1. Wang, D., A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, "Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices," Nat. Nanotechnol., Vol. 12, 889-894, 2017.
doi:10.1038/nnano.2017.126 Google Scholar
2. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (Invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
doi:10.2528/PIER20072201 Google Scholar
3. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257 Google Scholar
4. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.
doi:10.1126/science.1071895 Google Scholar
5. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, 2003.
doi:10.1126/science.1089171 Google Scholar
6. Sun, J. C., T. Wang, Z. Jafari, and I. De Leon, "High-Q plasmonic crystal laser for ultra-sensitive biomolecule detection," IEEE J. Sel. Topics Quantum Electron., Vol. 27, 4601407, 2021. Google Scholar
7. Tao, T., T. Zhi, B. Liu, J. Dai, Z. Zhuang, Z. Xie, P. Chen, F. Ren, D. Chen, Y. Zheng, and R. Zhang, "Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods," Adv. Func. Mater., Vol. 27, 1703198, 2017.
doi:10.1002/adfm.201703198 Google Scholar
8. Losurdo, M., Y. Gutiérrez, A. Suvorova, M. M. Giangregorio, S. Rubanov, A. S. Brown, and F. Moreno, "Gallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spillover," Adv. Mater., Vol. 33, 2100500, 2021.
doi:10.1002/adma.202100500 Google Scholar
9. Song, M., D. Wang, Z. A. Kudyshev, Y. Xuan, Z. Wang, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, "Enabling optical steganography, data storage, and encryption with plasmonic colors," Laser Photonics Rev., Vol. 15, 2000343, 2021.
doi:10.1002/lpor.202000343 Google Scholar
10. Creel, E. B., E. R. Corson, J. Eichhorn, R. Kostecki, J. J. Urban, and B. D. McCloskey, "Directing selectivity of electrochemical carbon dioxide reduction using plasmonics," ACS Energy Letters, Vol. 4, 1098-1105, 2019.
doi:10.1021/acsenergylett.9b00515 Google Scholar
11. Christopher, P., H. L. Xin, and S. Linic, "Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures," Nat. Chem., Vol. 3, 467-472, 2011.
doi:10.1038/nchem.1032 Google Scholar
12. Raja, W., A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. Proietti Zaccaria, "Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells," Sci. Rep., Vol. 6, 1-11, 2016.
doi:10.1038/srep24539 Google Scholar
13. Ma, R. M., R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.
doi:10.1038/nmat2919 Google Scholar
14. Azzam, S. I., A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, "Ten years of spasers and plasmonic nanolasers," Light.: Sci. Appl., Vol. 9, 1-21, 2020.
doi:10.1038/s41377-020-0319-7 Google Scholar
15. Gentile, F., M. L. Coluccio, R. P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, and E. Di Fabrizio, "Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles," Nanoscale, Vol. 6, 8208-8225, 2014.
doi:10.1039/C4NR00796D Google Scholar
16. Yang, A. K., M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. van Duyne, and T. W. Odom, "Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing," ACS Nano, Vol. 8, 7639-7647, 2014.
doi:10.1021/nn502502r Google Scholar
17. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G. S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.
doi:10.1109/LPT.2018.2814216 Google Scholar
18. Wu, D., R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, "Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region," Nanoscale Research Letters, Vol. 12, 1-11, 2017.
doi:10.1186/s11671-016-1773-2 Google Scholar
19. Chen, C., G.Wang, Z. Zhang, and K. Zhang, "Dual narrow-band absorber based on metal-insulator-metal configuration for refractive index sensing," Opt. Lett., Vol. 43, 3630-3633, 2018.
doi:10.1364/OL.43.003630 Google Scholar
20. Jiang, N., X. Zhuo, and J. Wang, "Active plasmonics: Principles, structures and applications," Chem. Rev., Vol. 118, 3054-3099, 2018.
doi:10.1021/acs.chemrev.7b00252 Google Scholar
21. Proietti Zaccaria, R., A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, "Fully analytical description of adiabatic compression in dissipative polaritonic structures," Phys. Rev. B, Vol. 86, 035410, 2012.
doi:10.1103/PhysRevB.86.035410 Google Scholar
22. Duan, Q., Y. Liu, S. Chang, H. Chen, and J. Chen, "Surface plasmonic sensors: Sensing mechanism and recent applications," Sensors, Vol. 21, 5262, 2021.
doi:10.3390/s21165262 Google Scholar
23. Špačková, B., P. Wrobel, M. Bocková, and J. Homola, "Optical biosensors based on plasmonic nanostructures: A review," Proceedings of the IEEE, Vol. 104, 2380-2408, 2016.
doi:10.1109/JPROC.2016.2624340 Google Scholar
24. Kasani, S., K. Curtin, and N. Wu, "A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications," Nanophotonics, Vol. 8, 2065-2089, 2019.
doi:10.1515/nanoph-2019-0158 Google Scholar
25. Perahia, R., T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett., Vol. 95, 201114, 2009.
doi:10.1063/1.3266843 Google Scholar
26. Cheng, P. J., Z. T. Huang, J. H. Li, B. T. Chou, Y. H. Chou, W. C. Lo, K. P. Chen, T. C. Lu, and T. R. Lin, "High performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications," ACS Photonics, Vol. 5, 2638-2644, 2018.
doi:10.1021/acsphotonics.8b00337 Google Scholar
27. Park, S. J., Y. D. Kim, H. W. Lee, H. J. Yang, J. Y. Cho, Y. K. Kim, and H. Lee, "Enhancement of light extraction efficiency of OLEDs using Si3N4-based optical scattering layer," Opt. Express, Vol. 22, 12392-12397, 2014.
