Vol. 171
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-10-16
Reconfigurable Antennas: A Review of Recent Progress and Future Prospects for Next Generation (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 171, 89-121, 2021
Abstract
Reconfigurable antennas are devices that can dynamically alter their geometry and/or electromagnetic properties tofacilitate different behaviors. Numerous approaches for achieving reconfigurability have been studied over the past 20 years, mainly consisting of mechanical, electrical, optical, and metamaterial methods. This review presents the most notable works and advancements in this field while placing a significant focus on antennas with explicit practical applications in the emerging areas of millimeter waves, 5G/6G communications, Internet-of-Things (IoT), high-throughput satellites and miniaturized systems among several others. The various reconfiguration methods mentioned will be compared, and their benefits and drawbacks discussed.
Citation
Ryan J. Beneck, Arkaprovo Das, Galestan Mackertich-Sengerdy, Ryan J. Chaky, Yuhao Wu, Saber Soltani, and Douglas Werner, "Reconfigurable Antennas: A Review of Recent Progress and Future Prospects for Next Generation (Invited Paper)," Progress In Electromagnetics Research, Vol. 171, 89-121, 2021.
doi:10.2528/PIER21081109
References

1. Lyke, J. C., C. G. Christodoulou, G. A. Vera, and A. H. Edwards, "An introduction to reconfigurable systems," Proceedings of the IEEE, Vol. 103, No. 3, 291-317, Mar. 2015, doi: 10.1109/JPROC.2015.2397832.        Google Scholar

2. Oliveri, G., D. H.Werner, and A. Massa, "Reconfigurable electromagnetics through metamaterials - A review," Proceedings of the IEEE, Vol. 103, No. 7, 1034-1056, Jul. 2015, doi: 10.1109/JPROC.2015.2394292.        Google Scholar

3. Motovilova, E. and S. Y. Huang, "A review on reconfigurable liquid dielectric antennas," Materials, Vol. 13, 1863, 2020.        Google Scholar

4. Bernhard, J. T., "Reconfigurable antennas," Synthesis Lectures on Antennas, Vol. 2, No. 1, 1-66, Jan. 2007, doi: 10.2200/S00067ED1V01Y200707ANT004.        Google Scholar

5. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, No. 7, 2250-2261, Jul. 2012, doi: 10.1109/JPROC.2012.2188249.        Google Scholar

6. Ojaroudi Parchin, N., H. Jahanbakhsh Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, "Reconfigurable antennas: Switching techniques - A survey," Electronics, Vol. 9, No. 2, 336, Feb. 2020, doi: 10.3390/electronics9020336.        Google Scholar

7. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas and Propagation Magazine, Vol. 55, No. 1, 49-61, Feb. 2013, doi: 10.1109/MAP.2013.6474484.        Google Scholar

8. Joodaki, H., H. Valiee, and M. Bayat, "Reconfigurable dual frequency microstrip MIMO patch antenna using RF MEMS switches for WLAN application," 2013 25th Chinese Control and Decision Conference (CCDC), 3254-3258, Guiyang, China, May 2013, doi: 10.1109/CCDC.2013.6561508.        Google Scholar

9. Soltani, S., P. Lotfi, and R. D. Murch, "A port and frequency reconfigurable MIMO slot antenna for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1209-1217, Apr. 2016, doi: 10.1109/TAP.2016.2522470.        Google Scholar

10. Yuan, X., et al. IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2690-2701, Jun. 2012, doi: 10.1109/TAP.2012.2194663.        Google Scholar

11. Abdulraheem, Y. I., et al. "Design of frequency reconfigurable multiband compact antenna using two PIN diodes for WLAN/WiMAX applications," IET Microwaves, Antennas and Propagation, Vol. 11, No. 8, 1098-1105, Jun. 2017, doi: 10.1049/iet-map.2016.0814.        Google Scholar

12. Panagamuwa, C. J., A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using photoconducting switches," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 449-454, Feb. 2006, doi: 10.1109/TAP.2005.863393.        Google Scholar

13. Bruce, E. and A. C. Beck, "Experiments with directivity steering for fading reduction," Proceedings of the Institute of Radio Engineers, Vol. 23, No. 4, 357-371, Apr. 1935, doi: 10.1109/JRPROC.1935.227992.        Google Scholar

14. Zhu, H. L., X. H. Liu, S. W. Cheung, and T. I. Yuk, "Frequency-reconfigurable antenna using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 80-85, Jan. 2014, doi: 10.1109/TAP.2013.2288112.        Google Scholar

15. Ma, W., G. Wang, B.-F. Zong, Y. Zhuang, and X. Zhang, "Mechanically reconfigurable antenna based on novel metasurface for frequency tuning-range improvement," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 629-631, 2016, doi: 10.1109/ICMMT.2016.7762390.        Google Scholar

16. Zhu, H. L., S. W. Cheung, and T. I. Yuk, "Mechanically pattern reconfigurable antenna using metasurface," IET Microwaves, Antennas and Propagation, Vol. 9, No. 12, 1331-1336, 2015.        Google Scholar

17. Filgueiras, H. R. D., I. F. da Costa, S. A. Cerqueira, R. A. Santos, and J. R. Kelly, 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1-5, 2017, doi: 10.1109/IMOC.2017.8121105.        Google Scholar

18. Ma, X. and K. Li, "A low-profile broadband high-gain mechanically pattern reconfigurable antenna," 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), 1-3, 2020, doi: 10.1109/CSRSWTC50769.2020.9372532.        Google Scholar

19. Lin, Y., W. Chen, C. Chen, C. Liao, N. Chuang, and H. Chen, "High-gain MIMO dipole antennas with mechanical steerable main beam for 5G small cell," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1317-1321, Jul. 2019, doi: 10.1109/LAWP.2019.2914673.        Google Scholar

