Vol. 173
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-04-18 Featured Article
Spoof Surface Plasmons Arising from Corrugated Metal Surface to Structural Dispersion Waveguide
By
Progress In Electromagnetics Research, Vol. 173, 93-127, 2022
Abstract
Metamaterials offer great promise for engineering electromagnetic properties beyond the limits of natural materials. A typical example is the so-called spoof surface plasmons (SPs), which mimic features of optical SPs without penetrating metal at lower frequencies. Spoof SPs inherit most of the properties of natural SPs, including dispersion characteristics, field confinement, localized resonance, and subwavelength resolution, and therefore are highly expected to offer a new solution for low-frequency applications. With the development of spoof SPs, three different theories have been introduced. The first one is the description of subwavelength corrugated metal surfaces by a metamaterial that hosts an effective plasma frequency. The second one is developed with high-index contrast grating, which can realize propagation with ultra low loss and localization with ultrahigh Q-factor resonance. The last one is structural dispersion induced SPs, a perfect low-frequency analogue of optical SPs, realized by exploiting the well-known structural dispersion waveguide modes only with positive-ɛ materials. Here, the developments of these three theories including propagation and localized SPs are reviewed, focusing primarily on the fundamental and representative applications.
Citation
Liangliang Liu, and Zhuo Li, "Spoof Surface Plasmons Arising from Corrugated Metal Surface to Structural Dispersion Waveguide," Progress In Electromagnetics Research, Vol. 173, 93-127, 2022.
doi:10.2528/PIER22011301
References

1. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, 1988.

2. Economou, E. N., "Surface plasmons in thin films," Phys. Rev., Vol. 182, No. 2, 539-554, 1969.        Google Scholar

3. Ritchie, R. H., "Surface plasmons in solids," Surface Science, Vol. 34, No. 1, 1-19, 1973.        Google Scholar

4. Murray, W. A. and W. L. Barnes, "Plasmonic materials," Adv. Mater., Vol. 19, No. 22, 3771-3782, 2007.        Google Scholar

5. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.        Google Scholar

6. Maier, S. A., Plasmonics Fundamentals and Applications, Springer, 2007.

7. Huidobro, P. A., A. I. Fernández-Domínguez, J. B. Pendry, et al. Spoof Surface Plasmon Metamaterials, Cambridge University Press, 2018.

8. Gramotnev, D. K. and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon., Vol. 4, No. 2, 83-91, 2010.        Google Scholar

9. Maier, S. A. and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys., Vol. 98, No. 1, 011101, 2005.        Google Scholar

10. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.        Google Scholar

11. Novotny, L., "Effective wavelength scaling for optical antennas," Phys. Rev. Lett., Vol. 98, No. 26, 266802, 2007.        Google Scholar

12. Bryant, G. W., F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano Lett., Vol. 8, No. 2, 631-636, 2008.        Google Scholar

13. Schuller, J. A., E. S. Barnard, W. Cai, et al. "Plasmonics for extreme light concentration and manipulation," Nature Mater., Vol. 9, No. 3, 193-204, 2010.        Google Scholar

14. Fan, J. A., C. Wu, K. Bao, et al. "Self-assembled plasmonic nanoparticle clusters," Science, Vol. 328, No. 5982, 1135-1138, 2010.        Google Scholar

15. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.        Google Scholar

16. Anker, J. N., W. P. Hall, O. Lyandres, et al. "Biosensing with plasmonic nanosensors," Nature Mater., Vol. 7, 442, 2008.        Google Scholar

17. Kabashin, A. V., P. Evans, S. Pastkovsky, et al. "Plasmonic nanorod metamaterials for biosensing," Nature Mater., Vol. 8, 867, 2009.        Google Scholar

18. Flatgen, G., K. Krischer, B. Pettinger, et al. "Two-dimensional imaging of potential waves in electrochemical systems by surface plasmon microscopy," Science, Vol. 269, 668, 1995.        Google Scholar

19. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, et al. "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667, 1998.        Google Scholar

20. Martín-Moreno, L., F. J. García-Vidal, H. J. Lezec, et al. "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett., Vol. 86, 1114, 2001.        Google Scholar

21. Zhang, S., D. A. Genov, Y. Wang, et al. "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, 047401, 2008.        Google Scholar

22. Kekatpure, R. D., E. S. Barnard, W. Cai, et al. "Phase-coupled plasmon-induced transparency," Phys. Rev. Lett., Vol. 104, 243902, 2010.        Google Scholar

23. Gobau, G., "Surface waves and their application to transmission lines," J. Appl. Phys., Vol. 21, 1119, 1950.        Google Scholar

24. Mills, D. L. and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B, Vol. 39, 1569, 1989.        Google Scholar

25. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.

26. Zenneck, J., "Propagation of plane electromagnetic waves along a plane conducting surface," Ann. Phys., Vol. 23, No. 1, 846, 1907.        Google Scholar

27. Sommerfeld, A., "Propagation of electrodynamic waves along a cylindric conductor," Ann. Phys. und Chemie, Vol. 67, 233, 1899.        Google Scholar

28. Ulrich, R. and M. Tacke, "Submilimeter waveguiding on periodic metal structure," Appl. Phys. Lett., Vol. 22, 251, 1973.        Google Scholar

29. Pendry, J. B., L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.        Google Scholar

30. García-Vidal, F. J., L. Martín-Moreno, and J. B. Pendry, "Surfaces with holes inthem: New plasmonic metamaterials," J. Opt. A: P. Appl. Opt., Vol. 7, No. 2, S97-S101, 2005.        Google Scholar

31. Pors, A., E. Moreno, L. Martin-Moreno, et al. "Localized spoof plasmons arise while texturing closed surfaces," Phys. Rev. Lett., Vol. 108, 223905, 2012.        Google Scholar

32. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, 2006.

33. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental veri cation of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005.        Google Scholar

34. Hibbins, A. P., E. Hendry, M. J. Lockyear, and J. R. Sambles, "Prism coupling to `designer' surface plasmons," Opt. Express, Vol. 16, 20441, 2008.        Google Scholar

35. Lockyear, M. J., A. P. Hibbins, and J. R. Sambles, "Microwave surface-plasmon-like modes on thin metamaterials," Phys. Rev. Lett., Vol. 102, 073901, 2009.        Google Scholar

36. Hibbins, A. P., M. Lockyear, I. Hooper, and J. Sambles, "Waveguide arrays as plasmonic metamaterials: Transmission below cutoff," Phys. Rev. Lett., Vol. 96, No. 7, 073904, 2006.        Google Scholar

37. Wood, R. W., "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag., Vol. 4, No. 21, 396-402, 1902.        Google Scholar

38. Williams, C. R., S. R. Andrews, S. A. Maier, et al. "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photon., Vol. 2, No. 3, 175-179, 2008.        Google Scholar

39. Zhao, W., O. M. Eldaiki, R. Yang, and Z. Lu, "Deep subwavelength waveguiding and focusing based on designer surface plasmons," Opt. Express, Vol. 18, No. 20, 21498-21503, 2010.        Google Scholar

40. Zhu, W., A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express, Vol. 16, 6216, 2008.        Google Scholar

41. Qiu, M., "Photonic band structures for surface waves on structured metal surfaces," Opt. Express, Vol. 13, 7583, 2005.        Google Scholar

42. Gao, Z., L. Wu, F. Gao, et al. "Spoof plasmonics: From metamaterial concept to topological description," Adv. Mater., Vol. 30, 1706683, 2018.        Google Scholar

43. Gómez-Rivas, J., M. Kuttge, P. H. Bolivar, et al. "Propagation of surface plasmon polaritons on semiconductor gratings," Phys. Rev. Lett., Vol. 93, No. 25, 256804, 2004.        Google Scholar

44. García de Abajo, F. J. and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett., Vol. 95, No. 2, 233901, 2005.        Google Scholar

45. Yu, N. F., Q. J. Wang, M. A. Kats, et al. "Designer spoof surface plasmon structures collimate terahertz laser beams," Nature Mater., Vol. 9, No. 9, 730-735, 2010.        Google Scholar

46. Maier, S. A., S. A. Andrews, L. Martín-Moreno, et al. "Terahertz surface plasmon-polariton propagation and focusingon periodically corrugated metal wires," Phys. Rev. Lett., Vol. 97, No. 17, 176805, 2006.        Google Scholar

47. Fernández-Domínguez, A. I., L. Martín-Moreno, F. J. García-Vidal, et al. "Spoof surface plasmon polariton modes propagating along periodically corrugated wires," IEEE J. Sel. Top Quant. Elect., Vol. 14, 1515, 2008.        Google Scholar

48. Fernández-Domínguez, A. I., C. R. Williams, F. J. García-Vidal, et al. "Terahertz surface plasmon polaritons on a helically grooved wire," Appl. Phys. Lett., Vol. 93, No. 14, 141109, 2008.        Google Scholar

49. Ruting, F., A. I. Fernández-Domínguez, L. Martín-Moreno, et al. "Subwavelength chiral surface plasmons that carry tunable orbital angular momentum," Phys. Rev. B, Vol. 86, 075437, 2012.        Google Scholar

50. Liu, L. L., Z. Li, P. P. Ning, et al. "Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire," Plasmonics, Vol. 11, No. 2, 359-364, 2016.        Google Scholar

51. Wood, J. J., L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Dominguez, "Spoof plasmon polaritons in slanted geometries," Phys. Rev. B, Vol. 85, 075441, 2012.        Google Scholar

52. Ruan, Z. C. and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett., Vol. 90, 201906, 2007.        Google Scholar

53. Novikov, I. V. and A. A. Maradudin, "Channel polaritons," Phys. Rev. B, Vol. 66, 035403, 2002.        Google Scholar

54. Fernández-Dominguez, A. I., E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Guiding terahertz waves along subwavelength channels," Phys. Rev. B, Vol. 79, No. 23, 233104, 2009.        Google Scholar

55. Jiang, T., L. F. Shen, J. J. Wu, et al. "Realization of tightly confined channel plasmon polaritons at low frequencies," Appl. Phys. Lett., Vol. 99, No. 26, 261103, 2011.        Google Scholar

56. Gao, Z., L. F. Shen, and X. Zheng, "Highly-confined guiding of terahertz waves along subwavelength grooves," IEEE Photon. Tech. Lett., Vol. 24, No. 15, 1343-1345, 2012.        Google Scholar

57. Li, X., T. Jiang, L. F. Shen, and D. X. Ye, "Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths," Appl. Phys. Lett., Vol. 102, No. 3, 031606, 2013.        Google Scholar

58. Fernández-Dominguez, A. I., E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Terahertz wedge plasmon polaritons," Opt. Lett., Vol. 34, No. 13, 2063-2065, 2009.        Google Scholar

