1. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713 Google Scholar
2. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
doi:10.1021/nl302516v Google Scholar
3. Khorasaninejad, M., F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, "Achromatic metasurface lens at telecommunication wavelengths," Nano Lett., Vol. 15, 5358-5362, 2015.
doi:10.1021/acs.nanolett.5b01727 Google Scholar
4. Aieta, F., M. A. Kats, P. Genevet, and F. Capasso, "Multiwavelength achromatic metasurfaces by dispersive phase compensation," Science, Vol. 347, 1342-1345, 2015.
doi:10.1126/science.aaa2494 Google Scholar
5. Lalanne, P. and P. Chavel, "Metalenses at visible wavelengths: Past, present, perspectives," Laser Photonics Rev., Vol. 11, 2016. Google Scholar
6. Liang, H., Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, "Ultrahigh numerical aperture metalens at visible wavelengths," Nano Lett., Vol. 18, 4460-4466, 2018.
doi:10.1021/acs.nanolett.8b01570 Google Scholar
7. Huang, L., X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nat. Commun., Vol. 4, 2808, 2013.
doi:10.1038/ncomms3808 Google Scholar
8. Faraji-Dana, M., E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, "Compact folded metasurface spectrometer," Nat. Commun., Vol. 9, 4196, 2018.
doi:10.1038/s41467-018-06495-5 Google Scholar
9. Tittl, A., A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science, Vol. 360, 1105-1109, 2018.
doi:10.1126/science.aas9768 Google Scholar
10. Zhu, A. Y., W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, and F. Capasso, "Ultra-compact visible chiral spectrometer with meta-lenses," APL Photonics, Vol. 2, 036103, 2017.
doi:10.1063/1.4974259 Google Scholar
11. Aieta, F., P. Genevet, M. Kats, and F. Capasso, "Aberrations of flat lenses and aplanatic metasurfaces," Opt. Express., Vol. 21, 31530-31539, 2013.
doi:10.1364/OE.21.031530 Google Scholar
12. Millán, M. S., J. Otón, and E. Pérez-Cabré, "Chromatic compensation of programmable Fresnel lenses," Opt. Express, Vol. 14, 6226-6242, 2006.
doi:10.1364/OE.14.006226 Google Scholar
13. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Multiwavelength metasurfaces through spatial multiplexing," Sci. Rep., Vol. 6, 32803, 2016.
doi:10.1038/srep32803 Google Scholar
14. Hu, J., C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, "Plasmonic lattice lenses for multiwavelength achromatic focusing," ACS Nano., Vol. 10, 10275-10282, 2016.
doi:10.1021/acsnano.6b05855 Google Scholar
15. Tang, F., X. Ye, Q. Li, Y. Wang, H. Yu, W. Wu, B. Li, and W. Zheng, "Dielectric metalenses at long-wave infrared wavelengths: Multiplexing and spectroscope," Results Phys., Vol. 18, 103215, 2020.
doi:10.1016/j.rinp.2020.103215 Google Scholar
16. Khorasaninejad, M., Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, "Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion," Nano Lett., Vol. 17, 1819-1824, 2017.
doi:10.1021/acs.nanolett.6b05137 Google Scholar
17. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Dispersionless metasurfaces using dispersive meta-atoms," Conference on Lasers and Electro-Optics (CLEO), 1-2, 2016. Google Scholar
18. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun., Vol. 8, 187, 2017.
doi:10.1038/s41467-017-00166-7 Google Scholar
19. Berry, M. V., "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. Lond., Vol. 392, 45-57, 1996. Google Scholar
20. Kanwal, S., J. Wen, B. Yu, D. Kumar, X. Chen, Y. Kang, C. Bai, and D. Zhang, "High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum," Nanomaterials, Vol. 10, 2020. Google Scholar
21. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, "A broadband achromatic metalens in the visible," Nat. Nanotechnol., Vol. 13, 227-232, 2018.
doi:10.1038/s41565-017-0052-4 Google Scholar
22. Chen, W. T., A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, "A broadband achromatic metalens for focusing and imaging in the visible," Nat. Nanotechnol., Vol. 13, 220-226, 2018.
