Vol. 171
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-10-29
Biosensing Performance of a Plasmonic-Grating-Based Nanolaser (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 171, 159-169, 2021
Abstract
We introduce and numerically investigate a high-quality resonant structure formed by a dielectric low-order diffraction grating combining materials with high refractive index contrast. The proposed structure is capable of supporting multiple plasmonic modes owing to hybridization effects, modes having the characteristic of exhibiting remarkable sensing response to the change of the environment refractive index yet limited figure of merit. To improve the figure of merit, the proposed architecture is modified by adding a layer of semiconductor gain medium, as it can compensate the internal losses. The result is an active sensor showing multi-modal lasing behaviour, with very low threshold and large mode spacing. It is found that the device shows switchable response upon modification of the pump amplitude or polarization, a very important feature when it comes to sensing devices. Finally, the achieved figure of merit is 3400 RIU-1, one order of magnitude higher than the passive case and much higher than the theoretical limit for sensors based on Kretschmann configuration. Thus, the proposed architecture possesses great potentials as an optical sensor for bio-detection and environmental monitoring.
Citation
Haoran Zhang Jiacheng Sun Jie Yang Israel De Leon Remo Proietti Zaccaria Haoliang Qian Hongsheng Chen Gaofeng Wang Tao Wang , "Biosensing Performance of a Plasmonic-Grating-Based Nanolaser (Invited Paper)," Progress In Electromagnetics Research, Vol. 171, 159-169, 2021.
doi:10.2528/PIER21092405
http://www.jpier.org/PIER/pier.php?paper=21092405
References

1. Wang, D., A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, "Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices," Nat. Nanotechnol., Vol. 12, 889-894, 2017.
doi:10.1038/nnano.2017.126

2. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (Invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
doi:10.2528/PIER20072201

3. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257

4. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.
doi:10.1126/science.1071895

5. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, 2003.
doi:10.1126/science.1089171

6. Sun, J. C., T. Wang, Z. Jafari, and I. De Leon, "High-Q plasmonic crystal laser for ultra-sensitive biomolecule detection," IEEE J. Sel. Topics Quantum Electron., Vol. 27, 4601407, 2021.

7. Tao, T., T. Zhi, B. Liu, J. Dai, Z. Zhuang, Z. Xie, P. Chen, F. Ren, D. Chen, Y. Zheng, and R. Zhang, "Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods," Adv. Func. Mater., Vol. 27, 1703198, 2017.
doi:10.1002/adfm.201703198

8. Losurdo, M., Y. Gutiérrez, A. Suvorova, M. M. Giangregorio, S. Rubanov, A. S. Brown, and F. Moreno, "Gallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spillover," Adv. Mater., Vol. 33, 2100500, 2021.
doi:10.1002/adma.202100500

9. Song, M., D. Wang, Z. A. Kudyshev, Y. Xuan, Z. Wang, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, "Enabling optical steganography, data storage, and encryption with plasmonic colors," Laser Photonics Rev., Vol. 15, 2000343, 2021.
doi:10.1002/lpor.202000343

10. Creel, E. B., E. R. Corson, J. Eichhorn, R. Kostecki, J. J. Urban, and B. D. McCloskey, "Directing selectivity of electrochemical carbon dioxide reduction using plasmonics," ACS Energy Letters, Vol. 4, 1098-1105, 2019.
doi:10.1021/acsenergylett.9b00515

11. Christopher, P., H. L. Xin, and S. Linic, "Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures," Nat. Chem., Vol. 3, 467-472, 2011.
doi:10.1038/nchem.1032

12. Raja, W., A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. Proietti Zaccaria, "Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells," Sci. Rep., Vol. 6, 1-11, 2016.
doi:10.1038/srep24539

13. Ma, R. M., R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.
doi:10.1038/nmat2919

14. Azzam, S. I., A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, "Ten years of spasers and plasmonic nanolasers," Light.: Sci. Appl., Vol. 9, 1-21, 2020.
doi:10.1038/s41377-020-0319-7

