Vol. 172
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-30 Featured Article
Phase Synthesis of Beam-Scanning Reflectarray Antenna Based on Deep Learning Technique
By
Progress In Electromagnetics Research, Vol. 172, 41-49, 2021
Abstract
In this work, we investigate the feasibility of applying deep learning to phase synthesis of reflectarray antenna. A deep convolutional neural network (ConvNet) based on the architecture of AlexNet is built to predict the continuous phase distribution on reflectarray elements given the beam pattern. The proposed ConvNet is sufficiently trained with data set generated by array-theory method. With radiation pattern and beam direction arrays as input, the ConvNet can make real-time and fairly accurate predictions in milliseconds with the average relative error below 0.7%. This paper shows that deep convolutional neural networks can ``learn'' the principle of reflectarray phase synthesis due to their inherent powerful learning capacity. The proposed approach may provide us a potential scheme for real-time phase synthesis of antenna arrays in electromagnetic engineering.
Citation
Tao Shan, Maokun Li, Shenheng Xu, and Fan Yang, "Phase Synthesis of Beam-Scanning Reflectarray Antenna Based on Deep Learning Technique," Progress In Electromagnetics Research, Vol. 172, 41-49, 2021.
doi:10.2528/PIER21091307
References

1. Huang, J. and J. A. Encinar, Reflectarray Antennas, Vol. 30, John Wiley & Sons, 2007.
doi:10.1002/9780470178775

2. Mao, Y., S. Xu, F. Yang, and A. Z. Elsherbeni, "A novel phase synthesis approach for wideband reflectarray design," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4189-4193, 2015.
doi:10.1109/TAP.2015.2447004        Google Scholar

3. Yang, H., F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, "A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3024-3032, 2017.
doi:10.1109/TAP.2017.2694703        Google Scholar

4. Barbiere, D., "A method for calculating the current distribution of Tschebyscheff arrays," Proceedings of the IRE, Vol. 40, No. 1, 78-82, 1952.
doi:10.1109/JRPROC.1952.273938        Google Scholar

5. Chakraborty, A., B. Das, and G. Sanyal, "Beam shaping using nonlinear phase distribution in a uniformly spaced array," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 1031-1034, 1982.
doi:10.1109/TAP.1982.1142917        Google Scholar

6. Nayeri, P., F. Yang, and A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs, and Applications, Wiley-IEEE Press, 2018.
doi:10.1002/9781118846728

7. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithm optimization and its application to antenna design," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Vol. 1, 326-329, IEEE, 1994.
doi:10.1109/APS.1994.407746        Google Scholar

8. Lommi, A., A. Massa, E. Storti, and A. Trucco, "Sidelobe reduction in sparse linear arrays by genetic algorithms," Microwave and Optical Technology Letters, Vol. 32, No. 3, 194-196, 2002.
doi:10.1002/mop.10128        Google Scholar

9. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969        Google Scholar

10. Ferreira, J. A. and F. Ares, "Pattern synthesis of conformal arrays by the simulated annealing technique," Electronics Letters, Vol. 33, No. 14, 1187-1189, 1997.
doi:10.1049/el:19970838        Google Scholar

11. Prado, D. R., A. F. Vaquero, M. Arrebola, M. R. Pino, and F. Las-Heras, "Acceleration of gradient-based algorithms for array antenna synthesis with far-field or near-field constraints," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5239-5248, 2018.
doi:10.1109/TAP.2018.2859915        Google Scholar

12. Mahanti, G., A. Chakraborty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using oating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301        Google Scholar

13. Capozzoli, A., C. Curcio, A. Liseno, and G. Toso, "Fast, phase-only synthesis of aperiodic reflectarrays using NUFFTs and CUDA," Progress In Electromagnetics Research, Vol. 156, 83-103, 2016.
doi:10.2528/PIER16021904        Google Scholar

14. Robustillo, P., J. Zapata, J. A. Encinar, and J. Rubio, "Ann characterization of multi-layer reflectarray elements for contoured-beam space antennas in the Ku-band," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3205-3214, 2012.
doi:10.1109/TAP.2012.2196941        Google Scholar

15. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "A neural network-based smart antenna for multiple source tracking," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, 768-776, 2000.
doi:10.1109/8.855496        Google Scholar

16. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "A neural-network-based linearly constrained minimum variance beamformer," Microwave and Optical Technology Letters, Vol. 21, No. 6, 451-455, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<451::AID-MOP15>3.0.CO;2-M        Google Scholar

17. Prado, D. R., J. A. Lopez-Fernandez, G. Barquero, M. Arrebola, and F. Las-Heras, "Fast and accurate modeling of dual-polarized reflectarray unit cells using support vector machines," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1258-1270, 2018.
doi:10.1109/TAP.2018.2790044        Google Scholar

18. Prado, D. R., J. A. López-Fernández, M. Arrebola, and G. Goussetis, "Support vector regression to accelerate design and crosspolar optimization of shaped-beam reflectarray antennas for space applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1659-1668, 2018.
doi:10.1109/TAP.2018.2889029        Google Scholar

19. Collobert, R. and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," Proceedings of the 25th International Conference on Machine Learning, 160-167, 2008.        Google Scholar

20. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, Vol. 25, 1097-1105, 2012.        Google Scholar

21. Ng, J. Y.-H., M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici, "Beyond short snippets: Deep networks for video classification," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4694-4702, 2015.        Google Scholar

22. Guo, X., W. Li, and F. Iorio, "Convolutional neural networks for steady flow approximation," Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 481-490, 2016.
doi:10.1145/2939672.2939738        Google Scholar

23. Massa, A., D. Marcantonio, X. Chen, M. Li, and M. Salucci, "DNNs as applied to electromagnetics, antennas, and propagation - A review," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 11, 2225-2229, 2019.
doi:10.1109/LAWP.2019.2916369        Google Scholar

24. Chen, X., Z. Wei, M. Li, and P. Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Progress In Electromagnetics Research, Vol. 167, 67-81, 2020.
doi:10.2528/PIER20030705        Google Scholar

25. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2018.
doi:10.1109/TGRS.2018.2869221        Google Scholar

26. Li, M., R. Guo, K. Zhang, Z. Lin, F. Yang, S. Xu, X. Chen, A. Massa, and A. Abubakar, "Machine learning in electromagnetics with applications to biomedical imaging: A review," IEEE Antennas and Propagation Magazine, 2021.        Google Scholar

27. Shan, T., W. Tang, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu, "Study on a fast solver for poisson's equation based on deep learning technique," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6725-6733, 2020.
doi:10.1109/TAP.2020.2985172        Google Scholar

28. Shan, T., X. Pan, M. Li, S. Xu, and F. Yang, "Coding programmable metasurfaces based on deep learning techniques," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 10, No. 1, 114-125, 2020.
doi:10.1109/JETCAS.2020.2972764        Google Scholar

29. Shan, T., M. Li, S. Xu, and F. Yang, "Synthesis of reflectarray based on deep learning technique," 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-2, IEEE, 2018.        Google Scholar

30. Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors,", arXiv preprint arXiv:1207.0580, 2012.        Google Scholar

31. Kingma, D. P. and J. Ba, "Adam: A method for stochastic optimization,", arXiv preprint arXiv:1412.6980, 2014.        Google Scholar