1. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, 1988.
2. Economou, E. N., "Surface plasmons in thin films," Phys. Rev., Vol. 182, No. 2, 539-554, 1969. Google Scholar
3. Ritchie, R. H., "Surface plasmons in solids," Surface Science, Vol. 34, No. 1, 1-19, 1973. Google Scholar
4. Murray, W. A. and W. L. Barnes, "Plasmonic materials," Adv. Mater., Vol. 19, No. 22, 3771-3782, 2007. Google Scholar
5. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003. Google Scholar
6. Maier, S. A., Plasmonics Fundamentals and Applications, Springer, 2007.
7. Huidobro, P. A., A. I. Fernández-Domínguez, J. B. Pendry, et al. Spoof Surface Plasmon Metamaterials, Cambridge University Press, 2018.
8. Gramotnev, D. K. and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon., Vol. 4, No. 2, 83-91, 2010. Google Scholar
9. Maier, S. A. and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys., Vol. 98, No. 1, 011101, 2005. Google Scholar
10. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006. Google Scholar
11. Novotny, L., "Effective wavelength scaling for optical antennas," Phys. Rev. Lett., Vol. 98, No. 26, 266802, 2007. Google Scholar
12. Bryant, G. W., F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano Lett., Vol. 8, No. 2, 631-636, 2008. Google Scholar
13. Schuller, J. A., E. S. Barnard, W. Cai, et al. "Plasmonics for extreme light concentration and manipulation," Nature Mater., Vol. 9, No. 3, 193-204, 2010. Google Scholar
14. Fan, J. A., C. Wu, K. Bao, et al. "Self-assembled plasmonic nanoparticle clusters," Science, Vol. 328, No. 5982, 1135-1138, 2010. Google Scholar
15. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006. Google Scholar
16. Anker, J. N., W. P. Hall, O. Lyandres, et al. "Biosensing with plasmonic nanosensors," Nature Mater., Vol. 7, 442, 2008. Google Scholar
17. Kabashin, A. V., P. Evans, S. Pastkovsky, et al. "Plasmonic nanorod metamaterials for biosensing," Nature Mater., Vol. 8, 867, 2009. Google Scholar
18. Flatgen, G., K. Krischer, B. Pettinger, et al. "Two-dimensional imaging of potential waves in electrochemical systems by surface plasmon microscopy," Science, Vol. 269, 668, 1995. Google Scholar
19. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, et al. "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667, 1998. Google Scholar
20. Martín-Moreno, L., F. J. García-Vidal, H. J. Lezec, et al. "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett., Vol. 86, 1114, 2001. Google Scholar
21. Zhang, S., D. A. Genov, Y. Wang, et al. "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, 047401, 2008. Google Scholar
22. Kekatpure, R. D., E. S. Barnard, W. Cai, et al. "Phase-coupled plasmon-induced transparency," Phys. Rev. Lett., Vol. 104, 243902, 2010. Google Scholar
23. Gobau, G., "Surface waves and their application to transmission lines," J. Appl. Phys., Vol. 21, 1119, 1950. Google Scholar
24. Mills, D. L. and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B, Vol. 39, 1569, 1989. Google Scholar
25. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
26. Zenneck, J., "Propagation of plane electromagnetic waves along a plane conducting surface," Ann. Phys., Vol. 23, No. 1, 846, 1907. Google Scholar
27. Sommerfeld, A., "Propagation of electrodynamic waves along a cylindric conductor," Ann. Phys. und Chemie, Vol. 67, 233, 1899. Google Scholar
28. Ulrich, R. and M. Tacke, "Submilimeter waveguiding on periodic metal structure," Appl. Phys. Lett., Vol. 22, 251, 1973. Google Scholar
29. Pendry, J. B., L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004. Google Scholar
30. García-Vidal, F. J., L. Martín-Moreno, and J. B. Pendry, "Surfaces with holes inthem: New plasmonic metamaterials," J. Opt. A: P. Appl. Opt., Vol. 7, No. 2, S97-S101, 2005. Google Scholar
31. Pors, A., E. Moreno, L. Martin-Moreno, et al. "Localized spoof plasmons arise while texturing closed surfaces," Phys. Rev. Lett., Vol. 108, 223905, 2012. Google Scholar
32. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, 2006.
33. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verication of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005. Google Scholar
34. Hibbins, A. P., E. Hendry, M. J. Lockyear, and J. R. Sambles, "Prism coupling to `designer' surface plasmons," Opt. Express, Vol. 16, 20441, 2008. Google Scholar
35. Lockyear, M. J., A. P. Hibbins, and J. R. Sambles, "Microwave surface-plasmon-like modes on thin metamaterials," Phys. Rev. Lett., Vol. 102, 073901, 2009. Google Scholar
36. Hibbins, A. P., M. Lockyear, I. Hooper, and J. Sambles, "Waveguide arrays as plasmonic metamaterials: Transmission below cutoff," Phys. Rev. Lett., Vol. 96, No. 7, 073904, 2006. Google Scholar
37. Wood, R. W., "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag., Vol. 4, No. 21, 396-402, 1902. Google Scholar
38. Williams, C. R., S. R. Andrews, S. A. Maier, et al. "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photon., Vol. 2, No. 3, 175-179, 2008. Google Scholar
39. Zhao, W., O. M. Eldaiki, R. Yang, and Z. Lu, "Deep subwavelength waveguiding and focusing based on designer surface plasmons," Opt. Express, Vol. 18, No. 20, 21498-21503, 2010. Google Scholar
40. Zhu, W., A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express, Vol. 16, 6216, 2008. Google Scholar
41. Qiu, M., "Photonic band structures for surface waves on structured metal surfaces," Opt. Express, Vol. 13, 7583, 2005. Google Scholar
42. Gao, Z., L. Wu, F. Gao, et al. "Spoof plasmonics: From metamaterial concept to topological description," Adv. Mater., Vol. 30, 1706683, 2018. Google Scholar
43. Gómez-Rivas, J., M. Kuttge, P. H. Bolivar, et al. "Propagation of surface plasmon polaritons on semiconductor gratings," Phys. Rev. Lett., Vol. 93, No. 25, 256804, 2004. Google Scholar
44. García de Abajo, F. J. and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett., Vol. 95, No. 2, 233901, 2005. Google Scholar
45. Yu, N. F., Q. J. Wang, M. A. Kats, et al. "Designer spoof surface plasmon structures collimate terahertz laser beams," Nature Mater., Vol. 9, No. 9, 730-735, 2010. Google Scholar
46. Maier, S. A., S. A. Andrews, L. Martín-Moreno, et al. "Terahertz surface plasmon-polariton propagation and focusingon periodically corrugated metal wires," Phys. Rev. Lett., Vol. 97, No. 17, 176805, 2006. Google Scholar
47. Fernández-Domínguez, A. I., L. Martín-Moreno, F. J. García-Vidal, et al. "Spoof surface plasmon polariton modes propagating along periodically corrugated wires," IEEE J. Sel. Top Quant. Elect., Vol. 14, 1515, 2008. Google Scholar
48. Fernández-Domínguez, A. I., C. R. Williams, F. J. García-Vidal, et al. "Terahertz surface plasmon polaritons on a helically grooved wire," Appl. Phys. Lett., Vol. 93, No. 14, 141109, 2008. Google Scholar
49. Ruting, F., A. I. Fernández-Domínguez, L. Martín-Moreno, et al. "Subwavelength chiral surface plasmons that carry tunable orbital angular momentum," Phys. Rev. B, Vol. 86, 075437, 2012. Google Scholar
50. Liu, L. L., Z. Li, P. P. Ning, et al. "Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire," Plasmonics, Vol. 11, No. 2, 359-364, 2016. Google Scholar
51. Wood, J. J., L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Dominguez, "Spoof plasmon polaritons in slanted geometries," Phys. Rev. B, Vol. 85, 075441, 2012. Google Scholar
52. Ruan, Z. C. and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett., Vol. 90, 201906, 2007. Google Scholar
53. Novikov, I. V. and A. A. Maradudin, "Channel polaritons," Phys. Rev. B, Vol. 66, 035403, 2002. Google Scholar
54. Fernández-Dominguez, A. I., E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Guiding terahertz waves along subwavelength channels," Phys. Rev. B, Vol. 79, No. 23, 233104, 2009. Google Scholar
55. Jiang, T., L. F. Shen, J. J. Wu, et al. "Realization of tightly confined channel plasmon polaritons at low frequencies," Appl. Phys. Lett., Vol. 99, No. 26, 261103, 2011. Google Scholar
56. Gao, Z., L. F. Shen, and X. Zheng, "Highly-confined guiding of terahertz waves along subwavelength grooves," IEEE Photon. Tech. Lett., Vol. 24, No. 15, 1343-1345, 2012. Google Scholar
57. Li, X., T. Jiang, L. F. Shen, and D. X. Ye, "Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths," Appl. Phys. Lett., Vol. 102, No. 3, 031606, 2013. Google Scholar
58. Fernández-Dominguez, A. I., E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Terahertz wedge plasmon polaritons," Opt. Lett., Vol. 34, No. 13, 2063-2065, 2009. Google Scholar
