Vol. 171
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-09-20
Free-Electron Radiation Engineering via Structured Environments
By
Progress In Electromagnetics Research, Vol. 171, 75-88, 2021
Abstract
Free-electron radiation results from the interaction between swift electrons and the local electromagnetic environment. Recent advances inmaterial technologies provide powerful tools to control light emission from free electrons and may facilitate many intriguing applications of free-electron radiation in particle detections, lasers, quantum information processing, etc. Here, we provide a brief overview on the recent theoretical developments and experimental observations of spontaneous free-electron radiation in various structured environments, including two-dimensional materials, metasurfaces, metamaterials, and photonic crystals. We also report the research progresses on the stimulated free-electron radiation that results from the interaction between free electrons and photonic quasi-particles induced by the external field. Moreover, we provide an outlook of potential research directions for this vigorous realm of free-electron radiation.
Citation
Hao Hu, Xiao Lin, and Yu Luo, "Free-Electron Radiation Engineering via Structured Environments," Progress In Electromagnetics Research, Vol. 171, 75-88, 2021.
doi:10.2528/PIER21081303
References

1. Čerenkov, P., "Visible light from pure liquids under the impact of γ-rays," Dokl. Akad. Nauk SSSR, Vol. 2, 451-457, 1934.        Google Scholar

2. Tamm, I. and I. Frank, "Coherent radiation of fast electrons in a medium," Dokl. Akad. Nauk SSSR, Vol. 14, 107-112, 1937.        Google Scholar

3. Ypsilantis, T. and J. Séguinot, "Theory of ring imaging Cherenkov counters," Nucl. Instrum. Meth. A, Vol. 343, 30-51, 1994.        Google Scholar

4. Abashian, A., K. Gotow, N. Morgan, L. Piilonen, S. Schrenk, K. Abe, I. Adachi, J. Alexander, K. Aoki, and S. Behari, "The belle detector," Nucl. Instrum. Meth. A, Vol. 479, 117-232, 2002.        Google Scholar

5. Adam, I., R. Aleksan, L. Amerman, E. Antokhin, D. Aston, P. Bailly, C. Beigbeder, M. Benkebil, P. Besson, and G. Bonneaud, "The DIRC particle identification system for the BaBar experiment," Nucl. Instrum. Meth. A, Vol. 538, 281-357, 2005.        Google Scholar

6. Elder, F., A. Gurewitsch, R. Langmuir, and H. Pollock, "Radiation from electrons in a synchrotron," Phys. Rev., Vol. 71, 829, 1947.        Google Scholar

7. Ginzburg, V., "Transition radiation and transition scattering," Phys. Scr., Vol. 1982, 182, 1982.        Google Scholar

8. Happek, U., A. Sievers, and E. Blum, "Observation of coherent transition radiation," Phys. Rev. Lett., Vol. 67, 2962, 1991.        Google Scholar

9. Smith, S. J. and E. Purcell, "Visible light from localized surface charges moving across a grating," Phys. Rev., Vol. 92, 1069, 1953.        Google Scholar

10. Koch, H. and J. Motz, "Bremsstrahlung cross-section formulas and related data," Rev. Mod. Phys., Vol. 31, 920, 1959.        Google Scholar

11. Tian, H., J. Tice, R. Fei, V. Tran, X. Yan, L. Yang, and H. Wang, "Low-symmetry two-dimensional materials for electronic and photonic applications," Nano Today, Vol. 11, 763-777, 2016.        Google Scholar

12. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nat. Mater., Vol. 9, 387-396, 2010.        Google Scholar

13. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 1st Ed., 1995.

14. Khanikaev, A. B., S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nat. Mater., Vol. 12, 233-239, 2013.        Google Scholar

15. Liu, S., P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, "Surface polariton Cherenkov light radiation source," Phys. Rev. Lett., Vol. 109, 153902, 2012.        Google Scholar

16. Tao, J., Q. J. Wang, J. Zhang, and Y. Luo, "Reverse surface-polariton Cherenkov radiation," Sci. Rep., Vol. 6, 1-8, 2016.        Google Scholar

17. Massuda, A., C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, and M. Soljačić, "Smith-Purcell radiation from low-energy electrons," ACS Photonics, Vol. 5, 3513-3518, 2018.        Google Scholar

18. Su, Z., F. Cheng, L. Li, and Y. Liu, "Complete control of Smith-Purcell radiation by graphene metasurfaces," ACS Photonics, Vol. 6, 1947-1954, 2019.        Google Scholar