20. Lotfi, P., M. Azarmanesh, and S. Soltani, "Rotatable dual band-notched UWB/triple-band WLAN reconfigurable antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 104-107, 2013, doi: 10.1109/LAWP.2013.2242842.        Google Scholar

21. Zhu, H. L., S. W. Cheung, X. H. Liu, and T. I. Yuk, "Design of polarization reconfigurable antenna using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2891-2898, Jun. 2014, doi: 10.1109/TAP.2014.2310209.        Google Scholar

22. McMichael, T., "A mechanically reconfigurable patch antenna with polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1186-1189, Jul. 2018, doi: 10.1109/LAWP.2018.2837902.        Google Scholar

23. Yao, S. and S. V. Georgakopoulos, "Origami segmented helical antenna with switchable sense of polarization," IEEE Access, Vol. 6, 4528-4536, 2018, doi: 10.1109/ACCESS.2017.2787724.        Google Scholar

24. Liu, X., S. Yao, B. S. Cook, M. M. Tentzeris, and S. V. Georgakopoulos, "An origami reconfigurable axial-mode bifilar helical antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5897-5903, Dec. 2015, doi: 10.1109/TAP.2015.2481922.        Google Scholar

25. Shah, S. I. H., M. M. Tentzeris, and S. Lim, "Low-cost circularly polarized origami antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2026-2029, 2017, doi: 10.1109/LAWP.2017.2694138.        Google Scholar

26. Shah, S. I. H., D. Lee, M. M. Tentzeris, and S. Lim, "A novel high-gain tetrahedron origami," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 848-851, 2017, doi: 10.1109/LAWP.2016.2609898.        Google Scholar

27. Hu, J., S. Lin, and F. Dai, "Pattern reconfigurable antenna based on morphing bistable composite laminates," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2196-2207, May 2017, doi: 10.1109/TAP.2017.2677258.        Google Scholar

28. Campbell, S. D., et al. "Extending power-handling of high-power metamaterial phase-shifters using three-dimensional counter-rotated end-loaded dipoles," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 91-92, 2017, doi: 10.1109/APUSNCURSINRSM.2017.8072088.        Google Scholar

29. Campbell, S. D., G. Makertich-Sengerdy, J. D. Binion, R. J. Chaky, R. P. Jenkins, R. J. Beneck, C. A. Mussman, E. B. Whiting, P. L. Werner, D. H. Werner, S. Parrish, D. Law, J. Pompeii, and S. Griffiths, "Metamaterial-enabled reflectarray antennas for high-power microwave applications," 2020 IEEE International Symposium on Antennas & Propagation - (APSURSI), Montreal, QC, Canada, Jul. 5-10, 2020.        Google Scholar

30. Jouade, A., M. Himdi, A. Chauloux, and F. Colombel, "Mechanically pattern-reconfigurable bended horn antenna for high-power applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 457-460, 2017, doi: 10.1109/LAWP.2016.2583203.        Google Scholar

31. Hua, C. and Z. Shen, "Shunt-excited sea-water monopole antenna of high efficiency," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5185-5190, Nov. 2015, doi: 10.1109/TAP.2015.2477418.        Google Scholar

32. Xing, L., Y. Huang, S. S. Alja'afreh, and S. J. Boyes, "A monopole water antenna," 2012 Loughborough Antennas & Propagation Conference (LAPC), 1-4, 2012, doi: 10.1109/LAPC.2012.6402985.        Google Scholar

33. Huff, G. H., D. L. Rolando, P. Walters, and J. McDonald, "A frequency reconfigurable dielectric resonator antenna using colloidal dispersions," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 288-290, 2010, doi: 10.1109/LAWP.2010.2046613.        Google Scholar

34. Ren, J. and J. Y. Yin, "Cylindrical-water-resonator-based ultra-broadband microwave absorber," Opt. Mater. Express, Vol. 8, 2060-2071, 2018.        Google Scholar

35. Kasiriga, T. S., Y. N. Erlas, and M. Bayindir, "Microfluidics for reconfigurable electromagnetic metamaterials," Appl. Phys. Lett., Vol. 95, Art. ID 214102, 2009.        Google Scholar

36. Rodrigo, D., L. Jofre, and B. A. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1796-1802, Apr. 2012, doi: 10.1109/TAP.2012.2186235.        Google Scholar

37. Su, W., S. A. Nauroze, B. Ryan, and M. M. Tentzeris, "Novel 3D printed liquid-metal-alloy microfluidics-based Zigzag and helical antennas for origami reconfigurable antenna ``Trees''," 2017 IEEE MTT-S International Microwave Symposium (IMS), 1579-1582, 2017, doi: 10.1109/MWSYM.2017.8058933.        Google Scholar

38. Jiang, W., L. Zhou, F. Wang, J. Shi, and Y. Liang, "Structural design and realization of a mechanical reconfigurable antenna," 2018 International Conference on Electronics Technology (ICET), 349-353, 2018, doi: 10.1109/ELTECH.2018.8401401.        Google Scholar

39. Moghadas, H., M. Zandvakili, D. Sameoto, and P. Mousavi, "Beam-reconfigurable aperture antenna by stretching or reshaping of a flexible surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1337-1340, 2017, doi: 10.1109/LAWP.2016.2633964.        Google Scholar

40. Chaudhari, S., S. Alharbi, C. Zou, H. Shah, R. L. Harne, and A. Kiourti, "A new class of reconfigurable origami antennas based on E-textile embroidery," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 183-184, 2018, doi: 10.1109/APUSNCURSINRSM.2018.8608203.        Google Scholar

41. Kowalewski, J., J. Mayer, T. Mahler, and T. Zwick, "A compact pattern reconfigurable antenna utilizing multiple monopoles," 2016 International Workshop on Antenna Technology (iWAT), 1-4, Cocoa Beach, FL, USA, Feb. 2016, doi: 10.1109/IWAT.2016.7434783.        Google Scholar