59. Gao, Z., X. Zhang, and L. F. Shen, "Wedge mode of spoof surface plasmon polaritons at terahertz frequencies," J. Appl. Phys., Vol. 108, No. 11, 113104, 2010. Google Scholar
60. Moreno, E., S. G. Rodrigo, S. I. Bozhevolnyi, et al. "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett., Vol. 100, No. 2, 023901, 2008. Google Scholar
61. Martín-Cano, D., M. L. Nesterov, A. I. Fernández-Dominguez, et al. "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, No. 2, 754-764, 2010. Google Scholar
62. Ma, Y. G., L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit," Opt. Express, Vol. 19, No. 22, 21189, 2011. Google Scholar
63. Martín-Cano, D., O. Quevedo-Teruel, E. Moreno, et al. "Waveguided spoof surface plasmons with deep subwavelength lateral confinement," Opt. Lett., Vol. 36, No. 23, 4635-4637, 2011. Google Scholar
64. Brock, E. M. G., E. Hendry, and A. P. Hibbins, "Subwavelength lateral confinement of microwave surface waves," Appl. Phys. Lett., Vol. 99, No. 5, 051108, 2011. Google Scholar
65. Kats, M. A., D. Woolf, R. Blanchard, et al. "Spoof plasmon analogue of metal-insulator-metal waveguides," Opt. Express, Vol. 19, No. 16, 14860-14870, 2011. Google Scholar
66. Woolf, D., M. Kats, and F. Capasso, "Spoof surface plasmon waveguide forces," Opt. Lett., Vol. 39, No. 3, 517-520, 2014. Google Scholar
67. Quesada, R., D. Martín-Cano, F. J. García-Vidal, and J. Bravo-Abad, "Deep subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons," Opt. Lett., Vol. 39, No. 10, 2990, 2014. Google Scholar
68. Chen, N. C., C. Y. Lu, Y. L. Huang, et al. "Properties of coupled surface plasmon-polaritons in metal-dielectric-metal structures," J. Appl. Phys., Vol. 112, 033111, 2012. Google Scholar
69. Shen, X. P., T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, "Conformal surface plasmons propagating on ultrathin and flexible films," Proceedings of the National Academy of Sciences of the United States of America-PNAS, Vol. 110, No. 1, 40-45, 2013. Google Scholar
70. Shen, X. P. and T. J. Cui, "Planar plasmonic metamaterial on a thin film with nearly zero thickness," Appl. Phys. Lett., Vol. 102, No. 21, 14-18, 2013. Google Scholar
71. Gan, Q. Q., Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett., Vol. 100, 256803, 2008. Google Scholar
72. Tang, Y. B., Z. C. Wang, L. Wosinski, et al. "Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits," Opt. Lett., Vol. 35, No. 8, 1290-1292, 2010. Google Scholar
73. Liu, X., Y. Feng, K. Chen, et al. "Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures," Opt. Express, Vol. 22, No. 17, 20107, 2014. Google Scholar
74. Zhou, Y. J., Q. Jiang, and T. J. Cui, "Bidirectional bending splitter of designer surface plasmons," Appl. Phys. Lett., Vol. 99, No. 11, 111904, 2011. Google Scholar
75. Gao, X., J. H. Shi, X. P. Shen, et al. "Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies," Appl. Phys. Lett., Vol. 102, No. 15, 1-5, 2013. Google Scholar
76. Liu, X., Y. Feng, B. Zhu, et al. "High-order modes of spoofsurface plasmonic wave transmission on thin metal film structure," Opt. Express, Vol. 21, No. 25, 31155-31165, 2013. Google Scholar
77. Sun, S. L., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index metasurfaces as a bridge linking propagating waves and surface waves," Nature Mater., Vol. 11, No. 5, 426-431, 2012. Google Scholar
78. Ma, H. F., X. P. Shen, Q. Cheng, et al. "Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons," Laser Photon. Rev., Vol. 8, No. 1, 146-151, 2014. Google Scholar
79. Zhang, W. J., G. Q. Zhu, L. G. Sun, and F. J. Lin, "Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation," Appl. Phys. Lett., Vol. 106, 021104, 2015. Google Scholar
80. Liu, L. L., Z. Li, B. Z. Xu, et al. "Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes," Appl. Phys. Lett., Vol. 107, No. 20, 2015. Google Scholar
81. Gao, X., L. Zhou, Z. Liao, et al. "An ultra-wideband surface plasmonic filter in microwave frequency," Appl. Phys. Lett., Vol. 104, No. 19, 17-22, 2014. Google Scholar
82. Liu, L. L., Z. Li, B. Z. Xu, et al. "Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons," Plasmonics, Vol. 12, No. 2, 439-444, 2017. Google Scholar
83. Zhang, H. C., L. Liu, P. H. He, et al. "A wide-angle broadband converter: From odd-mode spoof surface plasmon polaritons to spatial waves," IEEE Trans. on Antennas and Propa., Vol. 67, No. 12, 7425-7432, 2019. Google Scholar