19. Su, Z., B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, and Y. Liu, "Manipulating Cherenkov radiation and Smith-Purcell radiation by artificial structures," Adv. Opt. Mater., Vol. 7, 1801666, 2019.        Google Scholar

20. Hu, H., D. Gao, X. Lin, S. Hou, B. Zhang, Q. J. Wang, and Y. Luo, "Directing Cherenkov photons with spatial nonlocality," Nanophotonics, Vol. 9, 3435-3442, 2020.        Google Scholar

21. Burlak, G. and E. Martinez-Sanchez, "Change of structure of the Cherenkov emission at modulated source in dispersive metamaterials," Progress In Electromagnetics Research, Vol. 139, 277-288, 2013.        Google Scholar

22. Burlak, G. and E. Martinez-Sanchez, "The Cherenkov emission in regular and random photonic crystals," Progress In Electromagnetics Research M, Vol. 47, 77-86, 2016.        Google Scholar

23. Liu, Y. and L. Ang, "Motion-induced radiation from electrons moving in Maxwell's fish-eye," Sci. Rep., Vol. 3, 1-7, 2013.        Google Scholar

24. Vorobev, V. V. and A. V. Tyukhtin, "Nondivergent Cherenkov radiation in a wire metamaterial," Phys. Rev. Lett., Vol. 108, 184801, 2012.        Google Scholar

25. Liu, F., L. Xiao, Y. Ye, M.Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, "Integrated Cherenkov radiation emitter eliminating the electron velocity threshold," Nat. Photonics, Vol. 11, 289-292, 2017.        Google Scholar

26. Chen, H. and M. Chen, "Flipping photons backward: Reversed Cherenkov radiation," Mater. Today, Vol. 14, 34-41, 2011.        Google Scholar

27. Rivera, N. and I. Kaminer, "Light-matter interactions with photonic quasiparticles," Nat. Rev. Phys., Vol. 2, 538-561, 2020.        Google Scholar

28. García de Abajo, F. J. and V. Di Giulio, "Optical excitations with electron beams: Challenges and opportunities," ACS Photonics, Vol. 8, 945-974, 2021.        Google Scholar

29. Xia, F., H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, "Two-dimensional material nanophotonics," Nat. Photonics, Vol. 8, 899-907, 2014.        Google Scholar

30. Koppens, F. H., D. E. Chang, and F. J. García de Abajo, "Graphene plasmonics: A platform for strong light-matter interactions," Nano Lett., Vol. 11, 3370-3377, 2011.        Google Scholar

31. Lin, X., Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, "All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures," Proc. Natl. Acad. Sci., Vol. 114, 6717-6721, 2017.        Google Scholar

32. Jiang, Y., X. Lin, and H. Chen, "Directional polaritonic excitation of circular, huygens and janus dipoles in graphene-hexagonal boron nitride heterostructures," Progress In Electromagnetics Research, Vol. 170, 169-176, 2021.        Google Scholar

33. Wang, C., C. Qian, H. Hu, L. Shen, Z. J. Wang, H. Wang, Z. Xu, B. Zhang, H. Chen, and X. Lin, "Superscattering of light in refractive-index near-zero environments," Progress In Electromagnetics Research, Vol. 168, 15-23, 2020.        Google Scholar

34. Garcia de Abajo, F. J., "Graphene plasmonics: Challenges and opportunities," Acs Photonics, Vol. 1, 135-152, 2014.        Google Scholar

35. Zhao, T., M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, "Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam," Applied Physics Letters, Vol. 110, 231102, 2017.        Google Scholar

36. Tao, J., L. Wu, and G. Zheng, "Graphene surface-polariton in-plane Cherenkov radiation," Carbon, Vol. 133, 249-253, 2018.        Google Scholar

37. Rosolen, G., L. J. Wong, N. Rivera, B. Maes, M. Soljačić, and I. Kaminer, "Metasurface-based multi-harmonic free-electron light source," Light: Sci. Appl., Vol. 7, 1-12, 2018.        Google Scholar

38. Pizzi, A., G. Rosolen, L. J. Wong, R. Ischebeck, M. Soljačić, T. Feurer, and I. Kaminer, "Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and X-ray sources," Adv. Sci., Vol. 7, 1901609, 2020.        Google Scholar