doi:10.1038/s41565-017-0034-6 Google Scholar
23. Khorasaninejad, M., A. Y. Zhu, C. Roques-Carmes, , W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, "Polarization-insensitive metalenses at visible wavelengths," Nano Lett., Vol. 16, 7229-7234, 2016.
doi:10.1021/acs.nanolett.6b03626 Google Scholar
24. Guo, Y., Z. Jafari, L. Xu, C. Bao, P. Liao, G. Li, A. Agarwal, L. Kimerling, J. Michel, A. Willner, and L. Zhang, "Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics," Photonics Res., Vol. 7, 1279, 2019.
doi:10.1364/PRJ.7.001279 Google Scholar
25. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces," Optica, Vol. 4, 625-632, 2017.
doi:10.1364/OPTICA.4.000625 Google Scholar
26. Fan, Z.-B., H.-Y. Qiu, H.-L. Zhang, X.-N. Pang, L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, and J.-W. Dong, "A broadband achromatic metalens array for integral imaging in the visible," Light Sci. Appl., Vol. 8, 67, 2019.
doi:10.1038/s41377-019-0178-2 Google Scholar
27. Wang, Y., Q. Chen, W. Yang, Z. Ji, L. Jin, X. Ma, Q. Song, A. Boltasseva, J. Han, V. M. Shalaev, and S. Xiao, "High-efficiency broadband achromatic metalens for near-IR biological imaging window," Nat. Commun., Vol. 12, 5560, 2021.
doi:10.1038/s41467-021-25797-9 Google Scholar
28. Shrestha, S., A. C. Overvig, M. Lu, A. Stein, and N. Yu, "Broadband achromatic dielectric metalenses," Light Sci. Appl., Vol. 7, 85, 2018.
doi:10.1038/s41377-018-0078-x Google Scholar
29. Ndao, A., L. Hsu, J. Ha, J.-H. Park, C. Chang-Hasnain, and B. Kanté, "Octave bandwidth photonic fishnet-achromatic-metalens," Nat. Commun., Vol. 11, 3205, 2020.
doi:10.1038/s41467-020-17015-9 Google Scholar
30. Chung, H., H. Chung, O. D. Miller, and O. D. Miller, "High-NA achromatic metalenses by inverse design," Opt. Express, Vol. 28, 6945-6965, 2020.
doi:10.1364/OE.385440 Google Scholar
31. Zhou, M., D. Liu, S. W. Belling, H. Cheng, M. A. Kats, S. Fan, M. L. Povinelli, and Z. Yu, "Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization," ACS Photonics, Vol. 8, 2265-2273, 2021.
doi:10.1021/acsphotonics.1c00100 Google Scholar
32. Li, Z., P. Lin, Y.-W. Huang, J.-S. Park, W. T. Chen, Z. Shi, C.-W. Qiu, J.-X. Cheng, and F. Capasso, "Meta-optics achieves RGB-achromatic focusing for virtual reality," Sci. Adv., Vol. 7, eabe4458, 2021.
doi:10.1126/sciadv.abe4458 Google Scholar
33. Svanberg, K., "A class of globally convergent optimization methods based on conservative convex separable approximations," SIAM J. Optim., Vol. 12, 555-573, 2002.
doi:10.1137/S1052623499362822 Google Scholar
34. Presutti, F. and F. Monticone, "Focusing on bandwidth: Achromatic metalens limits," Optica, Vol. 7, 624, 2020.
doi:10.1364/OPTICA.389404 Google Scholar
35. Cheng, Q., M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, "Broadband achromatic metalens in terahertz regime," Sci. Bull., Vol. 64, 1525-1531, 2019.
doi:10.1016/j.scib.2019.08.004 Google Scholar
36. Zhao, F., Z. Li, X. Dai, X. Liao, S. Li, J. Cao, Z. Shang, Z. Zhang, G. Liang, G. Chen, H. Li, and Z. Wen, "Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens," Adv. Opt. Mater., Vol. 8, 2000842, 2020.
doi:10.1002/adom.202000842 Google Scholar
37. Chen, W. T., A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, "Broadband achromatic metasurface-refractive optics," Nano Lett., Vol. 18, 7801-7808, 2018.