59. Gao, Z., X. Zhang, and L. F. Shen, "Wedge mode of spoof surface plasmon polaritons at terahertz frequencies," J. Appl. Phys., Vol. 108, No. 11, 113104, 2010.        Google Scholar

60. Moreno, E., S. G. Rodrigo, S. I. Bozhevolnyi, et al. "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett., Vol. 100, No. 2, 023901, 2008.        Google Scholar

61. Martín-Cano, D., M. L. Nesterov, A. I. Fernández-Dominguez, et al. "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, No. 2, 754-764, 2010.        Google Scholar

62. Ma, Y. G., L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit," Opt. Express, Vol. 19, No. 22, 21189, 2011.        Google Scholar

63. Martín-Cano, D., O. Quevedo-Teruel, E. Moreno, et al. "Waveguided spoof surface plasmons with deep subwavelength lateral confinement," Opt. Lett., Vol. 36, No. 23, 4635-4637, 2011.        Google Scholar

64. Brock, E. M. G., E. Hendry, and A. P. Hibbins, "Subwavelength lateral confinement of microwave surface waves," Appl. Phys. Lett., Vol. 99, No. 5, 051108, 2011.        Google Scholar

65. Kats, M. A., D. Woolf, R. Blanchard, et al. "Spoof plasmon analogue of metal-insulator-metal waveguides," Opt. Express, Vol. 19, No. 16, 14860-14870, 2011.        Google Scholar

66. Woolf, D., M. Kats, and F. Capasso, "Spoof surface plasmon waveguide forces," Opt. Lett., Vol. 39, No. 3, 517-520, 2014.        Google Scholar

67. Quesada, R., D. Martín-Cano, F. J. García-Vidal, and J. Bravo-Abad, "Deep subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons," Opt. Lett., Vol. 39, No. 10, 2990, 2014.        Google Scholar

68. Chen, N. C., C. Y. Lu, Y. L. Huang, et al. "Properties of coupled surface plasmon-polaritons in metal-dielectric-metal structures," J. Appl. Phys., Vol. 112, 033111, 2012.        Google Scholar

69. Shen, X. P., T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, "Conformal surface plasmons propagating on ultrathin and flexible films," Proceedings of the National Academy of Sciences of the United States of America-PNAS, Vol. 110, No. 1, 40-45, 2013.        Google Scholar

70. Shen, X. P. and T. J. Cui, "Planar plasmonic metamaterial on a thin film with nearly zero thickness," Appl. Phys. Lett., Vol. 102, No. 21, 14-18, 2013.        Google Scholar

71. Gan, Q. Q., Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett., Vol. 100, 256803, 2008.        Google Scholar

72. Tang, Y. B., Z. C. Wang, L. Wosinski, et al. "Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits," Opt. Lett., Vol. 35, No. 8, 1290-1292, 2010.        Google Scholar

73. Liu, X., Y. Feng, K. Chen, et al. "Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures," Opt. Express, Vol. 22, No. 17, 20107, 2014.        Google Scholar

74. Zhou, Y. J., Q. Jiang, and T. J. Cui, "Bidirectional bending splitter of designer surface plasmons," Appl. Phys. Lett., Vol. 99, No. 11, 111904, 2011.        Google Scholar

75. Gao, X., J. H. Shi, X. P. Shen, et al. "Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies," Appl. Phys. Lett., Vol. 102, No. 15, 1-5, 2013.        Google Scholar

76. Liu, X., Y. Feng, B. Zhu, et al. "High-order modes of spoofsurface plasmonic wave transmission on thin metal film structure," Opt. Express, Vol. 21, No. 25, 31155-31165, 2013.        Google Scholar

77. Sun, S. L., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index metasurfaces as a bridge linking propagating waves and surface waves," Nature Mater., Vol. 11, No. 5, 426-431, 2012.        Google Scholar

78. Ma, H. F., X. P. Shen, Q. Cheng, et al. "Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons," Laser Photon. Rev., Vol. 8, No. 1, 146-151, 2014.        Google Scholar

79. Zhang, W. J., G. Q. Zhu, L. G. Sun, and F. J. Lin, "Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation," Appl. Phys. Lett., Vol. 106, 021104, 2015.        Google Scholar

80. Liu, L. L., Z. Li, B. Z. Xu, et al. "Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes," Appl. Phys. Lett., Vol. 107, No. 20, 2015.        Google Scholar

81. Gao, X., L. Zhou, Z. Liao, et al. "An ultra-wideband surface plasmonic filter in microwave frequency," Appl. Phys. Lett., Vol. 104, No. 19, 17-22, 2014.        Google Scholar

82. Liu, L. L., Z. Li, B. Z. Xu, et al. "Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons," Plasmonics, Vol. 12, No. 2, 439-444, 2017.        Google Scholar

83. Zhang, H. C., L. Liu, P. H. He, et al. "A wide-angle broadband converter: From odd-mode spoof surface plasmon polaritons to spatial waves," IEEE Trans. on Antennas and Propa., Vol. 67, No. 12, 7425-7432, 2019.        Google Scholar

84. Zhou, S. Y., S. W. Wong, and J. Y. Lin, "Four-way spoof surface plasmon polaritons splitter/combiner," IEEE Ant. and Wire. Prop. Lett., Vol. 29, No. 2, 98-100, 2019.        Google Scholar

