1. Wang, Z., Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, "Reflection-free one-way edge modes in a gyromagnetic photonic crystal," Phys. Rev. Lett., Vol. 100, 013905, 2008. Google Scholar
2. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Phys. Rev. Lett., Vol. 114, 114301, 2015. Google Scholar
3. Xue, H., Y. Yang, G. Liu, F. Gao, Y. Chong, and B. Zhang, "Realization of an acoustic third-order topological insulator," Phys. Rev. Lett., Vol. 122, 244301, June 2019. Google Scholar
4. Ao, X., Z. Lin, and C. T. Chan, "One way edge modes in a magneto-optical honeycomb photonic crystal," Phys. Rev. B, Vol. 80, 033105, 2009. Google Scholar
5. Feng, Z., S. Tan, L. Tsang, and E. Li, "Band characterization of topological photonic crystals using the broadband Green's function technique," Optics Express, Vol. 28, No. 19, 27223, 2020. Google Scholar
6. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152-3155, 1990. Google Scholar
7. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett., Vol. 65, 2646-2649, 1990. Google Scholar
8. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, 8565-8571, 1991. Google Scholar
9. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
10. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, 11245-11251, 1996. Google Scholar
11. Zhao, R., G. D. Xie, M. L. N. Chen, Z. Lan, Z. Huang, and W. E. I. Sha, "First-Princip calculation of Chern number in gyrotropic photonic crystals," Optics Express, Vol. 28, 4638, 2020. Google Scholar
12. Nicolet, A., S. Guenneau, C. Geuzainec, and F. Zollaa, "Modelling of electromagnetic waves in periodic media with finite elements," Journal of Comp. and Appl. Math., Vol. 168, 321-329, 2004. Google Scholar
13. Jin, J. M., Finite Element Method in Electromagnetics, 3rd Ed., Wiley, 2014.
14. Korringa, J., "On the calculation of the energy of a Bloch wave in a metal," Physica, Vol. 13, 392-400, 1947. Google Scholar
15. Kohn, W. and N. Rostoker, "Solution of the Schrodinger Equation in periodic lattices with an application to metallic lithium," Phys. Rev., Vol. 94, 1111-1120, 1954. Google Scholar
16. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Phys. Rev. B, Vol. 48, 7767-7771, 1993. Google Scholar
17. Foldy, L. L., "The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers," Phys. Rev., Vol. 67, 107-119, 1945. Google Scholar
18. Lax, M., "Multiple scattering of waves," Rev. Mod. Phys., Vol. 23, 287-310, 1951. Google Scholar
19. Liu, Z., C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, "Elastic wave scattering by periodic structures of spherical objects: Theory and experiment," Phys. Rev. B, Vol. 62, 2446-2457, 2000. Google Scholar
20. Tsang, L., C. E. Mandy, and K. H. Ding, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations," Optics Letters, Vol. 17, 314-316, 1992. Google Scholar
21. Tse, K. K., L. Tsang, C. H. Chan, K. H. Ding, and K. W. Leung, "Multiple scattering of waves by dense random distribution of sticky particles for applications in microwave scattering by terrestrial snow," Radio Science, Vol. 42, 2007. Google Scholar
22. Chen, H. F., Q. Li, L. Tsang, C. C. Huang, and V. Jandhyala, "Analysis of a large number of vias and differential signaling in multilayered structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 818-829, 2003. Google Scholar
23. Tsang, L., H. F. Chem, C. C. Huang, and V. Jandhyala, "Methods for modeling interactions between massively coupled multiple vias in multilayered electronic packaging structures,", US patent, Number 7149666, 2006. Google Scholar
24. Mishchenko, M. I., L. D. Travis, and A. A. Laci's, Multiple Scattering of Light by Particles, Radiative Transfer and Coherent Backscattering, Cambridge University Press, 2006.
25. Mishchenko, M. I., L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, "Multiple scattering by random particulate media: Exact 3D results," Optics Express, Vol. 15, 2822-2836, 2007. Google Scholar
26. Waterman, P. C. and R. Truell, "Multiple scattering of waves," Journal of Mathematical Physics, Vol. 2, 512-537, 1961. Google Scholar
27. Faulkner, J. S., G. Malcolm, and Y. Wang, Multiple Scattering Theory, Electronic Structure of Solids, IOP Press, 2018.
