1. Ben-Moshe, A., B. M. Maoz, A. O. Govorov, and G. Markovich, "Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances," Chemical Society Reviews, Vol. 42, No. 16, 7028-7041, 2013.
doi:10.1039/c3cs60139k Google Scholar
2. Collins, J. T., C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, "Chirality and chiroptical effects in metal nanostructures: Fundamentals and current trends," Advanced Optical Materials, Vol. 5, No. 16, 1700182, 2017.
doi:10.1002/adom.201700182 Google Scholar
3. Valev, V. K., J. J. Baumberg, C. Sibilia, and T. Verbiest, "Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook," Advanced Materials, Vol. 25, No. 18, 2517-2534, 2013.
doi:10.1002/adma.201205178 Google Scholar
4. Tang, Y. Q. and A. E. Cohen, "Optical chirality and its interaction with matter," Physical Review Letters, Vol. 104, No. 16, 163901, 2010.
doi:10.1103/PhysRevLett.104.163901 Google Scholar
5. Zhao, Y., A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, "Chirality detection of enantiomers using twisted optical metamaterials," Nature Communications, Vol. 8, No. 1, 14180, 2017.
doi:10.1038/ncomms14180 Google Scholar
6. Khanikaev, A. B., N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, and M. A. Belkin, "Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials," Nature Communications, Vol. 7, No. 1, 12045, 2016.
doi:10.1038/ncomms12045 Google Scholar
7. Poulikakos, L. V., P. Thureja, A. Stollmann, E. D. Leo, and D. J. Norris, "Chiral light design and detection inspired by optical antenna theory," Nano Letters, Vol. 18, No. 8, 4633-4640, 2018.
doi:10.1021/acs.nanolett.8b00083 Google Scholar
8. Lin, C. Y., C. C. Liu, Y. Y. Chen, K. Y. Chiu, J. D. Wu, B. L. Lin, H. W. Chang, Y. F. Chen, S. H. Chang, and Y. C. Chang, "Molecular chirality detection with periodic arrays of three-dimensional twisted metamaterials," ACS Applied Materials & Interfaces, Vol. 13, No. 1, 1152-1157, 2021.
doi:10.1021/acsami.0c16256 Google Scholar
9. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031 Google Scholar
10. Esposito, M., V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, "Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies," ACS Photonics, Vol. 2, No. 1, 105-114, 2015.
doi:10.1021/ph500318p Google Scholar
11. Tseng, M. L., Z. H. Lin, H. Y. Kuo, T. T. Huang, Y. T. Huang, T. L. Chung, C. H. Chu, J. S. Huang, and D. P. Tsai, "Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality," Advanced Optical Materials, Vol. 7, No. 15, 1900617, 2019.
doi:10.1002/adom.201900617 Google Scholar
12. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Physical Review Letters, Vol. 97, No. 16, 167401, 2006.
doi:10.1103/PhysRevLett.97.167401 Google Scholar
13. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Letters, Vol. 7, No. 7, 1996-1999, 2007.
doi:10.1021/nl0707961 Google Scholar
14. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Letters, Vol. 8, No. 9, 2940-2943, 2008.
doi:10.1021/nl801794d Google Scholar
15. Najafabadi, A. F. and T. Pakizeh, "Optical absorbing origin of chiroptical activity in planar plasmonic metasurfaces," Scientific Reports, Vol. 7, No. 1, 10251, 2017.
doi:10.1038/s41598-017-10532-6 Google Scholar
16. Ye, W., X. Yuan, C. Guo, J. Zhang, and Z. Shuang, "Large chiroptical effects in planar chiral metamaterials," Physical Review Applied, Vol. 7, No. 5, 54003, 2017.
doi:10.1103/PhysRevApplied.7.054003 Google Scholar
17. Ullah, H., A. Abudukelimu, Y. Qu, Y. Bai, T. Aba, and Z. Zhang, "Giant circular dichroism of chiral l-shaped nanostructure coupled with achiral nanorod: Anomalous behavior of multipolar and dipolar resonant modes," Nanotechnology, Vol. 31, No. 27, 275205, 2020.