84. Zhou, S. Y., S. W. Wong, and J. Y. Lin, "Four-way spoof surface plasmon polaritons splitter/combiner," IEEE Ant. and Wire. Prop. Lett., Vol. 29, No. 2, 98-100, 2019. Google Scholar
85. Tang, W. X., H. C. Zhang, H. F. Ma, et al. "Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies," Adv. Opt. Mater., 1800421, 2018. Google Scholar
86. Xu, J., Z. Li, L. L. Liu, et al. "Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons," Opt. Comm., Vol. 372, 155-159, 2016. Google Scholar
87. Xu, B. Z., Z. Li, L. L. Liu, et al. "Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons," J. Opt. Soc. America B, Vol. 33, No. 7, 1388-1391, 2016. Google Scholar
88. Li, Z., J. Xu, C. Chen, et al. "Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons," Appl. Opt., Vol. 55, No. 36, 10323-10328, 2016. Google Scholar
89. Kianinejad, A., Z. N. Chen, and C. W. Qiu, "Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line," IEEE Trans. Micro. Theory and Tech., Vol. 63, No. 6, 1817-1825, 2015. Google Scholar
90. Kianinejad, A., Z. N. Chen, and C. W. Qiu, "Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation," IEEE Trans. Micro. Theory and Tech., Vol. 64, No. 10, 3078-3086, 2016. Google Scholar
91. Wu, J. J., D. J. Hou, and K. X. Liu, "Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons," Opt. Express, Vol. 22, No. 22, 26777-26787, 2014. Google Scholar
92. Zhang, H. C., T. J. Cui, Q. Zhang, et al. "Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons," ACS Photon., Vol. 2, No. 9, 1333-1340, 2015. Google Scholar
93. Zhao, S. M., H. C. Zhang, L. L. Liu, et al. "A novel low-crosstalk driveline based on spoof surface plasmon polaritons," IEEE Access, Vol. 7, 30702-30707, 2019. Google Scholar
94. Gao, X. X., H. C. Zhang, P. H. He, et al. "Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip," IEEE Trans. on Compon., Pack. and Manuf. Techn., Vol. 9, No. 11, 2267-2275, 2019. Google Scholar
95. Wang, M. N., M. Tang, H. C. Zhang, et al. "Crosstalk noise suppression between single and differential transmission lines using spoof surface plasmon polaritons," IEEE Trans. on Compon., Pack. and Manuf. Techn., Vol. 10, No. 8, 1367-1374, 2020. Google Scholar
96. Liu, L. L., Z. Li, C. Q. Gu, et al. "Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films," J. Appl. Phys., Vol. 116, 013501, 2014. Google Scholar
97. Yang, B. J. and Y. J. Zhou, "Compact four-way wavelength demultiplexers based on conformal surface plasmon waveguides," Jpn. J. Appl. Phys., Vol. 54, 112201, 2015. Google Scholar
98. Yang, B. J. and Y. J. Zhou, "Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides," J. Modern Opt., Vol. 63, No. 9, 874-880, 2016. Google Scholar
99. Kianinejad, A., Z. N. Chen, L. Zhang, et al. "Spoof plasmon-based slow-wave excitation of dielectric resonator antennas," IEEE Trans. Ant. and Prop., Vol. 64, No. 6, 2094-2099, 2016. Google Scholar
100. Han, Y. J., Y. F. Li, H. Ma, et al. "Multibeam antennas based on spoof surface plasmon polaritons mode coupling," IEEE Trans. Ant. and Prop., Vol. 65, No. 3, 1187-1192, 2017. Google Scholar
101. Li, Z., C. Chen, L. L. Liu, et al. "Tunable spoof surface plasmons bulleye antenna," Plasmonics, Vol. 13, No. 2, 697-703, 2018. Google Scholar
102. Han, Y. J., J. F. Wang, S. H. Gong, et al. "Low RCS antennas based on dispersion engineering of spoof surface plasmon polaritons," IEEE Trans. Ant. and Prop., Vol. 66, No. 12, 7111-7116, 2018. Google Scholar
103. Wang, M., H. F. Ma, H. C. Zhang, et al. "Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line," IEEE Trans. Ant. and Prop., Vol. 66, No. 9, 4449-4457, 2018. Google Scholar
104. Feng, W. J., Y. H. Feng, W. C. Yang, et al. "High-performance filtering antenna using spoof surface plasmon polaritons," IEEE Trans. Plasm. Sci., Vol. 47, No. 6, 2832-2837, 2019. Google Scholar
105. Zhang, X. F., J. Fan, and J. X. Chen, "High gain and high-efficiency millimeter-wave antenna based on spoof surface plasmon polaritons," IEEE Trans. Ant. and Prop., Vol. 67, No. 1, 687-691, 2019. Google Scholar
106. Lu, J. Y., H. C. Zhang, P. H. He, et al. "Design of miniaturized antenna using corrugated microstrip," IEEE Trans. Ant. and Prop., Vol. 68, No. 3, 1918-1924, 2020. Google Scholar
107. Liu, L. L., Z. Li, C. Q. Gu, et al. "Smooth bridge between guided waves and spoof surface plasmon polaritons," Opt. Lett., Vol. 40, No. 8, 1810-1813, 2015. Google Scholar
