1. Huang, J. and J. A. Encinar, Reflectarray Antennas, Vol. 30, John Wiley & Sons, 2007.
doi:10.1002/9780470178775
2. Mao, Y., S. Xu, F. Yang, and A. Z. Elsherbeni, "A novel phase synthesis approach for wideband reflectarray design," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4189-4193, 2015.
doi:10.1109/TAP.2015.2447004 Google Scholar
3. Yang, H., F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, "A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3024-3032, 2017.
doi:10.1109/TAP.2017.2694703 Google Scholar
4. Barbiere, D., "A method for calculating the current distribution of Tschebyscheff arrays," Proceedings of the IRE, Vol. 40, No. 1, 78-82, 1952.
doi:10.1109/JRPROC.1952.273938 Google Scholar
5. Chakraborty, A., B. Das, and G. Sanyal, "Beam shaping using nonlinear phase distribution in a uniformly spaced array," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 1031-1034, 1982.
doi:10.1109/TAP.1982.1142917 Google Scholar
6. Nayeri, P., F. Yang, and A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs, and Applications, Wiley-IEEE Press, 2018.
doi:10.1002/9781118846728
7. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithm optimization and its application to antenna design," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Vol. 1, 326-329, IEEE, 1994.
doi:10.1109/APS.1994.407746 Google Scholar
8. Lommi, A., A. Massa, E. Storti, and A. Trucco, "Sidelobe reduction in sparse linear arrays by genetic algorithms," Microwave and Optical Technology Letters, Vol. 32, No. 3, 194-196, 2002.
doi:10.1002/mop.10128 Google Scholar
9. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969 Google Scholar
10. Ferreira, J. A. and F. Ares, "Pattern synthesis of conformal arrays by the simulated annealing technique," Electronics Letters, Vol. 33, No. 14, 1187-1189, 1997.
doi:10.1049/el:19970838 Google Scholar
11. Prado, D. R., A. F. Vaquero, M. Arrebola, M. R. Pino, and F. Las-Heras, "Acceleration of gradient-based algorithms for array antenna synthesis with far-field or near-field constraints," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5239-5248, 2018.
doi:10.1109/TAP.2018.2859915 Google Scholar
12. Mahanti, G., A. Chakraborty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using oating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301 Google Scholar
13. Capozzoli, A., C. Curcio, A. Liseno, and G. Toso, "Fast, phase-only synthesis of aperiodic reflectarrays using NUFFTs and CUDA," Progress In Electromagnetics Research, Vol. 156, 83-103, 2016.
doi:10.2528/PIER16021904 Google Scholar
14. Robustillo, P., J. Zapata, J. A. Encinar, and J. Rubio, "Ann characterization of multi-layer reflectarray elements for contoured-beam space antennas in the Ku-band," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3205-3214, 2012.
doi:10.1109/TAP.2012.2196941 Google Scholar
15. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "A neural network-based smart antenna for multiple source tracking," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, 768-776, 2000.
doi:10.1109/8.855496 Google Scholar
16. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "A neural-network-based linearly constrained minimum variance beamformer," Microwave and Optical Technology Letters, Vol. 21, No. 6, 451-455, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<451::AID-MOP15>3.0.CO;2-M Google Scholar
17. Prado, D. R., J. A. Lopez-Fernandez, G. Barquero, M. Arrebola, and F. Las-Heras, "Fast and accurate modeling of dual-polarized reflectarray unit cells using support vector machines," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1258-1270, 2018.
doi:10.1109/TAP.2018.2790044 Google Scholar
18. Prado, D. R., J. A. López-Fernández, M. Arrebola, and G. Goussetis, "Support vector regression to accelerate design and crosspolar optimization of shaped-beam reflectarray antennas for space applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1659-1668, 2018.
doi:10.1109/TAP.2018.2889029 Google Scholar
19. Collobert, R. and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," Proceedings of the 25th International Conference on Machine Learning, 160-167, 2008. Google Scholar
20. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, Vol. 25, 1097-1105, 2012. Google Scholar
21. Ng, J. Y.-H., M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici, "Beyond short snippets: Deep networks for video classification," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4694-4702, 2015. Google Scholar
22. Guo, X., W. Li, and F. Iorio, "Convolutional neural networks for steady flow approximation," Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 481-490, 2016.
doi:10.1145/2939672.2939738 Google Scholar
23. Massa, A., D. Marcantonio, X. Chen, M. Li, and M. Salucci, "DNNs as applied to electromagnetics, antennas, and propagation - A review," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 11, 2225-2229, 2019.
doi:10.1109/LAWP.2019.2916369 Google Scholar
24. Chen, X., Z. Wei, M. Li, and P. Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Progress In Electromagnetics Research, Vol. 167, 67-81, 2020.
doi:10.2528/PIER20030705 Google Scholar
25. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2018.
doi:10.1109/TGRS.2018.2869221 Google Scholar
26. Li, M., R. Guo, K. Zhang, Z. Lin, F. Yang, S. Xu, X. Chen, A. Massa, and A. Abubakar, "Machine learning in electromagnetics with applications to biomedical imaging: A review," IEEE Antennas and Propagation Magazine, 2021. Google Scholar
27. Shan, T., W. Tang, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu, "Study on a fast solver for poisson's equation based on deep learning technique," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6725-6733, 2020.
doi:10.1109/TAP.2020.2985172 Google Scholar
28. Shan, T., X. Pan, M. Li, S. Xu, and F. Yang, "Coding programmable metasurfaces based on deep learning techniques," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 10, No. 1, 114-125, 2020.
doi:10.1109/JETCAS.2020.2972764 Google Scholar
29. Shan, T., M. Li, S. Xu, and F. Yang, "Synthesis of reflectarray based on deep learning technique," 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-2, IEEE, 2018. Google Scholar
30. Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors,", arXiv preprint arXiv:1207.0580, 2012. Google Scholar
31. Kingma, D. P. and J. Ba, "Adam: A method for stochastic optimization,", arXiv preprint arXiv:1412.6980, 2014. Google Scholar