42. Rajagopalan, H., J. M. Kovitz, and Y. Rahmat-Samii, "MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1056-1064, Mar. 2014, doi: 10.1109/TAP.2013.2292531.        Google Scholar

43. Yang, X., J. Lin, G. Chen, and F. Kong, "Frequency reconfigurable antenna for wireless communications using GaAs FET switch," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 807-810, Dec. 2015, doi: 10.1109/LAWP.2014.2380436.        Google Scholar

44. Bhattacharya, A. and R. Jyoti, "Frequency reconfigurable patch antenna using PIN diode at X-band," 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), 81-86, Kolkata, India, Jul. 2015, doi: 10.1109/ReTIS.2015.7232857.        Google Scholar

45. Ali, M., A. T. M. Sayem, and V. K. Kunda, "A reconfigurable stacked microstrip patch antenna for satellite and terrestrial links," IEEE Trans. Veh. Technol., Vol. 56, No. 2, 426-435, Mar. 2007, doi: 10.1109/TVT.2007.891412.        Google Scholar

46. Lotfi, P., S. Soltani, and R. D. Murch, "Printed endfire beam-steerable pixel antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 3913-3923, Aug. 2017, doi: 10.1109/TAP.2017.2716399.        Google Scholar

47. George, R., S. Kumar, S. A. Gangal, and M. Joshi, "Frequency reconfigurable pixel antenna with PIN diodes," Progress In Electromagnetics Research Letters, Vol. 86, 59-65, 2019.        Google Scholar

48. Sulakshana, C. and L. Anjaneyulu, "A compact reconfigurable antenna with frequency, polarization and pattern diversity," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 15, 1953-1964, Oct. 2015, doi: 10.1080/09205071.2015.1068229.        Google Scholar

49. Wang, M., et al. "Design and measurement of a Ku-band pattern-reconfigurable array antenna using 16 O-slot patch elements with p-i-n diodes," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2373-2377, Dec. 2020, doi: 10.1109/LAWP.2020.3033355.        Google Scholar

50. Yashchyshyn, Y., et al. "28 GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 225-228, Feb. 2018, doi: 10.1109/LAWP.2017.2781262.        Google Scholar

51. Xiao, Y., B. Xi, M. Xiang, F. Yang, and Z. Chen, "1-bit wideband reconfigurable transmitarray unit cell based on PIN diodes in Ku-band," IEEE Antennas and Wireless Propagation Letters, 1, 2021, doi: 10.1109/LAWP.2021.3100494.        Google Scholar

52. Gregory, M. D., S. V. Martin, and D. H. Werner, "Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy," IEEE Antennas and Propagation Magazine, Vol. 57, No. 3, 48-59, Jun. 2015, doi: 10.1109/MAP.2015.2437277.        Google Scholar

53. Srivastava, S., P. Mishra, and R. K. Singh, "Design of a reconfigurable antenna with fractal geometry," 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON), 1-6, Allahabad, India, Dec. 2015, doi: 10.1109/UPCON.2015.7456687.        Google Scholar

54. Scarborough, C. P., D. H. Werner, and D. E. Wolfe, "Compact low-profile tunable metasurface-enabled antenna with near-arbitrary polarization," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2775-2783, Jul. 2016, doi: 10.1109/TAP.2016.2562666.        Google Scholar

55. Scarborough, C. P., D. H. Werner, and D. E. Wolfe, "Functionalized metamaterials enable frequency and polarization agility in a miniaturized lightweight antenna package," Advanced Electronic Materials, Vol. 2, No. 2, Art. no. 1500295, Feb. 2016.        Google Scholar

56. Luxey, C. and J.-M. Laheurte, "Effect of reactive loading in microstrip leaky wave antennas," Electronics Letters, Vol. 36, No. 15, 1259-1260, 2000, doi: 10.1049/el:20000932.        Google Scholar

57. Ouedraogo, R. O., E. J. Rothwell, and B. J. Greetis, "A reconfigurable microstrip leaky-wave antenna with a broadly steerable beam," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 3080-3083, Aug. 2011, doi: 10.1109/TAP.2011.2158970.        Google Scholar

58. Suntives, A. and S. V. Hum, "A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2540-2544, May 2012, doi: 10.1109/TAP.2012.2189726.        Google Scholar

59. Suntives, A. and S. V. Hum, "An electronically tunable half-mode substrate integrated waveguide leaky-wave antenna," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 3670-3674, 2011.        Google Scholar

60. Mohsen, M. K., M. S. M. Isa, A. A. M. Isa, M. K. Abdulhameed, and M. L. Attiah, "Achieving fixed-frequency beam scanning with a microstrip leaky-wave antenna using double-gap capacitor technique," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1502-1506, Jul. 2019, doi: 10.1109/LAWP.2019.2920940.        Google Scholar

61. Maryam, S. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.        Google Scholar

62. Prasad, G. R., et al. "Concentric ring structured reconfigurable antenna using MEMS switches for wireless communication applications," Wireless Personal Communications, Vol. 120, No. 1, 587-608, Sep. 2021, doi: 10.1007/s11277-021-08480-6.        Google Scholar

63. Xu, Y., Y. Tian, B. Zhang, J. Duan, and L. Yan, "A novel RF MEMS switch on frequency reconfigurable antenna application," Microsystem Technologies, Vol. 24, No. 9, 3833-3841, Sep. 2018, doi: 10.1007/s00542-018-3863-9.        Google Scholar

64. Bray, M. G. and D. H. Werner, "Passive switching of electromagnetic devices with memristors," Appl. Phys. Lett., Vol. 96, 073504/1-3, Feb. 2010, doi: 10.1063/1.3299020.        Google Scholar