doi:10.1364/OE.22.012392 Google Scholar
28. Amiria, I. S., R. Zakaria, and P. Yupapin, "Manipulating of nanometer spacing dual-wavelength by controlling the apodized grating depth in microring resonators," Results in Physics, Vol. 12, 32-37, 2019.
doi:10.1016/j.rinp.2018.11.043 Google Scholar
29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
30. Fawzy, S. M., A. M. Mahmoud, Y. I. Ismail, and N. K. Allam, "Novel silicon bipodal cylinders with controlled resonances and their use as beam steering metasurfaces," Sci. Rep., Vol. 11, 13635, 2021.
doi:10.1038/s41598-021-93041-x Google Scholar
31. Azzam, S. I., V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, "Formation of bound states in the continuum in hybrid plasmonic-photonic systems," Phys. Rev. Lett., Vol. 121, 253901, 2018.
doi:10.1103/PhysRevLett.121.253901 Google Scholar
32. Christ, A., S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett., Vol. 91, 183901, 2003.
doi:10.1103/PhysRevLett.91.183901 Google Scholar
33. Wang, H., H. Y. Wang, A. Bozzola, A. Toma, S. Panaro, W. Raja, A. Alabastri, L. Wang, Q. D. Chen, H. L. Xu, F. De Angelis, H. B. Sun, and R. P. Zaccaria, "Dynamics of strong coupling between J-aggregates and surface plasmon polaritons in subwavelength hole arrays," Adv. Funct. Mat., Vol. 26, 6198-6205, 2016.
doi:10.1002/adfm.201601452 Google Scholar
34. Wang, H., A. Toma, H. Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q. D. Chen, H. L. Xu, H. B. Sun, and R. P. Zaccaria, "The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays," Nanoscale, Vol. 8, 13445-13453, 2016.
doi:10.1039/C6NR01588C Google Scholar
35. Abutoama, M. and I. Abdulhalim, "Angular and intensity modes self-referenced refractive index sensor based on thin dielectric grating combined with thin metal film," IEEE J. Sel. Topics Quantum Electron., Vol. 23, 4600309, 2017.
doi:10.1109/JSTQE.2016.2520878 Google Scholar
36. Zhou, Y., X. Li, S. Li, Z. Guo, P. Zeng, J. He, D. Wang, R. Zhang, M. Lu, S. Zhang, and X. Wu, "Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit," Opt. Express, Vol. 27, 34788-34802, 2019.
doi:10.1364/OE.27.034788 Google Scholar
37. Zhu, S. Y., H. L. Li, M. S. Yang, and S. W. Pang, "Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor," Nanoscale, Vol. 10, 19927-19936, 2018.
doi:10.1039/C8NR07051B Google Scholar
38. Nair, S., C. Escobedo, and R. G. Sabat, "Crossed surface relief gratings as nanoplasmonic biosensors," ACS Sensors, Vol. 2, 379-385, 2017.
doi:10.1021/acssensors.6b00696 Google Scholar
39. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G.-S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.
doi:10.1109/LPT.2018.2814216 Google Scholar
40. Gong, Y. K., S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, "Topological insulator laser using valley-hall photonic crystals," ACS Photonics, Vol. 7, 2089-2097, 2020.
doi:10.1021/acsphotonics.0c00521 Google Scholar
41. Liu, N., H. Wei, J. Li, Z. Wang, X. Tian, A. Pan, and H. Xu, "Plasmonic amplification with ultra-high optical gain at room temperature," Sci. Rep., Vol. 3, 1967, 2013.
doi:10.1038/srep01967 Google Scholar
42. Visser, T. D., H. Blok, and B. Demeulenaere, "Confinement factors and gain in optical amplifiers," IEEE J. Sel. Topics Quantum Electron., Vol. 33, 1763-1766, 1997.
doi:10.1109/3.631280 Google Scholar
43. Yang, A., T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, "Real-time tunable lasing from plasmonic nanocavity arrays," Nat. Commun, Vol. 6, 6936, 2015.
doi:10.1038/ncomms7936 Google Scholar
44. Verma, R. and B. D. Gupta, "A novel approach for simultaneous sensing of urea and glucose by spr based optical fiber multianalyte sensor," Analyst., Vol. 139, 1449-1455, 2014.
doi:10.1039/c3an01983g Google Scholar
45. Ge, C., M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, "External cavity laser biosensor," Lab Chip, Vol. 13, 1247-1256, 2013.
doi:10.1039/c3lc41330f Google Scholar
46. Xu, Y., P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. K. Ang, W. Knoll, and L.Wu, "Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth," Adv. Opt. Mater., Vol. 7, 1801422, 2019. Google Scholar
47. Elshorbagy, M. H., A. Cuadrado, G. González, F. J. González, and J. Alda, "Performance improvement of refractometric sensors through hybrid plasmonic-Fano resonances," J. Lightwave Technol., Vol. 37, 2905-2913, 2019.
doi:10.1109/JLT.2019.2906933 Google Scholar
48. Zhang, M., M. Lu, C. Ge, and B. T. Cunningham, "Plasmonic external cavity laser refractometric sensor," Opt. Express, Vol. 22, 20347-20357, 2014.
doi:10.1364/OE.22.020347 Google Scholar
49. Shen, Y., J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nat. Commun., Vol. 4, 2381, 2013.
doi:10.1038/ncomms3381 Google Scholar