108. Liu, L. L., Z. Li, B. Z. Xu, et al. "High-efficiency transition between rectangular waveguide and domino plasmonic waveguide," AIP Adv., Vol. 5, 027105, 2015. Google Scholar
109. Liu, L. L., Z. Li, B. Z. Xu, et al. "A high-efficiency rectangular waveguide to Domino plasmonic waveguide converter in X-band," Proc. 3rd Asia-Pacic Conf. Ant. and Prop., 974-977, 2014. Google Scholar
110. Guan, D. F., P. You, Q. F. Zhang, et al. "Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter," IEEE Trans. Micro. Theory and Tech., Vol. 65, No. 12, 4925-4932, 2017. Google Scholar
111. Guan, D. F., P. You, Q. F. Zhang, et al. "Slow-wave half-mode substrate integrated waveguide using spoof surface plasmon polariton structure," IEEE Trans. Micro. Theory and Tech., Vol. 66, No. 6, 2946-2952, 2018. Google Scholar
112. Liu, L. L., L. Ran, H. D. Guo, X. Chen, and Z. Li, "Broadband plasmonic circuitry enabled by channel domino spoof plasmons," Progress In Electromagnetic Research, Vol. 164, 109-118, 2019. Google Scholar
113. Liu, L. L., L. Wu, J. J. Zhang, et al. "Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials," Adv. Sci., 1800661, 2018. Google Scholar
114. Gao, X. X., J. J. Zhang, H. C. Zhang, et al. "Dynamic controls of second-harmonic generations in both forward and backward modes using reconfigurable plasmonic metawaveguide," Adv. Opt. Mater., 1902058(1-8), 2020. Google Scholar
115. Zhang, H. C., T. J. Cui, J. Xu, et al. "Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial," Adv. Mater. Technol., Vol. 2, 1600202, 2016. Google Scholar
116. Wang, M., H. F. Ma, W. X. Tang, et al. "Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices," Adv. Mater. Technol., Vol. 4, 1800603, 2019. Google Scholar
117. Zhang, H. C., T. J. Cui, Y. Luo, et al. "Active digital spoof plasmonics," Nat. Sci. Rev., Vol. 7, 261-269, 2020. Google Scholar
118. Zhang, H. C., S. Liu, X. P. Shen, et al. "Broadband amplification of spoof surface plasmon polaritons at microwave frequencies," Laser Photon. Rev., Vol. 9, No. 1, 83-90, 2015. Google Scholar
119. Gao, X. X., J. J. Zhang, and Y. Luo, "Reconfigurable parametric amplifications of spoof surface plasmons," Adv. Sci., Vol. 8, 2100795, 2021. Google Scholar
120. Wan, X., J. Y. Yin, H. C. Zhang, and T. J. Cui, "Dynamic excitation of spoof surface plasmon polaritons," Appl. Phys. Lett., Vol. 105, No. 8, 2014. Google Scholar
121. Zhang, H. C., Y. Fan, J. Guo, et al. "Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials," ACS Photon., Vol. 3, No. 1, 139-146, 2016. Google Scholar
122. Zhang, X. R., W. X. Tang, H. C. Zhang, et al. "A spoof surface plasmon transmission line loaded with varactors and short-circuit stubs and its application in Wilkinson power dividers," Adv. Mater. Technol., Vol. 3, 1800046, 2018. Google Scholar
123. Zhang, L. P., H. C. Zhang, M. Tang, et al. "Integrated multi-scheme digital modulations of spoof surface plasmon polaritons," SCI. China Inf. Sci., Vol. 63, No. 202302, 1-10, 2020. Google Scholar
124. Zhang, H. C., L. P. Zhang, P. H. He, et al. "A plasmonic route for the integrated wireless communication of subdiffraction-limited signals," Light Sci. & Appl., Vol. 9, 113, 2020. Google Scholar
125. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.
126. Garcia-Vidal, F. J. and J. B. Pendry, "Collective theory for surface-enhanced Raman scattering," Phys. Rev. Lett., Vol. 77, 1163, 1996. Google Scholar
127. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater., Vol. 9, 205, 2010. Google Scholar
128. Pors, A., E. Moreno, L. Martín-Moreno, et al. "Localized spoof plasmons arise while texturing closed surfaces," Phys. Rev. Lett., Vol. 108, No. 22, 223905, 2012. Google Scholar
129. Shen, X. P. and T. J. Cui, "Ultrathin plasmonic metamaterial for spoof localized surface plasmons," Laser Photon. Rev., Vol. 8, No. 1, 137-145, 2014. Google Scholar
130. Wu, H. W., Y. Z. Han, H. J. Chen, et al. "Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures," Opt. Let., Vol. 42, No. 21, 4521-4524, 2017. Google Scholar
131. Huidobro, P. A., X. P. Shen, J. Cuerda, et al. "Magnetic localized surface plasmons," Phys. Rev. X, Vol. 4, No. 2, 021003, 2014. Google Scholar
132. Liao, Z., A. I. Fernández-Domínguez, J. J. Zhang, et al. "Homogenous metamaterial description of localized spoof plasmons in spiral geometries," ACS Photon., Vol. 3, 1768-1775, 2016. Google Scholar
