Vol. 173
Latest Volume
All Volumes
2022-04-20
A Physics-Based HIE-FDTD Method for Electromagnetic Modeling of Multi-Band Frequency Selective Surface (Invited)
By
Progress In Electromagnetics Research, Vol. 173, 129-140, 2022
Abstract
A physics-based hybrid implicit-explicit finite-difference time domain (HIE-FDTD) method is developed for electromagnetic modeling of multi-passband frequency selective surfaces (FSSs). Using this self-developed HIE-FDTD simulator, several dual- and tri-passband FSSs are designed and further fabricated. The measurement results are in good agreement with the simulation ones, which prove high accuracy of the self-developed HIE-FDTD algorithm. In addition, the resonant frequencies of the designed FSSs can be effectively adjusted by changing their geometric parameters. This work provides electromagnetic guides of structure and parameter selections for designing multi-passband FSS.
Citation
Hao Xie, Tielun Hu, Zhili Wang, Yanbin Yang, Xiaohui Hu, Wei Qi, and Hong Liu, "A Physics-Based HIE-FDTD Method for Electromagnetic Modeling of Multi-Band Frequency Selective Surface (Invited)," Progress In Electromagnetics Research, Vol. 173, 129-140, 2022.
doi:10.2528/PIER22012103
References

1. Song, X. Y., Z. H. Yan, T. L. Zhang, C. Yang, and R. N. Lian, "Triband frequency-selective surface as subreflector in Ku-, K-, and Ka-bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1869-1872, 2016.
doi:10.1109/LAWP.2016.2542185

2. Salehi, M. and N. Behdad, "A second-order dual X-/Ka-band frequency selective surface," IEEE Microw. Wireless Compon., Vol. 18, No. 12, 785-787, 2008.
doi:10.1109/LMWC.2008.2007698

3. Deng, R. Y., F. Yang, S. H. Xu, and M. K. Li, "An FSS-backed 20/30-GHz dual-band circularly polarized reflect array with suppressed mutual coupling and enhanced performance," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 926-931, 2017.
doi:10.1109/TAP.2016.2633159

4. Deng, R. Y., S. H. Xu, F. Yang, and M. K. Li, "An FSS-backed Ku/Ka quad-band reflectarray antenna for satellite communications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4353-4358, 2018.
doi:10.1109/TAP.2018.2835725

5. Ma, Y. H., W. W. Wu, Y. Yuan, W. T. Yuan, and N. C. Yuan, "A high-selective frequency selective surface with hybrid unit cells," IEEE Access, Vol. 6, 75259-75267, 2018.
doi:10.1109/ACCESS.2018.2878941

6. Zhu, E., Z. Wei, X. Xu, and W.-Y. Yin, "Fourier subspace-based deep learning method for inverse design of frequency selective surface," IEEE Trans. Antennas Propag., IEEE, 2021.

7. Wu, T. K., "Four-band frequency selective surface with double square loop patch elements," IEEE Trans. Antennas Propag., Vol. 42, No. 12, 1659-1663, 1994.
doi:10.1109/8.362804

8. Huang, J., T. K. Wu, and S. H. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

9. Hu, X. D., X. L. Zhou, L. S. Wu, L. Zhou, and W. Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1374-1377, 2009.

10. Wang, D. S., W. Q. Che, Y. M. Chang, K. S. Chin, and Y. L. Chow, "A low-profile frequency selective surface with controllable tri-band characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 12, 468-471, 2013.
doi:10.1109/LAWP.2013.2254459

11. Hill, R. A. and B. A. Munk, "The effect of perturbing a frequency selective surface and its relation to the design of a dual-band surface," IEEE Trans. Antennas Propag., Vol. 44, No. 3, 368-374, 1996.
doi:10.1109/8.486306

12. Huang, M. J., M. Y. Lv, J. Huang, and Z. Wu, "A new type of combined element multiband frequency selective surface," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1793-1803, 2009.
doi:10.1109/TAP.2009.2019910