doi:10.1088/1361-6528/ab84a1 Google Scholar
18. Kong, X. T., L. K. Khorashad, Z. Wang, and A. O. Govorov, "Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers," Nano Letters, Vol. 18, No. 3, 2001-2008, 2018.
doi:10.1021/acs.nanolett.7b05446 Google Scholar
19. Chen, X., L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nature Communications, Vol. 3, No. 1, 1198, 2012.
doi:10.1038/ncomms2207 Google Scholar
20. Ma, Z., Y. Li, L. Yang, Y. Gong, and M. Hong, "All-dielectric planar chiral metasurface with gradient geometric phase," Optics Express, Vol. 26, No. 5, 6067-6078, 2018.
doi:10.1364/OE.26.006067 Google Scholar
21. Solomon, M. L., A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, and J. A. Dionne, "Nanophotonic platforms for chiral sensing and separation," Accounts of Chemical Research, Vol. 53, No. 3, 588-598, 2020.
doi:10.1021/acs.accounts.9b00460 Google Scholar
22. Rana, A. S., I. Kim, M. A. Ansari, M. S. Anwar, and J. Rho, "Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolation," ACS Applied Materials & Interfaces, Vol. 12, No. 43, 48899-48909, 2020.
doi:10.1021/acsami.0c10006 Google Scholar
23. Semnani, B., J. Flannery, R. A. Maruf, and M. Bajcsy, "Spin-preserving chiral photonic crystal mirror," Light-Science & Applications, Vol. 9, No. 1, 23, 2020.
doi:10.1038/s41377-020-0256-5 Google Scholar
24. Chen, C., S. Gao, W. Song, H. Li, and T. Li, "Metasurfaces with planar chiral meta-atoms for spin light manipulation," Nano Letters, Vol. 21, No. 4, 1815-1821, 2021.
doi:10.1021/acs.nanolett.0c04902 Google Scholar
25. Wang, S., Z. L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B. O. Guan, S. Xiao, and X. Li, "Arbitrary polarization conversion dichroism metasurfaces for all-in-one full poincaré sphere polarizers," Light-Science & Applications, Vol. 10, No. 1, 24, 2021.
doi:10.1038/s41377-021-00468-y Google Scholar
26. Hu, J. P., C. Zhang, Y. G. Dong, A. J. Zeng, and C. H. Wang, "High efficiency all-dielectric pixelated metasurface for near-infrared full-stokes polarization detection," Photonics Research, Vol. 9, No. 4, 4000583, 2021.
doi:10.1364/PRJ.416342 Google Scholar
27. Li, J., J. T. Li, C. L. Zheng, Y. Yang, Z. Yue, X. R. Hao, H. L. Zhao, F. Y. Li, T. T. Tang, L. Wu, J. N. Li, Y. T. Zhang, and J. Q. Yao, "Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave," Opt. Express, Vol. 29, 28329-28337, 2021.
doi:10.1364/OE.430033 Google Scholar
28. Plum, E. and N. I. Zheludev, "Chiral mirrors," Applied Physics Letters, Vol. 106, No. 22, 775-388, 2015.
doi:10.1063/1.4921969 Google Scholar
29. Solomon, M. L., A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, and J. A. Dionne, "Nanophotonic platforms for chiral sensing and separation," Accounts of Chemical Research, Vol. 53, No. 3, 588-598, 2020.
doi:10.1021/acs.accounts.9b00460 Google Scholar
30. Bochenkov, V. E. and T. I. Shabatina, "Chiral plasmonic biosensors," Biosensors, Vol. 8, No. 4, 120, 2018.
doi:10.3390/bios8040120 Google Scholar
31. Collett, A. E., Field Guide to Polarization, SPIE Press, 2005.
doi:10.1117/3.626141
32. Karagodsky, V., F. G. Sedgwick, and C. J. Chang-Hasnain, "Theoretical analysis of subwavelength high contrast grating reflectors," Optics Express, Vol. 18, No. 16, 16973-16988, 2010.
doi:10.1364/OE.18.016973 Google Scholar