133. Li, Z., B. Z. Xu, C. Q. Gu, et al. "Localized spoof plasmons in closed textured cavities," Appl. Phys. Lett., Vol. 104, 251601, 2014. Google Scholar
134. Li, Z., L. L. Liu, C. Q. Gu, et al. "Multi-band localized spoof plasmons with texturing closed surfaces," Appl. Phys. Lett., Vol. 104, 101603, 2014. Google Scholar
135. Xu, B. Z., Z. Li, C. Q. Gu, et al. "Multi-band localized spoof plasmons in closed textured cavities," Appl. Opt., Vol. 53, No. 30, 6950-6953, 2014. Google Scholar
136. Yang, B. J., Y. J. Zhou, and Q. X. Xiao, "Spoof localized surface plasmons in corrugated ring structures excited by microstrip line," Opt. Express, Vol. 23, No. 16, 21434, 2015. Google Scholar
137. Zhou, Y. J., Q. X. Xiao, and B. J. Yang, "Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances," Sci. Rep., Vol. 5, 14819, 2015. Google Scholar
138. Gao, Z., F. Gao, H. Y. Xu, et al. "Localized spoof surface plasmons in textured open metal surfaces," Opt. Lett., Vol. 41, No. 10, 3-6, 2016. Google Scholar
139. Wu, H. W., H. J. Chen, H. Y. Fan, et al. "Trapped spoof surface plasmons with structured defects in textured closed surfaces," Opt. Lett., Vol. 42, No. 4, 791-794, 2017. Google Scholar
140. Liao, Z., Y. Luo, A. I. Fernández-Dominguez, et al. "High-order localized spoof surface plasmon resonances and experimental verifications," Sci. Rep., Vol. 5, 9590, 2015. Google Scholar
141. Gao, F., Z. Gao, X. H. Shi, et al. "Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances," Opt. Express, Vol. 23, No. 5, 6896-6902, 2015. Google Scholar
142. Xiao, Q. X., B. J. Yang, and Y. J. Zhou, "Spoof localized surface plasmons and Fano resonances excited by flared slot line," J. Appl. Phys., Vol. 118, No. 23, 1-6, 2015. Google Scholar
143. Gao, Z., F. Gao, K. K. Shastri, and B. L. Zhang, "Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain," Sci. Rep., Vol. 6, 25576, 2016. Google Scholar
144. Gao, F., Z. Gao, Y. Luo, and B. L. Zhang, "Invisibility dips of near-field energy transport in a spoof plasmonic metadimer," Adv. Fun. Mater., Vol. 26, 8307-8312, 2016. Google Scholar
145. Wu, H. W., Y. Li, H. J. Chen, et al. "Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure," ACS Appl. Nano Mater., Vol. 2, 1045-1052, 2019. Google Scholar
146. Xu, B. Z., Z. Li, L. L. Liu, et al. "Non-concentric textured closed surface for huge local field enhancement," J. Opt., Vol. 19, No. 1, 015005, 2016. Google Scholar
147. Huang, Y., J. J. Zhang, and T. J. Cui, "Revealing the physical mechanisms behind large field enhancement in hybrid spoof plasmonic systems," J. Opt. Soc. Amer. B, Vol. 35, No. 2, 396-401, 2018. Google Scholar
148. Gao, Z., F. Gao, Y. Zhang, et al. "Experimental demonstration of high-order magnetic localized spoof surface plasmons," Appl. Phys. Lett., Vol. 107, No. 4, 1-5, 2015. Google Scholar
149. Gao, Z., F. Gao, Y. Zhang, and B. L. Zhang, "Complementary structure for designer localized surface plasmons," Appl. Phys. Lett., Vol. 107, No. 19, 191103, 2015. Google Scholar
150. Gao, Z., F. Gao, and B. L. Zhang, "High-order spoof localized surface plasmons supported on a complementary metallic spiral structure," Sci. Rep., Vol. 6, 24447, 2016. Google Scholar
151. Gao, Z., F. Gao, Y. Zhang, and B. L. Zhang, "Deep-subwavelength magnetic coupling-dominant interaction among magnetic localized surface plasmons," Phys. Rev. B, Vol. 93, No. 19, 195410, 2016. Google Scholar
152. Zhang, J. J., Z. Liao, Y. Luo, et al. "Spoof plasmon hybridization," Laser Photon. Rev., Vol. 11, No. 1, 1600191, 2017. Google Scholar
153. Wu, H. W., H. J. Chen, H. F. Xu, et al. "Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure," Sci. Rep., Vol. 8, No. 1, 1-8, 2018. Google Scholar
154. Wu, H. W., F. Yang, J. Q. Quan, et al. "Multifrequency superscattering with high factors from a deep-subwavelength spoof plasmonic structure," Phys. Rev. B, Vol. 100, No. 23, 235443, 2019. Google Scholar
155. Shen, X. P., B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, "A combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions," ACS Photon., Vol. 2, No. 6, 738-743, 2015. Google Scholar
156. Li, Z., L. L. Liu, B. Z. Xu, et al. "High-contrast gratings based spoof surface plasmons," Sci. Rep., Vol. 6, 21199, 2016. Google Scholar
157. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.