65. Gregory, M. D. and D. H. Werner, "Application of the memristor in reconfigurable electromagnetic devices," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 239-248, Feb. 2015, doi: 10.1109/MAP.2015.2397153.        Google Scholar

66. Strukov, D. B., G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, Vol. 453, No. 7191, 80-83, May 2008, doi: 10.1038/nature06932.        Google Scholar

67. Werner, D. H. and M. D. Gregory, "The memristor in reconfigurable radio frequency devices," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, 2012, doi: 10.1109/APS.2012.6349274.        Google Scholar

68. Gregory, M. D. and D. H. Werner, "Reconfigurable electromagnetics devices enabled by a non-linear dopant drift memristor," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 563-564, 2014, doi: 10.1109/APS.2014.6904612.        Google Scholar

69. Zhao, G. and B. You, "A tunable bandpass-to-bandstop filter using memristor and varactors," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, Hangzhou, China, Dec. 2020, doi: 10.1109/NEMO49486.2020.9343581.        Google Scholar

70. Pi, S., M. Ghadiri-Sadrabadi, J. C. Bardin, and Q. Xia, "Nanoscale memristive radiofrequency switches," Nat. Commun., Vol. 6, No. 1, 7519, Nov. 2015, doi: 10.1038/ncomms8519.        Google Scholar

71. Wu, X., R. Ge, M. Kim, D. Akinwande, and J. C. Lee, "Atomristors: Non-volatile resistance switching in 2D monolayers," 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), 1-6, HI, USA, Feb. 2020, doi: 10.23919/PanPacific48324.2020.9059369.        Google Scholar

72. Kim, M., et al. "Zero-static power radio-frequency switches based on MoS2 atomristors," Nat. Commun., Vol. 9, No. 1, 2524, Dec. 2018, doi: 10.1038/s41467-018-04934-x.        Google Scholar

73. Wang, M., F. Lin, and M. Rais-Zadeh, "Need a change? Try GeTe: A reconfigurable filter using germanium telluride phase change RF switches," IEEE Microwave, Vol. 17, No. 12, 70-79, Dec. 2016, doi: 10.1109/MMM.2016.2608699.        Google Scholar

74. Chau, L., J. G. Ho, X. Lan, G. Altvater, R. M. Young, N. El-Hinnawy, et al. "Optically controlled GeTe phase change switch and its applications in recon gurable antenna arrays," Proc. SPIE, Vol. 9479, 947905, 2015, doi: 10.1117/12.2179852.        Google Scholar

75. Dumas-Bouchiat, F., C. Champeaux, A. Catherinot, A. Crunteanu, and P. Blondy, "RF-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition," Appl. Phys. Lett., Vol. 91, No. 22, 223505, Nov. 2007, doi: 10.1063/1.2815927.        Google Scholar

76. Hillman, C., P. A. Stupar, J. B. Hacker, Z. Griffith, M. Field, and M. Rodwell, "An ultra-low loss millimeter-wave solid state switch technology based on the metal-insulator-transition of vanadium dioxide," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-4, Jun. 2014, doi: 10.1109/MWSYM.2014.6848479.        Google Scholar

77. Field, M., C. Hillman, P. Stupar, J. Hacker, Z. Griffith, and K.-J. Lee, "Vanadium dioxide phase change switches," Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2015, Vol. 9479, 947908, May 2015, doi: 10.1117/12.2179851.        Google Scholar

78. Hillman, C., P. A. Stupar, and Z. Griffith, "VO2 switches for millimeter and submillimeter-wave applications," 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, Oct. 2015, doi: 10.1109/CSICS.2015.7314528.        Google Scholar

79. Liu, L., L. Kang, T. S. Mayer, and D. H. Werner, "Hybrid metamaterials for electrically triggered multifunctional control," Nature Communications, Vol. 7, No. 13236, 1-8, 2016.        Google Scholar

80. Vaseem, M., Z. Su, S. Yang, and A. Shamim, "Fully printed flexible and reconfigurable antenna with novel phase change VO2 Ink based switch," 2018 International Flexible Electronics Technology Conference (IFETC), 1-2, Aug. 2018, doi: 10.1109/IFETC.2018.8583904.        Google Scholar

81. Yang, S., M. Vaseem, and A. Shamim, "Fully inkjet-printed VO2-based radio-frequency switches for flexible reconfigurable components," Advanced Materials Technologies, Vol. 4, No. 1, 1800276, 2019, doi: 10.1002/admt.201800276.        Google Scholar

82. Vaseem, M., S. Zhen, S. Yang, and A. Shamim, "A fully printed switch based on VO2 ink for reconfigurable RF components," 2018 48th European Microwave Conference (EuMC), 487-490, Sep. 2018, doi: 10.23919/EuMC.2018.8541794.        Google Scholar

83. Chua, E. K., et al. "Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications," Appl. Phys. Lett., Vol. 97, No. 18, 183506, Nov. 2010, doi: 10.1063/1.3508954.        Google Scholar

84. Lo, H., et al. "Three-terminal probe reconfigurable phase-change material switches," IEEE Transactions on Electron Devices, Vol. 57, No. 1, 312-320, Jan. 2010, doi: 10.1109/TED.2009.2035533.        Google Scholar

85. El-Hinnawy, N., et al. "A 7.3 THz cut-off frequency, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation," 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4, Oct. 2013, doi: 10.1109/CSICS.2013.6659195.        Google Scholar

86. El-Hinnawy, N., et al. "A four-terminal, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation," IEEE Electron Device Letters, Vol. 34, No. 10, 1313-1315, Oct. 2013, doi: 10.1109/LED.2013.2278816.        Google Scholar

87. El-Hinnawy, N., et al. "12.5 THz Fco GeTe inline phase-change switch technology for reconfigurable RF and switching applications," 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-3, Oct. 2014, doi: 10.1109/CSICS.2014.6978522.        Google Scholar