85. Tang, W. X., H. C. Zhang, H. F. Ma, et al. "Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies," Adv. Opt. Mater., 1800421, 2018.        Google Scholar

86. Xu, J., Z. Li, L. L. Liu, et al. "Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons," Opt. Comm., Vol. 372, 155-159, 2016.        Google Scholar

87. Xu, B. Z., Z. Li, L. L. Liu, et al. "Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons," J. Opt. Soc. America B, Vol. 33, No. 7, 1388-1391, 2016.        Google Scholar

88. Li, Z., J. Xu, C. Chen, et al. "Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons," Appl. Opt., Vol. 55, No. 36, 10323-10328, 2016.        Google Scholar

89. Kianinejad, A., Z. N. Chen, and C. W. Qiu, "Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line," IEEE Trans. Micro. Theory and Tech., Vol. 63, No. 6, 1817-1825, 2015.        Google Scholar

90. Kianinejad, A., Z. N. Chen, and C. W. Qiu, "Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation," IEEE Trans. Micro. Theory and Tech., Vol. 64, No. 10, 3078-3086, 2016.        Google Scholar

91. Wu, J. J., D. J. Hou, and K. X. Liu, "Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons," Opt. Express, Vol. 22, No. 22, 26777-26787, 2014.        Google Scholar

92. Zhang, H. C., T. J. Cui, Q. Zhang, et al. "Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons," ACS Photon., Vol. 2, No. 9, 1333-1340, 2015.        Google Scholar

93. Zhao, S. M., H. C. Zhang, L. L. Liu, et al. "A novel low-crosstalk driveline based on spoof surface plasmon polaritons," IEEE Access, Vol. 7, 30702-30707, 2019.        Google Scholar

94. Gao, X. X., H. C. Zhang, P. H. He, et al. "Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip," IEEE Trans. on Compon., Pack. and Manuf. Techn., Vol. 9, No. 11, 2267-2275, 2019.        Google Scholar

95. Wang, M. N., M. Tang, H. C. Zhang, et al. "Crosstalk noise suppression between single and differential transmission lines using spoof surface plasmon polaritons," IEEE Trans. on Compon., Pack. and Manuf. Techn., Vol. 10, No. 8, 1367-1374, 2020.        Google Scholar

96. Liu, L. L., Z. Li, C. Q. Gu, et al. "Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films," J. Appl. Phys., Vol. 116, 013501, 2014.        Google Scholar

97. Yang, B. J. and Y. J. Zhou, "Compact four-way wavelength demultiplexers based on conformal surface plasmon waveguides," Jpn. J. Appl. Phys., Vol. 54, 112201, 2015.        Google Scholar

98. Yang, B. J. and Y. J. Zhou, "Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides," J. Modern Opt., Vol. 63, No. 9, 874-880, 2016.        Google Scholar

99. Kianinejad, A., Z. N. Chen, L. Zhang, et al. "Spoof plasmon-based slow-wave excitation of dielectric resonator antennas," IEEE Trans. Ant. and Prop., Vol. 64, No. 6, 2094-2099, 2016.        Google Scholar

100. Han, Y. J., Y. F. Li, H. Ma, et al. "Multibeam antennas based on spoof surface plasmon polaritons mode coupling," IEEE Trans. Ant. and Prop., Vol. 65, No. 3, 1187-1192, 2017.        Google Scholar

101. Li, Z., C. Chen, L. L. Liu, et al. "Tunable spoof surface plasmons bulleye antenna," Plasmonics, Vol. 13, No. 2, 697-703, 2018.        Google Scholar

102. Han, Y. J., J. F. Wang, S. H. Gong, et al. "Low RCS antennas based on dispersion engineering of spoof surface plasmon polaritons," IEEE Trans. Ant. and Prop., Vol. 66, No. 12, 7111-7116, 2018.        Google Scholar

103. Wang, M., H. F. Ma, H. C. Zhang, et al. "Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line," IEEE Trans. Ant. and Prop., Vol. 66, No. 9, 4449-4457, 2018.        Google Scholar

104. Feng, W. J., Y. H. Feng, W. C. Yang, et al. "High-performance filtering antenna using spoof surface plasmon polaritons," IEEE Trans. Plasm. Sci., Vol. 47, No. 6, 2832-2837, 2019.        Google Scholar

105. Zhang, X. F., J. Fan, and J. X. Chen, "High gain and high-efficiency millimeter-wave antenna based on spoof surface plasmon polaritons," IEEE Trans. Ant. and Prop., Vol. 67, No. 1, 687-691, 2019.        Google Scholar

106. Lu, J. Y., H. C. Zhang, P. H. He, et al. "Design of miniaturized antenna using corrugated microstrip," IEEE Trans. Ant. and Prop., Vol. 68, No. 3, 1918-1924, 2020.        Google Scholar

107. Liu, L. L., Z. Li, C. Q. Gu, et al. "Smooth bridge between guided waves and spoof surface plasmon polaritons," Opt. Lett., Vol. 40, No. 8, 1810-1813, 2015.        Google Scholar

108. Liu, L. L., Z. Li, B. Z. Xu, et al. "High-efficiency transition between rectangular waveguide and domino plasmonic waveguide," AIP Adv., Vol. 5, 027105, 2015.        Google Scholar

109. Liu, L. L., Z. Li, B. Z. Xu, et al. "A high-efficiency rectangular waveguide to Domino plasmonic waveguide converter in X-band," Proc. 3rd Asia-Paci c Conf. Ant. and Prop., 974-977, 2014.        Google Scholar