158. Liu, L. L., Z. Li, B. Z. Xu, et al. "Ultra-low loss high-contrast gratings based spoof surface plasmonic waveguide," IEEE Trans. on Micro. Theory and Tech., Vol. 65, No. 6, 2008-2018, 2017. Google Scholar
159. Li, Z., B. Z. Xu, L. L. Liu, et al. "Localized spoof surface plasmons based on subwavelength closed high contrast gratings: Concept and microwave-regime realizations," Sci. Rep., Vol. 6, 27158, 2016. Google Scholar
160. Giovampaola, C. D. and N. Engheta, "Plasmonics without negative dielectrics," Phys. Rev. B, Vol. 93, 195152, 2016. Google Scholar
161. Li, Z., L. L. Liu, H. Y. Sun, et al. "Effective surface plasmon polaritons induced by modal dispersion in a waveguide," Phys. Rev. Appl., Vol. 7, No. 4, 044028, 2017. Google Scholar
162. Prudêncio, F. R., J. R. Costa, C. A. Fernandes, et al. "Experimental verification of `waveguide' plasmonics," New J. Phys., Vol. 19, 123017, 2017. Google Scholar
163. Li, Z., Y. H. Sun, K. Wang, et al. "Tuning the dispersion of effective surface plasmon polaritons with multilayer systems," Opt. express, Vol. 26, No. 4, 4686-4697, 2018. Google Scholar
164. Demetriadou, A. and J. B. Pendry, "Taming spatial dispersion in wire metamaterial," J. Phys.: Condens. Matter, Vol. 20, 295222, 2008. Google Scholar
165. Luukkonen, O., M. G. Silveirinha, A. B. Yakovlev, et al. "Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces," IEEE Trans. on Micro. Theory and Tech., Vol. 57, No. 11, 2692-2699, 2009. Google Scholar
166. Wang, K., Z. Li, J. F. Shi, et al. "Broadband electromagnetic waves harvesting based on effective surface plasmon polaritons," Cross-Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 21-24, 2018. Google Scholar
167. Li, Z., Y. H. Sun, and H. Y. Sun, "Spoof surface plasmons tunneling through an epsilon-near-zero material channel," J. Phys. D: Appl. Phys., Vol. 50, 375105 (7pp), 2017. Google Scholar
168. Huang, T. J., J. Zhao, L. Z. Yin, and P. K. Liu, "Terahertz subwavelength edge detection based on dispersion-induced plasmons," Opt. Lett., Vol. 46, No. 11, 2746-2749, 2021. Google Scholar
169. Yin, L. Z., F. Y. Han, J. Zhao, et al. "Constructing hyperbolic metamaterials with arbitrary medium," ACS Photon., Vol. 8, 1085-1096, 2021. Google Scholar
170. Huang, T. J., L. Z. Yin, J. Zhao, et al. "Amplifying evanescent waves by dispersion-induced plasmons: Defying the materials limitation of the superlens," ACS Photon., Vol. 7, 2173-2181, 2020. Google Scholar
171. Yang, Z. B., D. F. Guan, P. You, et al. "Compact effective surface plasmon polariton frequency splitter based on substrate integrated waveguide," J. Phys. D: Appl. Phys., Vol. 52, 435103 (7pp), 2019. Google Scholar
172. Sakotic, Z., M. Drljaca, G. Kitic, et al. "LTCC dual-band bandpass filter based on SPP like propagation in substrate integrated waveguide," IEEE Eurocon International Conference on Smart Technologies, 1-4, July 2019. Google Scholar
173. Zhang, A. Q., W. B. Lu, Z. G. Liu, and Y. Li, "Deeper confinement of electromagnetic waves beyond spoof surface plasmon polaritons," IEEE Trans. Ant. and Prop., Vol. 69, No. 4, 2142-2150, 2021. Google Scholar
174. Shi, J. F., Z. Li, L. L. Liu, et al. "Lateral dimension tuned ultra-low loss effective surface plasmonic waveguide," J. Phys. D: Appl. Phys., Vol. 52, No. 2019, 105101 (7pp), 2019. Google Scholar
175. Li, Z., L. L. Liu, A. I. Fernández-Domínguez, et al. "Mimicking localized surface plasmons with structural dispersion," Adv. Optical Mater., Vol. 7, No. 10, 1970036, 2019. Google Scholar
176. Li, W. Q. and Y. J. Zhou, "Effective localized surface plasmons resonator excited by substrate integrated waveguide," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 9199740, 2020. Google Scholar
177. Yu, Y. R., L. L. Liu, Q. Jiang, et al. "Ultracompact effective localized surface plasmonic bandpass filter for 5G applications," IEEE Trans. Micro. Theory and Tech., Vol. 69, No. 4, 2220-2228, 2021. Google Scholar
178. Ji, Y. L., Z. Li, J. F. Shi, et al. "A miniaturized dual-mode cavity filter based on effective localized surface plasmons," IEEE Inter. Conf. on Com. Electro., 8779023, 2019. Google Scholar
179. Jiang, Q., Y. Q. Yu, Y. F. Zhao, et al. "Ultra-compact effective localized surface plasmonic sensor for permittivity measurement of aqueous ethanol solution with high sensitivity," IEEE Trans. on Inst. and Meas., Vol. 70, 6008709, 2021. Google Scholar
180. Pendry, J. B., A. I. Fernández-Domínguez, Y. Luo, and R. K. Zhao, "Capturing photons with transformation optics," Nat. Phys., Vol. 9, 518, 2013. Google Scholar
181. Pendry, J. B., P. A. Huidobro, Y. Luo, and E. Galiffi, "Compacted dimensions and singular plasmonic surfaces," Science, Vol. 358, 915, 2017. Google Scholar
182. Yang, F., P. A. Huidobro, and J. B. Pendry, "Transformation optics approach to singular metasurfaces," Phys. Rev. B, Vol. 98, 125409, 2018. Google Scholar