39. Zhang, X., M. Hu, Z. Zhang, Y. Wang, T. Zhang, X. Xu, T. Zhao, Z. Wu, R. Zhong, and D. Liu, "High-efficiency threshold-less Cherenkov radiation generation by a graphene hyperbolic grating in the terahertz band," Carbon, Vol. 183, 225-231, 2021.        Google Scholar

40. Lin, X., I. Kaminer, X. Shi, F. Gao, Z. Yang, Z. Gao, H. Buljan, J. D. Joannopoulos, M. Soljačić, and H. Chen, "Splashing transients of 2D plasmons launched by swift electrons," Sci. Adv., Vol. 3, e1601192, 2017.        Google Scholar

41. Chen, J., H. Chen, and X. Lin, "Photonic and plasmonic transition radiation from graphene," Journal of Optics, Vol. 23, 034001, 2021.        Google Scholar

42. Cox, J. D. and F. J. Garcia de Abajo, "Nonlinear interactions between free electrons and nanographenes," Nano Lett., Vol. 20, 4792-4800, 2020.        Google Scholar

43. Kaminer, I., Y. T. Katan, H. Buljan, Y. Shen, O. Ilic, J. J. López, L. J. Wong, J. D. Joannopoulos, and M. Soljačić, "Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene," Nat. Commun., Vol. 7, 1-9, 2016.        Google Scholar

44. Wong, L. J., I. Kaminer, O. Ilic, J. D. Joannopoulos, and M. Soljačić, "Towards graphene plasmon-based free-electron infrared to X-ray sources," Nat. Photonics, Vol. 10, 46-52, 2016.        Google Scholar

45. Geim, A. K. and I. V. Grigorieva, "Van der Waals heterostructures," Nature, Vol. 499, 419-425, 2013.        Google Scholar

46. Govyadinov, A. A., A. Konečná, A. Chuvilin, S. Vélez, I. Dolado, A. Y. Nikitin, S. Lopatin, F. Casanova, L. E. Hueso, and J. Aizpurua, "Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope," Nat. Commun., Vol. 8, 1-10, 2017.        Google Scholar

47. Maciel-Escudero, C., A. Konečná, R. Hillenbrand, and J. Aizpurua, "Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: Hexagonal boron nitride," Phys. Rev. B, Vol. 102, 115431, 2020.        Google Scholar

48. Tao, J., L. Wu, G. Zheng, and S. Yu, "Cherenkov polaritonic radiation in a natural hyperbolic material," Carbon, Vol. 150, 136-141, 2019.        Google Scholar

49. Zhang, Y., C. Hu, B. Lyu, H. Li, Z. Ying, L. Wang, A. Deng, X. Luo, Q. Gao, and J. Chen, "Tunable Cherenkov radiation of phonon Polaritons in silver nanowire/hexagonal boron nitride heterostructures," Nano Lett., Vol. 20, 2770-2777, 2020.        Google Scholar

50. Xi, S., H. Chen, T. Jiang, L. Ran, J. Huangfu, B.-I. Wu, J. A. Kong, and M. Chen, "Experimental verification of reversed Cherenkov radiation in left-handed metamaterial," Phys. Rev. Lett., Vol. 103, 194801, 2009.        Google Scholar

51. Duan, Z., X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, "Observation of the reversed Cherenkov radiation," Nat. Commun., Vol. 8, 1-7, 2017.        Google Scholar

52. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.        Google Scholar

53. Zhang, B. and B.-I. Wu, "Electromagnetic detection of a perfect invisibility cloak," Phys. Rev. Lett., Vol. 103, 243901, 2009.        Google Scholar

54. Hu, H., X. Lin, J. Zhang, D. Liu, P. Genevet, B. Zhang, and Y. Luo, "Nonlocality induced Cherenkov threshold," Laser Photonics Rev., Vol. 14, 2000149, 2020.        Google Scholar

55. Hu, H., J. Zhang, S. A. Maier, and Y. Luo, "Enhancing third-harmonic generation with spatial nonlocality," ACS Photonics, Vol. 5, 592-598, 2018.        Google Scholar

56. Luo, C., M. Ibanescu, S. G. Johnson, and J. Joannopoulos, "Cerenkov radiation in photonic crystals," Science, Vol. 299, 368-371, 2003.        Google Scholar

57. Adamo, G., K. F. MacDonald, Y. Fu, C. Wang, D. Tsai, F. G. De Abajo, and N. Zheludev, "Light well: A tunable free-electron light source on a chip," Phys. Rev. Lett., Vol. 103, 113901, 2009.        Google Scholar