110. Guan, D. F., P. You, Q. F. Zhang, et al. "Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter," IEEE Trans. Micro. Theory and Tech., Vol. 65, No. 12, 4925-4932, 2017.        Google Scholar

111. Guan, D. F., P. You, Q. F. Zhang, et al. "Slow-wave half-mode substrate integrated waveguide using spoof surface plasmon polariton structure," IEEE Trans. Micro. Theory and Tech., Vol. 66, No. 6, 2946-2952, 2018.        Google Scholar

112. Liu, L. L., L. Ran, H. D. Guo, X. Chen, and Z. Li, "Broadband plasmonic circuitry enabled by channel domino spoof plasmons," Progress In Electromagnetic Research, Vol. 164, 109-118, 2019.        Google Scholar

113. Liu, L. L., L. Wu, J. J. Zhang, et al. "Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials," Adv. Sci., 1800661, 2018.        Google Scholar

114. Gao, X. X., J. J. Zhang, H. C. Zhang, et al. "Dynamic controls of second-harmonic generations in both forward and backward modes using reconfigurable plasmonic metawaveguide," Adv. Opt. Mater., 1902058(1-8), 2020.        Google Scholar

115. Zhang, H. C., T. J. Cui, J. Xu, et al. "Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial," Adv. Mater. Technol., Vol. 2, 1600202, 2016.        Google Scholar

116. Wang, M., H. F. Ma, W. X. Tang, et al. "Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices," Adv. Mater. Technol., Vol. 4, 1800603, 2019.        Google Scholar

117. Zhang, H. C., T. J. Cui, Y. Luo, et al. "Active digital spoof plasmonics," Nat. Sci. Rev., Vol. 7, 261-269, 2020.        Google Scholar

118. Zhang, H. C., S. Liu, X. P. Shen, et al. "Broadband amplification of spoof surface plasmon polaritons at microwave frequencies," Laser Photon. Rev., Vol. 9, No. 1, 83-90, 2015.        Google Scholar

119. Gao, X. X., J. J. Zhang, and Y. Luo, "Reconfigurable parametric amplifications of spoof surface plasmons," Adv. Sci., Vol. 8, 2100795, 2021.        Google Scholar

120. Wan, X., J. Y. Yin, H. C. Zhang, and T. J. Cui, "Dynamic excitation of spoof surface plasmon polaritons," Appl. Phys. Lett., Vol. 105, No. 8, 2014.        Google Scholar

121. Zhang, H. C., Y. Fan, J. Guo, et al. "Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials," ACS Photon., Vol. 3, No. 1, 139-146, 2016.        Google Scholar

122. Zhang, X. R., W. X. Tang, H. C. Zhang, et al. "A spoof surface plasmon transmission line loaded with varactors and short-circuit stubs and its application in Wilkinson power dividers," Adv. Mater. Technol., Vol. 3, 1800046, 2018.        Google Scholar

123. Zhang, L. P., H. C. Zhang, M. Tang, et al. "Integrated multi-scheme digital modulations of spoof surface plasmon polaritons," SCI. China Inf. Sci., Vol. 63, No. 202302, 1-10, 2020.        Google Scholar

124. Zhang, H. C., L. P. Zhang, P. H. He, et al. "A plasmonic route for the integrated wireless communication of subdiffraction-limited signals," Light Sci. & Appl., Vol. 9, 113, 2020.        Google Scholar

125. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.

126. Garcia-Vidal, F. J. and J. B. Pendry, "Collective theory for surface-enhanced Raman scattering," Phys. Rev. Lett., Vol. 77, 1163, 1996.        Google Scholar

127. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater., Vol. 9, 205, 2010.        Google Scholar

128. Pors, A., E. Moreno, L. Martín-Moreno, et al. "Localized spoof plasmons arise while texturing closed surfaces," Phys. Rev. Lett., Vol. 108, No. 22, 223905, 2012.        Google Scholar

129. Shen, X. P. and T. J. Cui, "Ultrathin plasmonic metamaterial for spoof localized surface plasmons," Laser Photon. Rev., Vol. 8, No. 1, 137-145, 2014.        Google Scholar

130. Wu, H. W., Y. Z. Han, H. J. Chen, et al. "Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures," Opt. Let., Vol. 42, No. 21, 4521-4524, 2017.        Google Scholar

131. Huidobro, P. A., X. P. Shen, J. Cuerda, et al. "Magnetic localized surface plasmons," Phys. Rev. X, Vol. 4, No. 2, 021003, 2014.        Google Scholar

132. Liao, Z., A. I. Fernández-Domínguez, J. J. Zhang, et al. "Homogenous metamaterial description of localized spoof plasmons in spiral geometries," ACS Photon., Vol. 3, 1768-1775, 2016.        Google Scholar

133. Li, Z., B. Z. Xu, C. Q. Gu, et al. "Localized spoof plasmons in closed textured cavities," Appl. Phys. Lett., Vol. 104, 251601, 2014.        Google Scholar

134. Li, Z., L. L. Liu, C. Q. Gu, et al. "Multi-band localized spoof plasmons with texturing closed surfaces," Appl. Phys. Lett., Vol. 104, 101603, 2014.        Google Scholar

135. Xu, B. Z., Z. Li, C. Q. Gu, et al. "Multi-band localized spoof plasmons in closed textured cavities," Appl. Opt., Vol. 53, No. 30, 6950-6953, 2014.        Google Scholar