15. Gentile, F., M. L. Coluccio, R. P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, and E. Di Fabrizio, "Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles," Nanoscale, Vol. 6, 8208-8225, 2014.
doi:10.1039/C4NR00796D

16. Yang, A. K., M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. van Duyne, and T. W. Odom, "Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing," ACS Nano, Vol. 8, 7639-7647, 2014.
doi:10.1021/nn502502r

17. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G. S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.
doi:10.1109/LPT.2018.2814216

18. Wu, D., R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, "Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region," Nanoscale Research Letters, Vol. 12, 1-11, 2017.
doi:10.1186/s11671-016-1773-2

19. Chen, C., G.Wang, Z. Zhang, and K. Zhang, "Dual narrow-band absorber based on metal-insulator-metal configuration for refractive index sensing," Opt. Lett., Vol. 43, 3630-3633, 2018.
doi:10.1364/OL.43.003630

20. Jiang, N., X. Zhuo, and J. Wang, "Active plasmonics: Principles, structures and applications," Chem. Rev., Vol. 118, 3054-3099, 2018.
doi:10.1021/acs.chemrev.7b00252

21. Proietti Zaccaria, R., A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, "Fully analytical description of adiabatic compression in dissipative polaritonic structures," Phys. Rev. B, Vol. 86, 035410, 2012.
doi:10.1103/PhysRevB.86.035410

22. Duan, Q., Y. Liu, S. Chang, H. Chen, and J. Chen, "Surface plasmonic sensors: Sensing mechanism and recent applications," Sensors, Vol. 21, 5262, 2021.
doi:10.3390/s21165262

23. Špačková, B., P. Wrobel, M. Bocková, and J. Homola, "Optical biosensors based on plasmonic nanostructures: A review," Proceedings of the IEEE, Vol. 104, 2380-2408, 2016.
doi:10.1109/JPROC.2016.2624340

24. Kasani, S., K. Curtin, and N. Wu, "A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications," Nanophotonics, Vol. 8, 2065-2089, 2019.
doi:10.1515/nanoph-2019-0158

25. Perahia, R., T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett., Vol. 95, 201114, 2009.
doi:10.1063/1.3266843

26. Cheng, P. J., Z. T. Huang, J. H. Li, B. T. Chou, Y. H. Chou, W. C. Lo, K. P. Chen, T. C. Lu, and T. R. Lin, "High performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications," ACS Photonics, Vol. 5, 2638-2644, 2018.
doi:10.1021/acsphotonics.8b00337

27. Park, S. J., Y. D. Kim, H. W. Lee, H. J. Yang, J. Y. Cho, Y. K. Kim, and H. Lee, "Enhancement of light extraction efficiency of OLEDs using Si3N4-based optical scattering layer," Opt. Express, Vol. 22, 12392-12397, 2014.
doi:10.1364/OE.22.012392

28. Amiria, I. S., R. Zakaria, and P. Yupapin, "Manipulating of nanometer spacing dual-wavelength by controlling the apodized grating depth in microring resonators," Results in Physics, Vol. 12, 32-37, 2019.
doi:10.1016/j.rinp.2018.11.043

29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

30. Fawzy, S. M., A. M. Mahmoud, Y. I. Ismail, and N. K. Allam, "Novel silicon bipodal cylinders with controlled resonances and their use as beam steering metasurfaces," Sci. Rep., Vol. 11, 13635, 2021.
doi:10.1038/s41598-021-93041-x

31. Azzam, S. I., V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, "Formation of bound states in the continuum in hybrid plasmonic-photonic systems," Phys. Rev. Lett., Vol. 121, 253901, 2018.
doi:10.1103/PhysRevLett.121.253901

32. Christ, A., S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett., Vol. 91, 183901, 2003.
doi:10.1103/PhysRevLett.91.183901