28. Lai, Y., Z. Q. Zhang, C.H. Chan, and L. Tsang, "Gap structures and wave functions of classical waves in large-sized two-dimensional quasiperiodic structures," Phys. Rev. B, Vol. 74, 054305, 2006. Google Scholar
29. Van Hove, M. A. and S. Y. Tong, "Surface crystallography by LEED: Theory, computation and structural results," Springer Theory in Chemical Physics, 1979. Google Scholar
30. Xu, M.-L., J. J. Barton, and M. A. Van Hove, "Electron scattering by atomic chains: Multiple-scattering effects," Phys. Rev. B, Vol. 39, 8275, 1989. Google Scholar
31. Gavaza, G. M., Z. X. Yu, L. Tsang, C. H. Chan, S. Y. Tong, and M. A. van Hove, "Efficient calculation of electron diffraction for the structural determination of nanomaterials," Phys. Rev. Lett., Vol. 97, 055505/1-4, 2006. Google Scholar
32. Lubatsch, A. and R. Frank, "Self-consistent quantum field theory for the characterization of complex random media by short laser pulses," Phys. Rev. Res., Vol. 2, 013324, 2020. Google Scholar
33. Chan, C. H. and L. Tsang, "A sparse-matrix canonical-grid method for scattering by many scatterers," Microwave and Optical Technology Letters, Vol. 8, 114-118, 1995. Google Scholar
34. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Phys. Rev. Lett., Vol. 114, 114301, 2015. Google Scholar
35. Xue, H., Y. Yang, G. Liu, F. Gao, Y Chong, and B. Zhang, "Realization of an acoustic third-order topological insulator," Phys. Rev. Lett., Vol. 122, 244301, 2019. Google Scholar
36. Feng, Z. and S. Tan, "Modeling reáection-free one-way edge modes using foldy-lax multiple scattering theory," 2021 International Applied Computational Electromagnetics Society Symposium (ACES), August 2021. Google Scholar
37. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green's function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015. Google Scholar
38. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scattering using broadband Green's function with low wavenumber extraction (BBGFL)," Optics Express, Vol. 24, 945-965, 2016. Google Scholar
39. Tan, S. and L. Tsang, "Band structures and modal fields in topological acoustics: An integral equation formulation," IEEE Antennas and Propagation Symposium, Atlanta, 2019. Google Scholar
40. Gao, R., L. Tsang. S. Tan, and T.-H. Liao, "Band calculations using broadband Green's functions and the KKR method with applications to magneto-optics and photonic crystals," Journal of Optical Society of America B, Vol. 37, 3896-3907, 2020. Google Scholar
41. Gao, R., L. Tsang, S. Tan, and T.-H. Liao, "Broadband Green's function-KKR-multiple scattering method for calculations of normalized band-field solutions in magnetic-optics crystals," Journal of Optical Society of America B, Vol. 38, 3159-3171, 2021. Google Scholar
42. Tan, S. and L. Tsang, "Efficient broadband evaluations of lattice green's functions via imaginary wavenumber components extractions," Progress In Electromagnetics Research, Vol. 164, 63-74, 2019. Google Scholar
43. Sanamzadeh, M. and L. Tsang, "Fast and broad band calculation of the dyadic Green's function in the rectangular cavity; An imaginary wave number extraction technique," Progress In Electromagnetic Research C, Vol. 96, 243-258, 2019. Google Scholar
44. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2: Numerical Simulations, 705, Wiley Interscience, 2001.
45. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, 413, Wiley Interscience, 2001.
46. Xu, X., D. Liang, L. Tsang, C. M. Andreadis, E. G. Josberger, D. P. Lettenmaier, D. W. Cline, and S. H. Yue, "Active remote sensing of snow using NMM3D/DMRT and comparison with CLPX II airborne data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, No. 4, 689-697, December 2010. Google Scholar
47. Huang, H., L. Tsang, A. Colliander, R. Shah, X. Xu, and S. H. Yueh, "Multiple scattering of waves by complex objects using hybrid method of T-matrix and foldy-lax equations using vector spherical waves and vector spheroidal waves," Progress In Electromagnetic Research, Vol. 168, 87-111, 2020. Google Scholar
48. Gu, W., L. Tsang, A. Colliander, and S. H. Yueh, "Wave propagation in vegetation field using a hybrid method," IEEE Transactions on Antennas and Propagation, early access, 2021. Google Scholar
49. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2007.
50. Tan, S. and L. Tsang, "Green functions, including scatterers, for photonic crystals and metamaterials," Journal of Optical Society of America B, Vol. 34, 1450-1458, 2017. Google Scholar
51. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green's function," Opt. Lett., Vol. 42, No. 22, 4667-4670, November 2017. Google Scholar
52. Tsang, L., K.-H. Ding, and S. Tan, "Broadband point source Green's function in a one-dimensional infinite periodic lossless medium based on BBGFL with modal method," Progress In Electromagnetics Research, Vol. 163, 51-77, 2018. Google Scholar
53. Tsang, L. and S. Tan, "Full wave simulations of photonic crystals and metamaterials using the broadband green's functions,", US patent number 11,087,043, August 10, 2021. Google Scholar