88. Shim, Y., G. Hummel, and M. Rais-Zadeh, "RF switches using phase change materials," 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 237-240, Taipei, Taiwan, Jan. 2013, doi: 10.1109/MEMSYS.2013.6474221.        Google Scholar

89. Léon, A., et al. "In-depth caracterisation of the structural phase change of germanium telluride for RF switches," 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Sep. 2017, doi: 10.1109/IMWS-AMP.2017.8247378.        Google Scholar

90. Moon, J.-S., H.-C. Seo, and D. Le, "Development toward high-power sub-1-ohm DC-67 GHz RF switches using phase change materials for reconfigurable RF front-end," 2014 IEEE MTT-S International Microwave Symposium (IMS 2014), 1-3, Jun. 2014, doi: 10.1109/MWSYM.2014.6848334.        Google Scholar

91. Moon, J.-S., H.-C. Seo, and D. Le, "High linearity 1-Ohm RF switches with phase-change materials," 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 7-9, Jan. 2014, doi: 10.1109/SiRF.2014.6828512.        Google Scholar

92. Moon, J.-S., et al. "11 THz figure-of-merit phase-change RF switches for reconfigurable wireless front-ends," 2015 IEEE MTT-S International Microwave Symposium, 1-4, May 2015, doi: 10.1109/MWSYM.2015.7167005.        Google Scholar

93. Léon, A., B. Reig, V. Puyal, E. Perret, P. Ferrari, and F. Podevin, "High performance and low energy consumption in phase change material RF switches," 2018 48th European Microwave Conference (EuMC), 491-494, Sep. 2018, doi: 10.23919/EuMC.2018.8541622.        Google Scholar

94. Moon, J.-S., H.-C. Seo, K.-A. Son, K. Lee, D. Zehnder, and H. Tai, "5 THz figure-of-merit reliable phase-change RF switches for millimeter-wave applications," 2018 IEEE/MTT-S International Microwave Symposium - IMS, 836-838, Jun. 2018, doi: 10.1109/MWSYM.2018.8439479.        Google Scholar

95. Iskander, M. F., Z. Yun, Z. Zhang, R. Jensen, and S. Redd, "Design of a low-cost 2-D beam-steering antenna using ferroelectric material and CTS technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 5, 1000-1003, May 2001, doi: 10.1109/22.920163.        Google Scholar

96. Lovat, G., P. Burghignoli, and S. Celozzi, "A tunable ferroelectric antenna for fixed-frequency scanning applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 353-356, 2006, doi: 10.1109/LAWP.2006.880694.        Google Scholar

97. Sazegar, M., et al. "Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 5, 1265-1273, May 2011, doi: 10.1109/TMTT.2010.2103092.        Google Scholar

98. Sazegar, M., Y. Zheng, H. Maune, X. Zhou, C. Damm, and R. Jakoby, "Compact left handed coplanar strip line phase shifter on screen printed BST," 2011 IEEE MTT-S International Microwave Symposium, 1-4, Jun. 2011, doi: 10.1109/MWSYM.2011.5972805.        Google Scholar

99. Aspe, B., et al. "Frequency-tunable slot-loop antenna based on KNN ferroelectric interdigitated varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1414-1418, Aug. 2021, doi: 10.1109/LAWP.2021.3084320.        Google Scholar

100. Giddens, H., H. Zhang, C. Yu, and Y. Hao, "Bulk ferroelectric materials for reconfigurable antenna applications," 12th European Conference on Antennas and Propagation (EuCAP 2018), 316 (4 pp.)-316 (4 pp.), London, UK, 2018, doi: 10.1049/cp.2018.0675.        Google Scholar

101. Hu, W., M. Y. Ismail, R. Cahill, J. A. Encinar, V. Fusco, H. S. Gamble, D. Linton, R. Dickie, N. Grant, and S. P. Rea, "Liquid-crystal-based reflectarray antenna with electronically switchable monopulse patterns," Electronics Letters, Vol. 43, No. 14, 744-745, Jul. 2007, doi: 10.1049/EL:20071098.        Google Scholar

102. Yang, F. and J. R. Sambles, "Determination of the permittivity of nematic liquid crystals in the microwave region," Liquid Crystals, Vol. 30, No. 5, 599-602, May 2003, doi: 10.1080/0267829031000097466.        Google Scholar

103. Mueller, S., et al. "Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1937-1945, Jun. 2005, doi: 10.1109/TMTT.2005.848842.        Google Scholar

104. Hu, W., et al. "Liquid crystal tunable mmWave frequency selective surface," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 9, 667-669, Sep. 2007, doi: 10.1109/LMWC.2007.903455.        Google Scholar

105. Bossard, J. A., et al. "Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1308-1320, May 2008, doi: 10.1109/TAP.2008.922174.        Google Scholar

106. Wang, X., D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Applied Physics Letters, Vol. 91, 143122/1-3, Oct. 2007, doi: 10.1063/1.2795345.        Google Scholar

107. Kwon, D.-H., D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad metamaterial with a tunable negative-zero-positive index of refraction," Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, 2828-2831, Honolulu, Hawaii, USA, Jun. 10-15, 2007.        Google Scholar

108. Wang, X., D.-H. Kwon, D. H. Werner, and I.-C. Khoo, "Anisotropic liquid crystals for tunable optical negative-index metamaterials," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008, doi: 10.1109/APS.2008.4619734.        Google Scholar

109. Werner, D. H., D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Optics Express, Vol. 15, No. 6, 3342-3347, Mar. 19, 2007, doi: 10.1364/OE.15.003342.        Google Scholar

110. Liu, L. and R. J. Langley, "Liquid crystal tunable microstrip patch antenna," Electronics Letters, Vol. 44, No. 20, 1179-1180, Sep. 2008, doi: 10.1049/el:20081995.        Google Scholar