33. Wang, H., H. Y. Wang, A. Bozzola, A. Toma, S. Panaro, W. Raja, A. Alabastri, L. Wang, Q. D. Chen, H. L. Xu, F. De Angelis, H. B. Sun, and R. P. Zaccaria, "Dynamics of strong coupling between J-aggregates and surface plasmon polaritons in subwavelength hole arrays," Adv. Funct. Mat., Vol. 26, 6198-6205, 2016.
doi:10.1002/adfm.201601452

34. Wang, H., A. Toma, H. Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q. D. Chen, H. L. Xu, H. B. Sun, and R. P. Zaccaria, "The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays," Nanoscale, Vol. 8, 13445-13453, 2016.
doi:10.1039/C6NR01588C

35. Abutoama, M. and I. Abdulhalim, "Angular and intensity modes self-referenced refractive index sensor based on thin dielectric grating combined with thin metal film," IEEE J. Sel. Topics Quantum Electron., Vol. 23, 4600309, 2017.
doi:10.1109/JSTQE.2016.2520878

36. Zhou, Y., X. Li, S. Li, Z. Guo, P. Zeng, J. He, D. Wang, R. Zhang, M. Lu, S. Zhang, and X. Wu, "Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit," Opt. Express, Vol. 27, 34788-34802, 2019.
doi:10.1364/OE.27.034788

37. Zhu, S. Y., H. L. Li, M. S. Yang, and S. W. Pang, "Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor," Nanoscale, Vol. 10, 19927-19936, 2018.
doi:10.1039/C8NR07051B

38. Nair, S., C. Escobedo, and R. G. Sabat, "Crossed surface relief gratings as nanoplasmonic biosensors," ACS Sensors, Vol. 2, 379-385, 2017.
doi:10.1021/acssensors.6b00696

39. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G.-S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.
doi:10.1109/LPT.2018.2814216

40. Gong, Y. K., S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, "Topological insulator laser using valley-hall photonic crystals," ACS Photonics, Vol. 7, 2089-2097, 2020.
doi:10.1021/acsphotonics.0c00521

41. Liu, N., H. Wei, J. Li, Z. Wang, X. Tian, A. Pan, and H. Xu, "Plasmonic amplification with ultra-high optical gain at room temperature," Sci. Rep., Vol. 3, 1967, 2013.
doi:10.1038/srep01967

42. Visser, T. D., H. Blok, and B. Demeulenaere, "Confinement factors and gain in optical amplifiers," IEEE J. Sel. Topics Quantum Electron., Vol. 33, 1763-1766, 1997.
doi:10.1109/3.631280

43. Yang, A., T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, "Real-time tunable lasing from plasmonic nanocavity arrays," Nat. Commun, Vol. 6, 6936, 2015.
doi:10.1038/ncomms7936

44. Verma, R. and B. D. Gupta, "A novel approach for simultaneous sensing of urea and glucose by spr based optical fiber multianalyte sensor," Analyst., Vol. 139, 1449-1455, 2014.
doi:10.1039/c3an01983g

45. Ge, C., M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, "External cavity laser biosensor," Lab Chip, Vol. 13, 1247-1256, 2013.
doi:10.1039/c3lc41330f

46. Xu, Y., P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. K. Ang, W. Knoll, and L.Wu, "Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth," Adv. Opt. Mater., Vol. 7, 1801422, 2019.

47. Elshorbagy, M. H., A. Cuadrado, G. González, F. J. González, and J. Alda, "Performance improvement of refractometric sensors through hybrid plasmonic-Fano resonances," J. Lightwave Technol., Vol. 37, 2905-2913, 2019.
doi:10.1109/JLT.2019.2906933

48. Zhang, M., M. Lu, C. Ge, and B. T. Cunningham, "Plasmonic external cavity laser refractometric sensor," Opt. Express, Vol. 22, 20347-20357, 2014.
doi:10.1364/OE.22.020347

49. Shen, Y., J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nat. Commun., Vol. 4, 2381, 2013.
doi:10.1038/ncomms3381