183. Yves, S., R. Fleury, T. Berthelot, et al. "Crystalline metamaterials for topological properties at subwavelength scales," Nat. Comm., Vol. 8, 16023, 2017. Google Scholar
184. Liu, W. and Y. S. Kivshar, "Generalized Kerker effects in nanophotonics and meta-optics," Opt. Express, Vol. 26, No. 10, 13085-13105, 2018. Google Scholar
185. Liu, W., A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, "Broadband unidirectional scattering by magneto-electric core-shell nanoparticles," ACS Nano, Vol. 6, No. 6, 5489-5497, 2012. Google Scholar
186. Liu, W., A. E. Miroshnichenko, R. F. Oulton, et al. "Scattering of core-shell nanowires with the interference of electric and magnetic resonances," Opt. Lett., Vol. 38, No. 14, 2621-2624, 2013. Google Scholar
187. Poutrina, E., A. Rose, D. Brown, et al. "Forward and backward unidirectional scattering from plasmonic coupled wires," Opt. Express, Vol. 21, No. 25, 31138-31154, 2013. Google Scholar
188. Liu, L. L., Z. Li, C. Q. Gu, et al. "A corrugated perfect magnetic conductor surface supporting spoof surface magnon polaritons," Opt. Express, Vol. 22, No. 9, 10675-10681, 2014. Google Scholar
189. Ng, B. H., J. F. Wu, S. M. Hanham, et al. "Spoof plasmon surfaces: A novel platform for THz sensing," Adv. Opt. Mat., Vol. 1, No. 543, 543-548, 2013. Google Scholar
190. Ng, B. H., S. M. Hanham, and J. F.Wu, "Broadband terahertz sensing on spoof plasmon surfaces," ACS Photon., Vol. 1, No. 10, 1059-1067, 2014. Google Scholar
191. Ma, Z., S. M. Hanham, P. A. Huidobro, et al. "Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides," APL Photon., Vol. 11, No. 2, 116102, 2017. Google Scholar
192. Zhou, J., L. Chen, Q. Y. Sun, et al. "Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons," Appl. Phys. Express, Vol. 13, 012014, 2020. Google Scholar
193. Chen, W., S. Kaya Özdemir, and G. Zhao, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, 192-198, 2017. Google Scholar
194. Chang-Hasnain, C. J., Y. Zhou, M. C. Y. Huang, et al. "High-contrast grating VCSELs," IEEE J. Sel. Top. Quan. Electro., Vol. 15, No. 3, 869-878, 2009. Google Scholar
195. Mateus, C. F. R., M. C. Y. Huang, Y. Deng, et al. "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett., Vol. 16, 518-520, 2004. Google Scholar
196. Zhou, Y., M. C. Y. Huang, C. Chase, et al. "High-index-contrast grating (HCG) and its applications in optoelectronic devices," IEEE J. Sel. Top. Quantum Electron., Vol. 15, 1485-1499, 2009. Google Scholar
197. Xu, H. N. and Y. C. Shi, "Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum," Laser Photon. Rev., Vol. 14, 1900430 (6pp), 2020. Google Scholar
198. Fattal, D., J. Li, Z. Peng, et al. "Flat dielectric grating reflectors with focusing abilities," Nature Photonics, Vol. 4, 466-470, 2010. Google Scholar
199. Chang-Hasnain, C. J., "High-contrast gratings as a new platform for integrated optoelectronics," Semicond. Sci. Technol., Vol. 26, 014043 (11pp), 2011. Google Scholar
200. Chang-Hasnain, C. J. and W. J. Yang, "High-contrast gratings for integrated optoelectronics," Adv. Opt. and Photon., Vol. 4, 379-440, 2012. Google Scholar
201. Yang, W. J. and C. J. Chang-Hasnain, "Physics of high contrast gratings: A band diagram insight," Proc. SPIE, Vol. 8633, 863303, High Contrast Metastructures II, 2013. Google Scholar
202. Li, Y., I. Liberal, C. D. Giovampaola, and N. Engheta, "Waveguide metatronics: Lumped circuitry based on structural dispersion," Sci. Adv., Vol. 2, e1501790, 2016. Google Scholar
203. Park, J. H., Y. H. Ryu, J. G. Lee, and , "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Ant. and Prop., Vol. 55, No. 12, 3710-3712, 2007. Google Scholar
204. Niu, X. X., X. Y. Hu, S. S. Chu, and Q. H. Gong, "Epsilon-near-zero photonics: A new platform for integrated devices," Adv. Opt. Mater., Vol. 6, 1701292, 2018. Google Scholar
205. Liberal, I., A. M. Mahmoud, Y. Li, et al. "Photonic doping of epsilon-near-zero media," Science, Vol. 355, No. 6329, 1058-1062, 2017. Google Scholar
206. Cai, W. and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2010.
207. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000. Google Scholar
208. Stone, M., "Gravitational anomalies and thermal Hall effect in topological insulators," Phys. Rev. B, Vol. 85, 184503, 2012. Google Scholar
209. Lundeberg, M. B., Y. D. Gao, R. Asgari, et al. "Tuning quantum nonlocal effects in graphene plasmonics," Science, Vol. 357, No. 6347, 187-191, 2017. Google Scholar
210. Raza, S., S. I. Bozhevolnyi, and M. Wubs, "Nonlocal optical response in metallic nanostructures," J. Phys.: Condens. Matter, Vol. 27, 183204 (17pp), 2015. Google Scholar
211. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Nature, Vol. 302, No. 5644, 419-422, 2003. Google Scholar
212. Luo, Y., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Broadband light harvesting nanostructures robust to edge bluntness," Phys. Rev. Lett., Vol. 108, 023901, 2012. Google Scholar