111. Perez-Palomino, G., et al. "Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015, doi: 10.1109/TAP.2015.2434421.        Google Scholar

112. Gibson, J. and S. V. Georgakopoulos, "Reconfigurable antenna using shape memory polymers," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1673-1674, Jun. 2016, doi: 10.1109/APS.2016.7696543.        Google Scholar

113. Dai, J.-W., H.-L. Peng, Y.-P. Zhang, and J.-F. Mao, "A novel tunable microstrip patch antenna using liquid crystal," Progress In Electromagnetics Research C, Vol. 71, 101-109, 2017.        Google Scholar

114. Xu, G., H.-L. Peng, C. Sun, J.-G. Lu, Y. Zhang, and W.-Y. Yin, "Differential probe fed liquid crystal-based frequency tunable circular ring patch antenna," IEEE Access, Vol. 6, 3051-3058, 2018, doi: 10.1109/ACCESS.2017.2786870.        Google Scholar

115. Sboui, F., J. Machac, L. Latrach, and A. Gharsallah, "Triple band tunable SIW cavity antenna with cristal liquid materials for wireless applications," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 1-4, Hammamet, Tunisia, Oct. 2019, doi: 10.1109/MMS48040.2019.9157250.        Google Scholar

116. Jiang, D., et al. "Liquid crystal-based wideband reconfigurable leaky wave X-band antenna," IEEE Access, Vol. 7, 127320-127326, 2019, doi: 10.1109/ACCESS.2019.2939097.        Google Scholar

117. Hu, Z., S. Wang, Z. Shen, and W. Wu, "Broadband polarization-reconfigurable water spiral antenna of low profile," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1377-1380, 2017, doi: 10.1109/LAWP.2016.2636923.        Google Scholar

118. Wang, S., L. Zhu, and W. Wu, "A novel frequency-reconfigurable patch antenna using low-loss transformer oil," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7316-7321, Dec. 2017, doi: 10.1109/TAP.2017.2758204.        Google Scholar

119. Singh, A., I. Goode, and C. E. Saavedra, "A multistate frequency reconfigurable monopole antenna using fluidic channels," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 856-860, May 2019, doi: 10.1109/LAWP.2019.2903781.        Google Scholar

120. Chen, Z., H.-Z. Li, H. Wong, X. Zhang, and T. Yuan, "A circularly-polarized-reconfigurable patch antenna with liquid dielectric," IEEE Open J. Antennas Propag., Vol. 2, 396-401, 2021, doi: 10.1109/OJAP.2021.3064996.        Google Scholar

121. Schwering, F. K. and S.-T. Peng, "Design of dielectric grating antennas for millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, No. 2, 199-209, Feb. 1983, doi: 10.1109/TMTT.1983.1131458.        Google Scholar

122. Hammad, H. F., Y. M. M. Antar, A. P. Freundorfer, and M. Sayer, "A new dielectric grating antenna at millimeter wave frequency," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 36-44, Jan. 2004, doi: 10.1109/TAP.2003.820977.        Google Scholar

123. Ma, Z. L., K. B. Ng, C. H. Chan, and L. J. Jiang, "A novel supercell-based dielectric grating dual-beam leaky-wave antenna for 60-GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5521-5526, Dec. 2016, doi: 10.1109/TAP.2016.2621031.        Google Scholar

124. Li, J., M. He, C. Wu, and C. Zhang, "Radiation-pattern-reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1771-1775, 2017, doi: 10.1109/LAWP.2017.2676121.        Google Scholar

125. Li, J., M. He, C. Zhang, and H. Sun, "Design of reconfigurable graphene leaky-wave antenna based on dielectric grating," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 104-106, 2016, doi: 10.1109/ICMMT.2016.7761691.        Google Scholar

126. Hu, Z., Z. Shen, and W. Wu, "Reconfigurable leaky-wave antenna based on periodic water grating," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 134-137, 2014, doi: 10.1109/LAWP.2014.2298245.        Google Scholar

127. Lee, C., P. Mak, and A. De Fonzo, "Optical control of millimeter-wave propagation in dielectric waveguides," IEEE Journal of Quantum Electronics, Vol. 16, No. 3, 277-288, Mar. 1980, doi: 10.1109/JQE.1980.1070468.        Google Scholar

128. Pendharker, S., R. K. Shevgaonkar, and A. N. Chandorkar, "Optically controlled frequency switching band stop filter," 2012 IEEE Asia-Pacific Conference on Antennas and Propagation, 151-152, Aug. 2012, doi: 10.1109/APCAP.2012.6333201.        Google Scholar

129. Ojaroudi Parchin, N., H. Jahanbakhsh Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, "Reconfigurable antennas: Switching techniques - A survey," Electronics, Vol. 9, No. 2, 336, Feb. 2020.        Google Scholar

130. Tawk, Y., A. R. Albrecht, S. Hemmady, G. Balakrishnan, and C. G. Christodoulou, "Optically pumped frequency reconfigurable antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 280-283, 2010, doi: 10.1109/LAWP.2010.2047373.        Google Scholar

131. Tawk, Y., J. Costantine, S. Hemmady, G. Balakrishnan, K. Avery, and C. G. Christodoulou, "Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS)," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1075-1083, Feb. 2012, doi: 10.1109/TAP.2011.2173139.        Google Scholar

132. Zhao, D., Y. Han, F. Liang, Q. Zhang, and B.-Z. Wang, "Low-power optically controlled patch antenna of reconfigurable beams," International Journal of Antennas and Propagation, Aug. 28, 2014, https://www.hindawi.com/journals/ijap/2014/978258/ (accessed Jan. 22, 2021).        Google Scholar

133. Pendharker, S., R. K. Shevgaonkar, and A. N. Chandorkar, "Optically controlled frequency-reconfigurable microstrip antenna with low photoconductivity," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 99-102, 2014, doi: 10.1109/LAWP.2013.2296621.        Google Scholar

