1. Fernández-Domínguez, A., A., F. Garcia-Vidal, and L. Martín-Moreno, "Unrelenting plasmons," Nat. Photonics, Vol. 11, 8-10, 2017.
doi:10.1038/nphoton.2016.258 Google Scholar
2. De Bruijn, H. E., R. P. H. Kooyman, and J. Greve, "Choice of metal and wavelength for surface-plasmon resonance sensors: Some considerations," Appl. Opt., Vol. 31, 440-442, 1992.
doi:10.1364/AO.31.0440_1 Google Scholar
3. Arbabi, A., et al. "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations," Nat. Commun., Vol. 7, 13682, 2016.
doi:10.1038/ncomms13682 Google Scholar
4. Li, L., et al. "Metalens-array-based high-dimensional and multiphoton quantum source," Science, Vol. 368, 1487-1490, 2020.
doi:10.1126/science.aba9779 Google Scholar
5. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.
doi:10.1038/nmat3839 Google Scholar
6. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B, Vol. 107, 668-677, 2003.
doi:10.1021/jp026731y Google Scholar
7. Liu, H. and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature, Vol. 452, 728-731, 2008.
doi:10.1038/nature06762 Google Scholar
8. Zhao, Y. and A. Alù, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. B, Vol. 84, 205428, 2011.
doi:10.1103/PhysRevB.84.205428 Google Scholar
9. Karimi, E., et al. "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light Sci. Appl., Vol. 3, e167, 2014.
doi:10.1038/lsa.2014.48 Google Scholar
10. Alipour, A., A. Farmani, and A. Mir, "High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface," IEEE Sens. J., Vol. 18, 7047-7054, 2018.
doi:10.1109/JSEN.2018.2854882 Google Scholar
11. Vaskin, A., R. Kolkowski, A. F. Koenderink, and I. Staude, "Light-emitting metasurfaces," Nanophotonics, Vol. 8, 1151-1198, 2019.
doi:10.1515/nanoph-2019-0110 Google Scholar
12. Kamali, S. M., E. Arbabi, A. Arbabi, and A. Faraon, "A review of dielectric optical metasurfaces for wavefront control," Nanophotonics, Vol. 7, 1041-1068, 2018.
doi:10.1515/nanoph-2017-0129 Google Scholar
13. Emani, N. K., et al. "High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths," Appl. Phys. Lett., Vol. 111, 221101, 2017.
doi:10.1063/1.5007007 Google Scholar
14. Purcell, E. M., Confined Electrons and Photons: New Physics and Applications, 839, E. Burstein and C. Weisbuch, 1995.
doi:10.1007/978-1-4615-1963-8_40
15. Schuller, J. A., et al. "Plasmonics for extreme light concentration and manipulation," Nat. Mater., Vol. 9, 193-204, 2010.
doi:10.1038/nmat2630 Google Scholar
16. Agio, M. and D. M. Cano, "The Purcell factor of nanoresonators," Nat. Photonics, Vol. 7, 674-675, 2013.
doi:10.1038/nphoton.2013.219 Google Scholar
17. Boriskina, S. V., T. A. Cooper, L. Zeng, G. W. Ni, and C. Gang, "Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities," Adv. Opt. Photonics, Vol. 9, 775-827, 2017.
doi:10.1364/AOP.9.000775 Google Scholar
18. Aouani, H., et al. "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.
doi:10.1021/nl302665m Google Scholar
19. Walmsley, I. A., "Quantum optics: Science and technology in a new light," Science, Vol. 348, 525-530, 2015.
doi:10.1126/science.aab0097 Google Scholar
20. Zhang, Q., S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers," Nano Lett., Vol. 14, 5995-6001, 2014.
doi:10.1021/nl503057g Google Scholar
21. Chen, J., F. Gan, Y. Wang, and G. Li, "Plasmonic sensing and modulation based on fano resonances," Adv. Opt. Photonics, Vol. 6, 1701152, 2018. Google Scholar
22. Ma, R., R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.
doi:10.1038/nmat2919 Google Scholar
23. Kravets, V. G., A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, "Plasmonic surface lattice resonances: A review of properties and applications," Chem. Rev., Vol. 118, 5912-5951, 2018.
doi:10.1021/acs.chemrev.8b00243 Google Scholar
24. Bin-Alam, M. S., et al. "Ultra-high-Q resonances in plasmonic metasurfaces," Nat. Commun., Vol. 12, 974, 2021.
doi:10.1038/s41467-021-21196-2 Google Scholar
25. Hakala, T. K., et al. "Bose-Einstein condensation in a plasmonic lattice," Nat. Phys., Vol. 14, 739-744, 2018.
doi:10.1038/s41567-018-0109-9 Google Scholar
26. Huttunen, M., et al. "Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays," J. Opt. Soc. Am. B, Vol. 36, E30, 2019.
doi:10.1364/JOSAB.36.000E30 Google Scholar
27. Kinkhabwala, A., et al. "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photonics, Vol. 3, 654-657, 2009.
doi:10.1038/nphoton.2009.187 Google Scholar
28. Hsu, C. W., et al. "Transparent displays enabled by resonant nanoparticle scattering," Nat. Commun., Vol. 5, 3152, 2014.
doi:10.1038/ncomms4152 Google Scholar
29. Krasnok, A., M. Tymchenko, and A. Alù, "Nonlinear metasurfaces: A paradigm shift in nonlinear optics," Mater., Vol. 21, 8-21, 2018. Google Scholar
30. Reshef, O., et al. "Multiresonant high-Q plasmonic metasurfaces," Nano Lett., Vol. 19, 6429-6434, 2019.
doi:10.1021/acs.nanolett.9b02638 Google Scholar
31. Purcell, E. and C. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, 1973.
doi:10.1086/152538 Google Scholar
32. Sauvan, C., J. Hugonin, I. Maksymov, and P. Lalanne, "Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators," Phys. Rev. Lett., Vol. 110, 2013.
doi:10.1103/PhysRevLett.110.237401 Google Scholar
33. Kwiat, P. G., E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A, Vol. 60, R773, 1999.
doi:10.1103/PhysRevA.60.R773 Google Scholar
34. Reimer, C., et al. "Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip," Nat. Commun., Vol. 6, 8236, 2015.
doi:10.1038/ncomms9236 Google Scholar
35. Saffman, M. and T. G. Walker, "Creating single-atom and single-photon sources from entangled atomic ensembles," Phys. Rev. A, Vol. 66, 065403, 2002.
doi:10.1103/PhysRevA.66.065403 Google Scholar
36. Lu, D., J. Kan, E. Fullerton, and Z. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nat. Nanotechnol., Vol. 9, 48-53, 2014.
doi:10.1038/nnano.2013.276 Google Scholar
37. Vieu, C., et al. "Electron beam lithography: Resolution limits and applications," Appl. Surf. Sci., Vol. 164, 111-117, 2000.
doi:10.1016/S0169-4332(00)00352-4 Google Scholar
38. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
doi:10.2528/PIER20072201 Google Scholar
39. Zhong, H.-S., et al. "Quantum computational advantage using photons," Science, Vol. 370, 1460-1463, 2020.
doi:10.1126/science.abe8770 Google Scholar