.2686779. Google Scholar
154. Ren, L.-S., Y.-C. Jiao, F. Li, J.-J. Zhao, and G. Zhao, "A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 407-410, 2011. Google Scholar
155. Chaharmir, M. R., J. Shaker, M. Cuhaci, and A. Sebak, "Circularly polarised reflectarray with cross-slot of varying arms on ground plane," Electronics Letters, Vol. 38, No. 24, 1492-1493, Nov. 2002. Google Scholar
156. Wu, G.-B., S.-W. Qu, S. Yang, and C. H. Chan, "Broadband, single-layer dual circularly polarized reflectarrays with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4235-4241, Oct. 2016, doi: 10.1109/TAP.2016.2593873. Google Scholar
157. Momeni Hasan Abadi, S. M. A. and N. Behdad, "Broadband true-time-delay circularly polarized reflectarray with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4891-4896, Nov. 2016, doi: 10.1109/TAP.2016.2596900. Google Scholar
158. Kaddour, A.-S., et al. "A foldable and reconfigurable monolithic reflectarray for space applications," IEEE Access, Vol. 8, 219355-219366, 2020, doi: 10.1109/ACCESS.2020.3042949. Google Scholar
159. Su, W., W. Luo, Z. Nie, W.-W. Liu, Z.-H. Cao, and Z. Wang, "A wideband folded reflectarray antenna based on single-layered polarization rotating metasurface," IEEE Access, Vol. 8, 158579-158584, 2020, doi: 10.1109/ACCESS.2020.3019822. Google Scholar
160. Abdollahvand, M., K. Forooraghi, J. A. Encinar, Z. Atlasbaf, and E. Martinez-de-Rioja, "A 20/30 GHz reflectarray backed by FSS for shared aperture Ku/Ka-band satellite communication antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 4, 566-570, Apr. 2020, doi: 10.1109/LAWP.2020.2972024. Google Scholar
161. Di Renzo, M., et al. "Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2450-2525, 2020. Google Scholar
162. Liaskos, C., S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, "A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems," Ad Hoc Networks, Vol. 87, 1-16, May 2019, doi: 10.1016/j.adhoc.2018.11.001. Google Scholar
163. Arun, V. and H. Balakrishnan, "RFocus: Beamforming using thousands of passive antennas," 17th USENIX Symposium on Networked Systems Design and Implementation, 17, Feb. 2020. Google Scholar
164. Roberts, J., K. L. Ford, and J. M. Rigelsford, "Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 251-261, Jan. 2016, doi: 10.1109/TAP.2015.2499773. Google Scholar
165. Tan, X., Z. Sun, J. M. Jornet, and D. Pados, "Increasing indoor spectrum sharing capacity using smart reflectarray," 2016 IEEE International Conference on Communications (ICC), 1-6, May 2016, doi: 10.1109/ICC.2016.7510962. Google Scholar
166. "DOCOMO conducts World's first successful trial of transparent dynamic metasurface,", NTT DoCoMo, Inc., Tokyo, Japan, Jan. 17, 2020. [Online]. Available: https://www.nttdocomo.co.jp/english/info/media_center/pr/2020/0117_00.html#:~:text=TOKY-O%2C%20JAPAN%2C%20January%2017%2C,28%20GHz%205G%20radio%20signals, Accessed on: May 12, 2021. Google Scholar
167. Black, E. J., "Holographic beam forming and MIMO,", Pivotal Commware, Inc., Kirkland, WA, USA, Jan. 17, Oct. 2018. [Online]. Available: https://pivotalcommware.com/technology/, Accessed on: May 12, 2021. Google Scholar
168. Pivotal Staff "Holographic beam forming and phased arrays,", Pivotal Commware, Inc., Kirkland, WA, USA, 2019. [Online]. Available: https://pivotalcommware.com/technology/, Accessed on: May 12, 2021. Google Scholar
169. Samaiyar, A., A. H. Abdelrahman, L. B. Boskovic, and D. S. Filipovic, "Extreme offset-fed reflectarray antenna for compact deployable platforms," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1139-1143, Jun. 2019, doi: 10.1109/LAWP.2019.2911019. Google Scholar
170. Mei, P., S. Zhang, and G. F. Pedersen, "A low-cost, high-efficiency and full-metal reflectarray antenna with mechanically 2-D beam-steerable capabilities for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6997-7006, Oct. 2020, doi: 10.1109/TAP.2020.2993077. Google Scholar
171. Wu, G., Y. Zeng, K. F. Chan, B. Chen, S. Qu, and C. H. Chan, "High-gain filtering reflectarray antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 805-812, Feb. 2020, doi: 10.1109/TAP.2019.2943432. Google Scholar
172. An, W., L. Xiong, S. Xu, F. Yang, H. Fu, and J. Ma, "A Ka-band high-efficiency transparent reflectarray antenna integrated with solar cells," IEEE Access, Vol. 6, 60843-60851, 2018, doi: 10.1109/ACCESS.2018.2875359. Google Scholar
173. Chen, Y.-S., Y.-H. Wu, and C.-C. Chung, "Solar-powered active integrated antennas backed by a transparent reflectarray for CubeSat applications," IEEE Access, Vol. 8, 137934-137946, 2020, doi: 10.1109/ACCESS.2020.3012133. Google Scholar
174. Yekan, T. and R. Baktur, "Conformal integrated solar panel antennas: Two effective integration methods of antennas with solar cells," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 69-78, Apr. 2017, doi: 10.1109/MAP.2017.2655577. Google Scholar
175. Jenkins, R. P., et al. "A low-power tunable frequency selective surface for multiplexed remote sensing," IEEE Access, Vol. 9, 58478-58486, 2021, doi: 10.1109/ACCESS.2021.3070715. Google Scholar