136. Yang, B. J., Y. J. Zhou, and Q. X. Xiao, "Spoof localized surface plasmons in corrugated ring structures excited by microstrip line," Opt. Express, Vol. 23, No. 16, 21434, 2015.        Google Scholar

137. Zhou, Y. J., Q. X. Xiao, and B. J. Yang, "Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances," Sci. Rep., Vol. 5, 14819, 2015.        Google Scholar

138. Gao, Z., F. Gao, H. Y. Xu, et al. "Localized spoof surface plasmons in textured open metal surfaces," Opt. Lett., Vol. 41, No. 10, 3-6, 2016.        Google Scholar

139. Wu, H. W., H. J. Chen, H. Y. Fan, et al. "Trapped spoof surface plasmons with structured defects in textured closed surfaces," Opt. Lett., Vol. 42, No. 4, 791-794, 2017.        Google Scholar

140. Liao, Z., Y. Luo, A. I. Fernández-Dominguez, et al. "High-order localized spoof surface plasmon resonances and experimental verifications," Sci. Rep., Vol. 5, 9590, 2015.        Google Scholar

141. Gao, F., Z. Gao, X. H. Shi, et al. "Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances," Opt. Express, Vol. 23, No. 5, 6896-6902, 2015.        Google Scholar

142. Xiao, Q. X., B. J. Yang, and Y. J. Zhou, "Spoof localized surface plasmons and Fano resonances excited by flared slot line," J. Appl. Phys., Vol. 118, No. 23, 1-6, 2015.        Google Scholar

143. Gao, Z., F. Gao, K. K. Shastri, and B. L. Zhang, "Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain," Sci. Rep., Vol. 6, 25576, 2016.        Google Scholar

144. Gao, F., Z. Gao, Y. Luo, and B. L. Zhang, "Invisibility dips of near-field energy transport in a spoof plasmonic metadimer," Adv. Fun. Mater., Vol. 26, 8307-8312, 2016.        Google Scholar

145. Wu, H. W., Y. Li, H. J. Chen, et al. "Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure," ACS Appl. Nano Mater., Vol. 2, 1045-1052, 2019.        Google Scholar

146. Xu, B. Z., Z. Li, L. L. Liu, et al. "Non-concentric textured closed surface for huge local field enhancement," J. Opt., Vol. 19, No. 1, 015005, 2016.        Google Scholar

147. Huang, Y., J. J. Zhang, and T. J. Cui, "Revealing the physical mechanisms behind large field enhancement in hybrid spoof plasmonic systems," J. Opt. Soc. Amer. B, Vol. 35, No. 2, 396-401, 2018.        Google Scholar

148. Gao, Z., F. Gao, Y. Zhang, et al. "Experimental demonstration of high-order magnetic localized spoof surface plasmons," Appl. Phys. Lett., Vol. 107, No. 4, 1-5, 2015.        Google Scholar

149. Gao, Z., F. Gao, Y. Zhang, and B. L. Zhang, "Complementary structure for designer localized surface plasmons," Appl. Phys. Lett., Vol. 107, No. 19, 191103, 2015.        Google Scholar

150. Gao, Z., F. Gao, and B. L. Zhang, "High-order spoof localized surface plasmons supported on a complementary metallic spiral structure," Sci. Rep., Vol. 6, 24447, 2016.        Google Scholar

151. Gao, Z., F. Gao, Y. Zhang, and B. L. Zhang, "Deep-subwavelength magnetic coupling-dominant interaction among magnetic localized surface plasmons," Phys. Rev. B, Vol. 93, No. 19, 195410, 2016.        Google Scholar

152. Zhang, J. J., Z. Liao, Y. Luo, et al. "Spoof plasmon hybridization," Laser Photon. Rev., Vol. 11, No. 1, 1600191, 2017.        Google Scholar

153. Wu, H. W., H. J. Chen, H. F. Xu, et al. "Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure," Sci. Rep., Vol. 8, No. 1, 1-8, 2018.        Google Scholar

154. Wu, H. W., F. Yang, J. Q. Quan, et al. "Multifrequency superscattering with high factors from a deep-subwavelength spoof plasmonic structure," Phys. Rev. B, Vol. 100, No. 23, 235443, 2019.        Google Scholar

155. Shen, X. P., B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, "A combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions," ACS Photon., Vol. 2, No. 6, 738-743, 2015.        Google Scholar

156. Li, Z., L. L. Liu, B. Z. Xu, et al. "High-contrast gratings based spoof surface plasmons," Sci. Rep., Vol. 6, 21199, 2016.        Google Scholar

157. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

158. Liu, L. L., Z. Li, B. Z. Xu, et al. "Ultra-low loss high-contrast gratings based spoof surface plasmonic waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 65, No. 6, 2008-2018, 2017.        Google Scholar

159. Li, Z., B. Z. Xu, L. L. Liu, et al. "Localized spoof surface plasmons based on subwavelength closed high contrast gratings: Concept and microwave-regime realizations," Sci. Rep., Vol. 6, 27158, 2016.        Google Scholar

160. Giovampaola, C. D. and N. Engheta, "Plasmonics without negative dielectrics," Phys. Rev. B, Vol. 93, 195152, 2016.        Google Scholar

161. Li, Z., L. L. Liu, H. Y. Sun, et al. "Effective surface plasmon polaritons induced by modal dispersion in a waveguide," Phys. Rev. Appl., Vol. 7, No. 4, 044028, 2017.        Google Scholar