134. Silva, L. G., A. A. C. Alves, and A. C. Sodré, "Optically controlled reconfigurable filtenna," International Journal of Antennas and Propagation, Vol. 2016, Article ID 7161070, 9 pages, Mar. 2016, doi: 10.1155/2016/7161070.        Google Scholar

135. Sodré, A. C., I. Feliciano da Costa, L. T. Manera, and J. A. Diniz, "Optically controlled reconfigurable antenna array based on E-shaped elements," International Journal of Antennas and Propagation, Apr. 27, 2014, https://www.hindawi.com/journals/ijap/2014/750208/ (accessed Jan. 18, 2021).        Google Scholar

136. Shepeleva, E., M. Makurin, A. Vilenskiy, and S. Chernyshev, "MM-wave patch antenna with embedded photoconductive elements for 1-bit phase shifting," 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), 578-581, Rome, Italy, Jun. 17-20, 2019.        Google Scholar

137. Zhao, D., Y. Han, Q. Zhang, and B.-Z. Wang, "Experimental study of silicon-based microwave switches optically driven by LEDs," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2768-2774, 2015, doi: https://doi.org/10.1002/mop.29435.        Google Scholar

138. Patron, D., A. S. Daryoush, and K. R. Dandekar, "Optical control of reconfigurable antennas and application to a novel pattern-reconfigurable planar design," Journal of Lightwave Technology, Vol. 32, No. 20, 3394-3402, Oct. 2014, doi: 10.1109/JLT.2014.2321406.        Google Scholar

139. Da Costa, I. F., C. S. Arismar, E. Reis, D. H. Spadoti, and J. R. M. Neto, "Optically controlled reconfigurable antenna array based on a slotted circular waveguide," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-4, Apr. 2015.        Google Scholar

140. Da Costa, I. F., A. C. S, D. H. Spadoti, L. G. da Silva, J. A. J. Ribeiro, and S. E. Barbin, "Optically controlled reconfigurable antenna array for mm-Wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2142-2145, 2017, doi: 10.1109/LAWP.2017.2700284.        Google Scholar

141. Da Costa, I. F., et al. "Photonics-assisted wireless link based on mm-Wave reconfigurable antennas," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 2071-2076, 2017, doi: 10.1049/iet-map.2017.0178.        Google Scholar

142. Da Costa, I. F., et al. "Optically controlled reconfigurable antenna for 5G future broadband cellular communication networks," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 1, 208-217, Mar. 2017, doi: 10.1590/2179-10742017v16i1883.        Google Scholar

143. Collett, M. A., C. D. Gamlath, and M. Cryan, "An optically tunable cavity-backed slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6134-6139, Nov. 2017, doi: 10.1109/TAP.2017.2755726.        Google Scholar

144. Zhang, Y., A. W. Pang, and M. J. Cryan, "Optically controlled millimetre-wave switch with stepped-impedance lines," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1737-1741, 2019, doi: https://doi.org/10.1049/iet-map.2018.6191.        Google Scholar

145. Fang, C.-Y., H.-H. Lin, M. Alouini, Y. Fainman, and A. El Amili, "Microwave signal switching on a silicon photonic chip," Scientific Reports, Vol. 9, No. 1, Art. no. 1, Aug. 2019, doi: 10.1038/s41598-019-47683-7.        Google Scholar

146. Drisko, J. A., A. D. Feldman, F. Quinlan, J. C. Booth, N. D. Orloff, and C. J. Long, "Impedance tuning with photoconductors to 40 GHz," IET Optoelectronics, Vol. 13, No. 4, 177-182, 2019, doi: https://doi.org/10.1049/iet-opt.2018.5102.        Google Scholar

147. Hum, S. V., M. Okoniewski, and R. J. Davies, "Modeling and design of electronically tunable reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2200-2210, Aug. 2007, doi: 10.1109/TAP.2007.902002.        Google Scholar

148. Martinez-De-Rioja, D., E. Martinez-De-Rioja, J. A. Encinar, R. Florencio, and G. Toso, "Reflectarray to generate four adjacent beams per feed for multispot satellite antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1265-1269, Feb. 2019, doi: 10.1109/TAP.2018.2880117.        Google Scholar

149. Martinez-de-Rioja, D., R. Florencio, J. A. Encinar, E. Carrasco, and R. R. Boix, "Dual-frequency reflectarray cell to provide opposite phase shift in dual circular polarization with application in multibeam satellite antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1591-1595, Aug. 2019, doi: 10.1109/LAWP.2019.2924354.        Google Scholar

150. Martinez-de-Rioja, E., et al. "Advanced multibeam antenna configurations based on reflectarrays: Providing multispot coverage with a smaller number of apertures for satellite communications in the K and Ka bands," IEEE Antennas and Propagation Magazine, Vol. 61, No. 5, 77-86, Oct. 2019, doi: 10.1109/MAP.2019.2932311.        Google Scholar

151. Martinez-de-Rioja, D., R. Florencio, E. Martinez-de-Rioja, M. Arrebola, J. A. Encinar, and R. R. Boix, "Dual-band reflectarray to generate two spaced beams in orthogonal circular polarization by variable rotation technique," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4617-4626, Jun. 2020, doi: 10.1109/TAP.2020.2975294.        Google Scholar

152. Zhang, M., et al. "Design of novel reconfigurable reflectarrays with single-bit phase resolution for Ku-band satellite antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1634-1641, May 2016, doi: 10.1109/TAP.2016.2535166.        Google Scholar

153. Martinez, I., A. H. Panaretos, and D. H. Werner, "Reconfigurable ultrathin beam redirecting metasurfaces for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1915-1918, 2017, doi: 10.1109/LAWP.2017.2686779.        Google Scholar