doi:10.1021/acs.nanolett.8b03567 Google Scholar
38. Tong, L., J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express, Vol. 12, 1025, 2004.
doi:10.1364/OPEX.12.001025 Google Scholar
39. Almeida, V. R., Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., Vol. 29, 1209, 2004.
doi:10.1364/OL.29.001209 Google Scholar
40. Saeidi, C. and D. van der Weide, "Wideband plasmonic focusing metasurfaces," Appl. Phys. Lett., Vol. 105, 053107, 2014.
doi:10.1063/1.4892560 Google Scholar
41. Groever, B., W. T. Chen, and F. Capasso, "Meta-lens doublet in the visible region," Nano Lett., Vol. 17, 4902-4907, 2017.
doi:10.1021/acs.nanolett.7b01888 Google Scholar
42. Shi, X., D. Meng, Z. Qin, Q. He, S. Sun, L. Zhou, D. R. Smith, Q. H. Liu, T. Bourouina, and Z. Liang, "All-dielectric orthogonal doublet cylindrical metalens in long-wave infrared regions," Opt. Express, Vol. 29, 3524-3532, 2021.
doi:10.1364/OE.414001 Google Scholar
43. Zhou, Y., I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. G. Valentine, "Multilayer non-interacting dielectric metasurfaces for multiwavelength metaoptics," Nano Lett., Vol. 18, No. 12, 7529-7537, 2018.
doi:10.1021/acs.nanolett.8b03017 Google Scholar
44. Yao, Z., W. Chen, and Y. Chen, "Double-layer metalens with a reduced meta-atom aspect ratio," Opt. Lett., Vol. 46, 1510-1513, 2021.
doi:10.1364/OL.422339 Google Scholar
45. McClung, A., M. Mansouree, and A. Arbabi, "At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces," Light Sci. Appl., Vol. 9, 93, 2020.
doi:10.1038/s41377-020-0335-7 Google Scholar
46. Kim, C., S.-J. Kim, and B. Lee, "Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations," Opt. Express, Vol. 28, 18059-18076, 2020.
doi:10.1364/OE.387794 Google Scholar
47. Huang, Z., M. Qin, X. Guo, C. Yang, and S. Li, "Achromatic and wide-field metalens in the visible region," Opt. Express, Vol. 29, 13542-13551, 2021.
doi:10.1364/OE.422126 Google Scholar
48. Johnson, T. J. and J. F. O'rourke, "Method for making replica contour block masters for producing Schmidt corrector plates,", U.S. patent US3837124 A, 1974. Google Scholar
49. Li, M., S. Li, L. K. Chin, Y. Yu, D. P. Tsai, and R. Chen, "Dual-layer achromatic metalens design with an effective Abbe number," Opt. Express, Vol. 28, 26041-26055, 2020.
doi:10.1364/OE.402478 Google Scholar
50. Khorasaninejad, M., W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, "Visible wavelength planar metalenses based on titanium dioxide," IEEE J. Sel. Top. Quantum Electron., Vol. 23, 43-58, 2017.
doi:10.1109/JSTQE.2016.2616447 Google Scholar
51. Spägele, C., M. Tamagnone, D. Kazakov, M. Ossiander, M. Piccardo, and F. Capasso, "Multifunctional wide-angle optics and lasing based on supercell metasurfaces," Nat. Commun., Vol. 12, 3787, 2021.
doi:10.1038/s41467-021-24071-2 Google Scholar
52. Elsawy, M. M. R., A. Gourdin, M. Binois, R. Duvigneau, D. Felbacq, S. Khadir, P. Genevet, and S. Lanteri, "Multiobjective statistical learning optimization of RGB metalens," ACS Photonics, Vol. 8, 2498-2508, 2021.
doi:10.1021/acsphotonics.1c00753 Google Scholar
53. Yoon, G., K. Kim, D. Huh, H. Lee, and J. Rho, "Single-step manufacturing of hierarchical dielectric metalens in the visible," Nat. Commun., Vol. 11, 2268, 2020.
doi:10.1038/s41467-020-16136-5 Google Scholar
54. Li, N., Z. Xu, Y. Dong, T. Hu, Q. Zhong, Y. H. Fu, S. Zhu, and N. Singh, "Large-area metasurface on CMOS-compatible fabrication platform: Driving flat optics from lab to fab," Nanophotonics, Vol. 9, No. 10, 3071-3087, 2020.
doi:10.1515/nanoph-2020-0063 Google Scholar