58. Song, Y., N. Jiang, L. Liu, X. Hu, and J. Zi, "Cherenkov radiation from photonic bound states in the continuum: Towards compact free-electron lasers," Phys. Rev. Appl., Vol. 10, 064026, 2018.        Google Scholar

59. Yang, Y., A. Massuda, C. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, and M. Soljačić, "Maximal spontaneous photon emission and energy loss from free electrons," Nat. Phys., Vol. 14, 894-899, 2018.        Google Scholar

60. Yu, Y., K. Lai, J. Shao, J. Power, M. Conde, W. Liu, S. Doran, C. Jing, E. Wisniewski, and G. Shvets, "Transition radiation in photonic topological crystals: Quasiresonant excitation of robust edge states by a moving charge," Phys. Rev. Lett., Vol. 123, 057402, 2019.        Google Scholar

61. Piazza, L., T. Lummen, E. Quinonez, Y. Murooka, B. Reed, B. Barwick, and F. Carbone, "Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field," Nat. Commun., Vol. 6, 1-7, 2015.        Google Scholar

62. Kurman, Y., R. Dahan, H. H. Sheinfux, K. Wang, M. Yannai, Y. Adiv, O. Reinhardt, L. H. Tizei, S. Y. Woo, and J. Li, "Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons," Science, Vol. 372, 1181-1186, 2021.        Google Scholar

63. Wang, K., R. Dahan, M. Shentcis, Y. Kauffmann, A. B. Hayun, O. Reinhardt, S. Tsesses, and I. Kaminer, "Coherent interaction between free electrons and a photonic cavity," Nature, Vol. 582, 50-54, 2020.        Google Scholar

64. Dahan, R., S. Nehemia, M. Shentcis, O. Reinhardt, Y. Adiv, X. Shi, O. Be'er, M. H. Lynch, Y. Kurman, and K. Wang, "Resonant phase-matching between a light wave and a free-electron wavefunction," Nat. Phys., Vol. 16, 1123-1131, 2020.        Google Scholar

65. Vanacore, G. M., G. Berruto, I. Madan, E. Pomarico, P. Biagioni, R. Lamb, D. McGrouther, O. Reinhardt, I. Kaminer, and B. Barwick, "Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields," Nat. Mater., Vol. 18, 573-579, 2019.        Google Scholar

66. Galiffi, E., P. Huidobro, and J. Pendry, "Broadband nonreciprocal amplification in luminal metamaterials," Phys. Rev. Lett., Vol. 123, 206101, 2019.        Google Scholar

67. Oue, D., K. Ding, and J. Pendry, "Čerenkov radiation in vacuum from a superluminal grating,", arXiv preprint, Vol. arXiv:.13681, 2021, https://arxiv.org/abs/2105.13681.        Google Scholar

68. Sloan, J., N. Rivera, J. D. Joannopoulos, and M. Soljačić, "Two photon emission from superluminal and accelerating index perturbations,", arXiv preprint, Vol. arXiv:.09955, 2021, https://arxiv.org/abs/2103.09955.        Google Scholar

69. Rivera, N., I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, "Shrinking light to allow forbidden transitions on the atomic scale," Science, Vol. 353, 263-269, 2016.        Google Scholar

70. Ginis, V., J. Danckaert, I. Veretennicoff, and P. Tassin, "Controlling Cherenkov radiation with transformation-optical metamaterials," Phys. Rev. Lett., Vol. 113, 167402, 2014.        Google Scholar

71. Lin, X., S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Soljačić, and I. Kaminer, "Controlling Cherenkov angles with resonance transition radiation," Nat. Phys., Vol. 14, 816-821, 2018.        Google Scholar

72. Lin, X., H. Hu, S. Easo, Y. Yang, Y. Shen, K. Yin, M. P. Blago, I. Kaminer, B. Zhang, H. Chen, J. Joannopoulos, M. Soljačić, and Y. Luo, "A Brewster route to Cherenkov detectors,", arXiv preprint, Vol. arXiv:.11996, 2021, https://arxiv.org/abs/2107.11996.        Google Scholar

73. Hu, H., X. Lin, L. J. Wong, Q. Yang, B. Zhang, and Y. Luo, "Surface Dyakonov-Cherenkov radiation,", arXiv preprint, Vol. arXiv:.09533, 2020, https://arxiv.org/abs/2012.09533.        Google Scholar