154. Ren, L.-S., Y.-C. Jiao, F. Li, J.-J. Zhao, and G. Zhao, "A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 407-410, 2011.        Google Scholar

155. Chaharmir, M. R., J. Shaker, M. Cuhaci, and A. Sebak, "Circularly polarised reflectarray with cross-slot of varying arms on ground plane," Electronics Letters, Vol. 38, No. 24, 1492-1493, Nov. 2002.        Google Scholar

156. Wu, G.-B., S.-W. Qu, S. Yang, and C. H. Chan, "Broadband, single-layer dual circularly polarized reflectarrays with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4235-4241, Oct. 2016, doi: 10.1109/TAP.2016.2593873.        Google Scholar

157. Momeni Hasan Abadi, S. M. A. and N. Behdad, "Broadband true-time-delay circularly polarized reflectarray with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4891-4896, Nov. 2016, doi: 10.1109/TAP.2016.2596900.        Google Scholar

158. Kaddour, A.-S., et al. "A foldable and reconfigurable monolithic reflectarray for space applications," IEEE Access, Vol. 8, 219355-219366, 2020, doi: 10.1109/ACCESS.2020.3042949.        Google Scholar

159. Su, W., W. Luo, Z. Nie, W.-W. Liu, Z.-H. Cao, and Z. Wang, "A wideband folded reflectarray antenna based on single-layered polarization rotating metasurface," IEEE Access, Vol. 8, 158579-158584, 2020, doi: 10.1109/ACCESS.2020.3019822.        Google Scholar

160. Abdollahvand, M., K. Forooraghi, J. A. Encinar, Z. Atlasbaf, and E. Martinez-de-Rioja, "A 20/30 GHz reflectarray backed by FSS for shared aperture Ku/Ka-band satellite communication antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 4, 566-570, Apr. 2020, doi: 10.1109/LAWP.2020.2972024.        Google Scholar

161. Di Renzo, M., et al. "Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2450-2525, 2020.        Google Scholar

162. Liaskos, C., S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, "A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems," Ad Hoc Networks, Vol. 87, 1-16, May 2019, doi: 10.1016/j.adhoc.2018.11.001.        Google Scholar

163. Arun, V. and H. Balakrishnan, "RFocus: Beamforming using thousands of passive antennas," 17th USENIX Symposium on Networked Systems Design and Implementation, 17, Feb. 2020.        Google Scholar

164. Roberts, J., K. L. Ford, and J. M. Rigelsford, "Secure electromagnetic buildings using slow phase-switching frequency-selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 251-261, Jan. 2016, doi: 10.1109/TAP.2015.2499773.        Google Scholar

165. Tan, X., Z. Sun, J. M. Jornet, and D. Pados, "Increasing indoor spectrum sharing capacity using smart reflectarray," 2016 IEEE International Conference on Communications (ICC), 1-6, May 2016, doi: 10.1109/ICC.2016.7510962.        Google Scholar

166. "DOCOMO conducts World's first successful trial of transparent dynamic metasurface,", NTT DoCoMo, Inc., Tokyo, Japan, Jan. 17, 2020. [Online]. Available: https://www.nttdocomo.co.jp/english/info/media_center/pr/2020/0117_00.html#:~:text=TOKY-O%2C%20JAPAN%2C%20January%2017%2C,28%20GHz%205G%20radio%20signals, Accessed on: May 12, 2021.        Google Scholar

167. Black, E. J., "Holographic beam forming and MIMO,", Pivotal Commware, Inc., Kirkland, WA, USA, Jan. 17, Oct. 2018. [Online]. Available: https://pivotalcommware.com/technology/, Accessed on: May 12, 2021.        Google Scholar

168. Pivotal Staff "Holographic beam forming and phased arrays,", Pivotal Commware, Inc., Kirkland, WA, USA, 2019. [Online]. Available: https://pivotalcommware.com/technology/, Accessed on: May 12, 2021.        Google Scholar

169. Samaiyar, A., A. H. Abdelrahman, L. B. Boskovic, and D. S. Filipovic, "Extreme offset-fed reflectarray antenna for compact deployable platforms," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1139-1143, Jun. 2019, doi: 10.1109/LAWP.2019.2911019.        Google Scholar

170. Mei, P., S. Zhang, and G. F. Pedersen, "A low-cost, high-efficiency and full-metal reflectarray antenna with mechanically 2-D beam-steerable capabilities for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6997-7006, Oct. 2020, doi: 10.1109/TAP.2020.2993077.        Google Scholar

171. Wu, G., Y. Zeng, K. F. Chan, B. Chen, S. Qu, and C. H. Chan, "High-gain filtering reflectarray antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 805-812, Feb. 2020, doi: 10.1109/TAP.2019.2943432.        Google Scholar

172. An, W., L. Xiong, S. Xu, F. Yang, H. Fu, and J. Ma, "A Ka-band high-efficiency transparent reflectarray antenna integrated with solar cells," IEEE Access, Vol. 6, 60843-60851, 2018, doi: 10.1109/ACCESS.2018.2875359.        Google Scholar

173. Chen, Y.-S., Y.-H. Wu, and C.-C. Chung, "Solar-powered active integrated antennas backed by a transparent reflectarray for CubeSat applications," IEEE Access, Vol. 8, 137934-137946, 2020, doi: 10.1109/ACCESS.2020.3012133.        Google Scholar

174. Yekan, T. and R. Baktur, "Conformal integrated solar panel antennas: Two effective integration methods of antennas with solar cells," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 69-78, Apr. 2017, doi: 10.1109/MAP.2017.2655577.        Google Scholar

175. Jenkins, R. P., et al. "A low-power tunable frequency selective surface for multiplexed remote sensing," IEEE Access, Vol. 9, 58478-58486, 2021, doi: 10.1109/ACCESS.2021.3070715.        Google Scholar