162. Prudêncio, F. R., J. R. Costa, C. A. Fernandes, et al. "Experimental verification of `waveguide' plasmonics," New J. Phys., Vol. 19, 123017, 2017.        Google Scholar

163. Li, Z., Y. H. Sun, K. Wang, et al. "Tuning the dispersion of effective surface plasmon polaritons with multilayer systems," Opt. express, Vol. 26, No. 4, 4686-4697, 2018.        Google Scholar

164. Demetriadou, A. and J. B. Pendry, "Taming spatial dispersion in wire metamaterial," J. Phys.: Condens. Matter, Vol. 20, 295222, 2008.        Google Scholar

165. Luukkonen, O., M. G. Silveirinha, A. B. Yakovlev, et al. "Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces," IEEE Trans. on Micro. Theory and Tech., Vol. 57, No. 11, 2692-2699, 2009.        Google Scholar

166. Wang, K., Z. Li, J. F. Shi, et al. "Broadband electromagnetic waves harvesting based on effective surface plasmon polaritons," Cross-Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 21-24, 2018.        Google Scholar

167. Li, Z., Y. H. Sun, and H. Y. Sun, "Spoof surface plasmons tunneling through an epsilon-near-zero material channel," J. Phys. D: Appl. Phys., Vol. 50, 375105 (7pp), 2017.        Google Scholar

168. Huang, T. J., J. Zhao, L. Z. Yin, and P. K. Liu, "Terahertz subwavelength edge detection based on dispersion-induced plasmons," Opt. Lett., Vol. 46, No. 11, 2746-2749, 2021.        Google Scholar

169. Yin, L. Z., F. Y. Han, J. Zhao, et al. "Constructing hyperbolic metamaterials with arbitrary medium," ACS Photon., Vol. 8, 1085-1096, 2021.        Google Scholar

170. Huang, T. J., L. Z. Yin, J. Zhao, et al. "Amplifying evanescent waves by dispersion-induced plasmons: Defying the materials limitation of the superlens," ACS Photon., Vol. 7, 2173-2181, 2020.        Google Scholar

171. Yang, Z. B., D. F. Guan, P. You, et al. "Compact effective surface plasmon polariton frequency splitter based on substrate integrated waveguide," J. Phys. D: Appl. Phys., Vol. 52, 435103 (7pp), 2019.        Google Scholar

172. Sakotic, Z., M. Drljaca, G. Kitic, et al. "LTCC dual-band bandpass filter based on SPP like propagation in substrate integrated waveguide," IEEE Eurocon International Conference on Smart Technologies, 1-4, July 2019.        Google Scholar

173. Zhang, A. Q., W. B. Lu, Z. G. Liu, and Y. Li, "Deeper confinement of electromagnetic waves beyond spoof surface plasmon polaritons," IEEE Trans. Ant. and Prop., Vol. 69, No. 4, 2142-2150, 2021.        Google Scholar

174. Shi, J. F., Z. Li, L. L. Liu, et al. "Lateral dimension tuned ultra-low loss effective surface plasmonic waveguide," J. Phys. D: Appl. Phys., Vol. 52, No. 2019, 105101 (7pp), 2019.        Google Scholar

175. Li, Z., L. L. Liu, A. I. Fernández-Domínguez, et al. "Mimicking localized surface plasmons with structural dispersion," Adv. Optical Mater., Vol. 7, No. 10, 1970036, 2019.        Google Scholar

176. Li, W. Q. and Y. J. Zhou, "Effective localized surface plasmons resonator excited by substrate integrated waveguide," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 9199740, 2020.        Google Scholar

177. Yu, Y. R., L. L. Liu, Q. Jiang, et al. "Ultracompact effective localized surface plasmonic bandpass filter for 5G applications," IEEE Trans. Micro. Theory and Tech., Vol. 69, No. 4, 2220-2228, 2021.        Google Scholar

178. Ji, Y. L., Z. Li, J. F. Shi, et al. "A miniaturized dual-mode cavity filter based on effective localized surface plasmons," IEEE Inter. Conf. on Com. Electro., 8779023, 2019.        Google Scholar

179. Jiang, Q., Y. Q. Yu, Y. F. Zhao, et al. "Ultra-compact effective localized surface plasmonic sensor for permittivity measurement of aqueous ethanol solution with high sensitivity," IEEE Trans. on Inst. and Meas., Vol. 70, 6008709, 2021.        Google Scholar

180. Pendry, J. B., A. I. Fernández-Domínguez, Y. Luo, and R. K. Zhao, "Capturing photons with transformation optics," Nat. Phys., Vol. 9, 518, 2013.        Google Scholar

181. Pendry, J. B., P. A. Huidobro, Y. Luo, and E. Galiffi, "Compacted dimensions and singular plasmonic surfaces," Science, Vol. 358, 915, 2017.        Google Scholar

182. Yang, F., P. A. Huidobro, and J. B. Pendry, "Transformation optics approach to singular metasurfaces," Phys. Rev. B, Vol. 98, 125409, 2018.        Google Scholar

183. Yves, S., R. Fleury, T. Berthelot, et al. "Crystalline metamaterials for topological properties at subwavelength scales," Nat. Comm., Vol. 8, 16023, 2017.        Google Scholar

184. Liu, W. and Y. S. Kivshar, "Generalized Kerker effects in nanophotonics and meta-optics," Opt. Express, Vol. 26, No. 10, 13085-13105, 2018.        Google Scholar