13. Chiu, C. N. and W. Y. Wang, "A dual-frequency miniaturized-element FSS with closely located resonances," IEEE Antennas Wireless Propag. Lett., Vol. 12, 163-165, 2013.
doi:10.1109/LAWP.2013.2245092

14. Romeu, J. and Y. Rahmat-Smaii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

15. Bossard, J. A., D. H. Werner, T. S. Mayer, J. A. Smith, and Y. U. Tang, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1265-1276, 2006.
doi:10.1109/TAP.2006.872583

16. Li, B. and Z. Shen, "Dual-band bandpass frequency selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5504-5512, 2014.
doi:10.1109/TAP.2014.2349526

17. Miittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces - A review," Proc. IEEE, Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352

18. Harms, P., R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag., Vol. 42, No. 9, 1317-1324, 1994.
doi:10.1109/8.318653

19. Chen, J. and J. Wang, "A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots," IEEE Trans. Electromag. Compat., Vol. 49, No. 2, 354-360, 2007.
doi:10.1109/TEMC.2007.893329

20. Duan, H., W. Fang, W.-Y. Yin, E. Li, and W. Chen, "Computational investigation of nanoscale semiconductor devices and optoelectronic devices from the electromagnetics and quantum perspectives by the finite difference time domain method," Progress In Electromagnetics Research, Vol. 170, 63-78, 2021.
doi:10.2528/PIER20122201

21. Tan, E. L., "Fundamental implicit FDTD schemes for computational electromagnetics and educational mobile apps," Progress In Electromagnetics Research, Vol. 168, 39-59, 2020.
doi:10.2528/PIER20061002

22. Tukmakova, A., I. Tkhorzhevskiy, A. Sedinin, A. Asach, A. Novotelnova, N. Kablukova, P. Demchenko, A. Zaitse, D. Zykov, and M. Khodzitsky, "FEM simulation of frequency-selective surface based on thermoelectric Bi-Sb thin lms for THz detection," Photonics, Vol. 8, No. 4, 2021.
doi:10.3390/photonics8040119

23. Arango, J. D., Y. A. Vélez, V. H. Aristizabal, F. J. Vélez, J. A. Gómez, J. C. Quijano, and J. Herrera-Ramirez, "Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone," Computer Optics, Vol. 45, No. 4, 534-540, 2021.
doi:10.18287/2412-6179-CO-852

24. Wang, J. B., J. L. Wang, B. H. Zhou, and C. Gao, "An efficient 3-D HIE-FDTD method with weaker stability condition," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 998-1004, 2016.
doi:10.1109/TAP.2015.2513100

25. Hu, T. L., W. Y. Yin, Y. Z. Chen, X. F. Bao, and Z. G. Zhao, "Parallel computing graphene frequency selective surface (GFSS) with large finite array using HIE-FDTD method on high performance computer," Proce. IEEE ISAPE, 1-4, 2018.

26. Unno, M., S. Aono, and H. Asai, "GPU-based massively parallel 3-D HIE-FDTD method for high-speed electromagnetic field simulation," IEEE Trans. Electromag. Compat., Vol. 54, No. 4, 912-921, 2012.
doi:10.1109/TEMC.2011.2173938

27. Huang, B. K., G. Wang, and Y. S. Jiang, "A hybrid implicit explicit FDTD scheme with weakly conditional stability," Microw. Opt. Technol. Lett., Vol. 39, No. 2, 97-101, 2003.
doi:10.1002/mop.11138

28. Turner, G. M. and C. Christodoulou, "FDTD analysis of phased array antennas," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 661-667, 1999.
doi:10.1109/8.768805

29. Guo, C., H. J. Sun, and X. Lu, "Dualband frequency selective surface with double-four-legged loaded slots elements," 2008 International Conference on Microwave and Millimeter Wave Technology, 2008.

30. Rahmati, B. and H. R. Hassani, "Multiband metallic frequency selective surface with wide range of band ratio," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3747-3753, 2015.
doi:10.1109/TAP.2015.2438340