185. Liu, W., A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, "Broadband unidirectional scattering by magneto-electric core-shell nanoparticles," ACS Nano, Vol. 6, No. 6, 5489-5497, 2012.        Google Scholar

186. Liu, W., A. E. Miroshnichenko, R. F. Oulton, et al. "Scattering of core-shell nanowires with the interference of electric and magnetic resonances," Opt. Lett., Vol. 38, No. 14, 2621-2624, 2013.        Google Scholar

187. Poutrina, E., A. Rose, D. Brown, et al. "Forward and backward unidirectional scattering from plasmonic coupled wires," Opt. Express, Vol. 21, No. 25, 31138-31154, 2013.        Google Scholar

188. Liu, L. L., Z. Li, C. Q. Gu, et al. "A corrugated perfect magnetic conductor surface supporting spoof surface magnon polaritons," Opt. Express, Vol. 22, No. 9, 10675-10681, 2014.        Google Scholar

189. Ng, B. H., J. F. Wu, S. M. Hanham, et al. "Spoof plasmon surfaces: A novel platform for THz sensing," Adv. Opt. Mat., Vol. 1, No. 543, 543-548, 2013.        Google Scholar

190. Ng, B. H., S. M. Hanham, and J. F.Wu, "Broadband terahertz sensing on spoof plasmon surfaces," ACS Photon., Vol. 1, No. 10, 1059-1067, 2014.        Google Scholar

191. Ma, Z., S. M. Hanham, P. A. Huidobro, et al. "Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides," APL Photon., Vol. 11, No. 2, 116102, 2017.        Google Scholar

192. Zhou, J., L. Chen, Q. Y. Sun, et al. "Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons," Appl. Phys. Express, Vol. 13, 012014, 2020.        Google Scholar

193. Chen, W., S. Kaya Özdemir, and G. Zhao, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, 192-198, 2017.        Google Scholar

194. Chang-Hasnain, C. J., Y. Zhou, M. C. Y. Huang, et al. "High-contrast grating VCSELs," IEEE J. Sel. Top. Quan. Electro., Vol. 15, No. 3, 869-878, 2009.        Google Scholar

195. Mateus, C. F. R., M. C. Y. Huang, Y. Deng, et al. "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett., Vol. 16, 518-520, 2004.        Google Scholar

196. Zhou, Y., M. C. Y. Huang, C. Chase, et al. "High-index-contrast grating (HCG) and its applications in optoelectronic devices," IEEE J. Sel. Top. Quantum Electron., Vol. 15, 1485-1499, 2009.        Google Scholar

197. Xu, H. N. and Y. C. Shi, "Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum," Laser Photon. Rev., Vol. 14, 1900430 (6pp), 2020.        Google Scholar

198. Fattal, D., J. Li, Z. Peng, et al. "Flat dielectric grating reflectors with focusing abilities," Nature Photonics, Vol. 4, 466-470, 2010.        Google Scholar

199. Chang-Hasnain, C. J., "High-contrast gratings as a new platform for integrated optoelectronics," Semicond. Sci. Technol., Vol. 26, 014043 (11pp), 2011.        Google Scholar

200. Chang-Hasnain, C. J. and W. J. Yang, "High-contrast gratings for integrated optoelectronics," Adv. Opt. and Photon., Vol. 4, 379-440, 2012.        Google Scholar

201. Yang, W. J. and C. J. Chang-Hasnain, "Physics of high contrast gratings: A band diagram insight," Proc. SPIE, Vol. 8633, 863303, High Contrast Metastructures II, 2013.        Google Scholar

202. Li, Y., I. Liberal, C. D. Giovampaola, and N. Engheta, "Waveguide metatronics: Lumped circuitry based on structural dispersion," Sci. Adv., Vol. 2, e1501790, 2016.        Google Scholar

203. Park, J. H., Y. H. Ryu, J. G. Lee, and , "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Ant. and Prop., Vol. 55, No. 12, 3710-3712, 2007.        Google Scholar

204. Niu, X. X., X. Y. Hu, S. S. Chu, and Q. H. Gong, "Epsilon-near-zero photonics: A new platform for integrated devices," Adv. Opt. Mater., Vol. 6, 1701292, 2018.        Google Scholar

205. Liberal, I., A. M. Mahmoud, Y. Li, et al. "Photonic doping of epsilon-near-zero media," Science, Vol. 355, No. 6329, 1058-1062, 2017.        Google Scholar

206. Cai, W. and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2010.

207. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.        Google Scholar

208. Stone, M., "Gravitational anomalies and thermal Hall effect in topological insulators," Phys. Rev. B, Vol. 85, 184503, 2012.        Google Scholar

209. Lundeberg, M. B., Y. D. Gao, R. Asgari, et al. "Tuning quantum nonlocal effects in graphene plasmonics," Science, Vol. 357, No. 6347, 187-191, 2017.        Google Scholar

210. Raza, S., S. I. Bozhevolnyi, and M. Wubs, "Nonlocal optical response in metallic nanostructures," J. Phys.: Condens. Matter, Vol. 27, 183204 (17pp), 2015.        Google Scholar

211. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Nature, Vol. 302, No. 5644, 419-422, 2003.        Google Scholar

212. Luo, Y., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Broadband light harvesting nanostructures robust to edge bluntness," Phys. Rev. Lett., Vol. 108, 023901, 2012.        Google Scholar