1. Sihvola, A., I. Semchenko, and S. Khakhomov, "View on the history of electromagnetics of metamaterials: Evolution of the congress series of complex media," Photonics and Nanostructures - Fundamentals and Applications, Vol. 12, No. 4, 279-283, 2014. Google Scholar
2. Tretyakov, S. A., F. Bilotti, and A. Schuchinsky, "Metamaterials congress series: Origins and history," 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 361-363, IEEE, 2016. Google Scholar
3. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, 2010.
4. Cheng, D. K. and J. A. Kong, "Covariant descriptions of bianisotropic media," Proceedings of the IEEE, Vol. 56, No. 3, 248-251, 1968. Google Scholar
5. Cheng, D. K. and J. A. Kong, "Time-harmonic fields in source-free bianisotropic media," Journal of Applied Physics, Vol. 39, No. 12, 5792-5796, 1968. Google Scholar
6. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1990.
7. Lindell, I., A. Sihvola, S. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.
8. Röntgen, W. C., "Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft," Annalen der Physik, Vol. 271, No. 10, 264-270, 1888. Google Scholar
9. Wilson, H. A., "On the electric effect of rotating a dielectric in a magnetic field," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, Vol. 204, No. 372-386, 121-137, 1905. Google Scholar
10. Chen, H. C., Theory of Electromagnetic Waves: A Coordinate-free Approach, McGraw-Hill, 1983.
11. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media. Theoretical Physics, Vol. 8, 51, Fizmatlit, 2005.
12. Dzyaloshinskii, I. E., J. Exp. Theoret. Phys., Vol. 37, 881, 1959 [translation: Soviet Phys. - JETP, Vol. 10, 628, 1960].
13. Astrov, D. N., J. Exp. Theoret. Phys., Vol. 38, 984, 1960 [translation: Soviet Phys. - JETP, Vol. 11, 708, 1960].
14. Rado, G. T. and V. J. Folen, Phys. Rev. Letters, Vol. 7, 310, 1961.
15. Rado, G. T. and V. J. Folen, "Magnetoelectric effects in antiferromagnetics," Proceedings of the Seventh Conference on Magnetism and Magnetic Materials, 1126-1132, Springer, 1962. Google Scholar
16. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006. Google Scholar
17. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006. Google Scholar
18. Boston, S. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Physical Review D, Vol. 91, No. 12, 124035, 2015. Google Scholar
19. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Physics Letters A, Vol. 374, No. 23, 2305-2308, 2010. Google Scholar
20. Smolyaninov, I. I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Physical Review Letters, Vol. 105, No. 6, 067402, 2010. Google Scholar
21. Simovski, C. and S. Tretyakov, An Introduction to Metamaterials and Nanophotonics, Cambridge University Press, 2020.
22. Noginov, M. A. and V. A. Podolskiy (eds.), Tutorials in Metamaterials, CRC Press, 2011.
23. Engheta, N. and R. W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.
24. Noginov, M. A., G. Dewar, M. W. McCall, and N. I. Zheludev, Tutorials in Complex Photonic Media, SPIE Press, 2009.
25. Tretyakov, S. A., "A personal view on the origins and developments of the metamaterial concept," Journal of Optics, Vol. 19, No. 1, 013002, 2016. Google Scholar
26. Kong, J. A., "Theorems of bianisotropic media," Proceedings of the IEEE, Vol. 60, No. 9, 1036-1046, 1972. Google Scholar
27. Berry, M., "The optical singularities of bianisotropic crystals," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 461, No. 2059, 2071-2098, 2005. Google Scholar
28. Bateman, H., "Kummer's quartic surface as a wave surface," Proceedings of the London Mathematical Society, Vol. 2, No. 1, 375-382, 1910. Google Scholar
29. Baekler, P., A. Favaro, Y. Itin, and F. W. Hehl, "The Kummer tensor density in electrodynamics and in gravity," Annals of Physics, Vol. 349, 297-324, 2014. Google Scholar
30. Favaro, A. and F. W. Hehl, "Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points," Physical Review A, Vol. 93, No. 1, 013844, 2016. Google Scholar
31. Mulkey, T., J. Dillies, and M. Durach, "Inverse problem of quartic photonics," Optics Letters, Vol. 43, No. 6, 1226-1229, 2018. Google Scholar
32. Durach, M., R. F. Williamson, M. Laballe, and T. Mulkey, "Tri-and tetrahyperbolic isofrequency topologies complete classification of bianisotropic materials," Applied Sciences, Vol. 10, No. 3, 763, 2020. Google Scholar
33. Durach, M., "Tetra-hyperbolic and tri-hyperbolic optical phases in anisotropic metamaterials without magnetoelectric coupling due to hybridization of plasmonic and magnetic Bloch high-k polaritons," Optics Communications, Vol. 476, 126349, 2020. Google Scholar
34. Jessop, C. M., Quartic Surfaces with Singular Points, University Press, 1916.
35. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, 2003.
36. Kruk, S. S., J. W. Zi, E. Pshenay-Severin, K. O'Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, "Magnetic hyperbolic optical metamaterials," Nature Commun., Vol. 7, No. 1, 1-7, 2016. Google Scholar
37. Tuz, V. R., I. V. Fedorin, and V. I. Fesenko, "Bi-hyperbolic isofrequency surface in a magnetic-semiconductor superlattice," Optics Letters, Vol. 42, 4561, 2017. Google Scholar
38. Tuz, V. R. and V. I. Fesenko, "Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media," Journal of Applied Physics, Vol. 128, 013107, 2020. Google Scholar
39. Guo, Z., H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics, Vol. 127, No. 7, 071101, 2020. Google Scholar
40. Takayama, O. and A. V. Lavrinenko, "Optics with hyperbolic materials," JOSA B, Vol. 36, No. 8, F38-F48, 2019. Google Scholar
41. Aladadi, Y. T. and M. A. Alkanhal, "Extraction of tensor parameters of general biaxial anisotropic materials," AIP Advances, Vol. 10, No. 2, 025113, 2020. Google Scholar
42. Arslanagić, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013. Google Scholar
43. Chen, L., Z.-Y. Lei, R. Yang, X.-W. Shi, and J. Zhang, "Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures," Progress In Electromagnetics Research, Vol. 29, 79-93, 2013. Google Scholar
44. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Physical Review E, Vol. 71, No. 4, 046610, 2005. Google Scholar
45. Cheng, X., H. Chen, L. Ran, B.-I. Wu, T. M. Grzegorczyk, and J. A. Kong, "Negative refraction and cross polarization effects in metamaterial realized with bianisotropic S-ring resonator," Physical Review B, Vol. 76, No. 2, 024402, 2007. Google Scholar
46. Cohen, D. and R. Shavit, "Bi-anisotropic metamaterials effective constitutive parameters extraction using oblique incidence S-parameters method," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2071-2078, 2015. Google Scholar
47. Farahbakhsh, A., D. Zarifi, A. Abdolali, and M. Soleimani, "Technique for inversion of an inhomogeneous bianisotropic slab through an optimisation approach," IET Microwaves, Antennas & Propagation, Vol. 7, No. 6, 436-443, 2013. Google Scholar
48. Hasar, U. C., G. Buldu, Y. Kaya, and G. Ozturk, "Determination of effective constitutive parameters of inhomogeneous metamaterials with bianisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 8, 3734-3744, 2018. Google Scholar
49. Hasar, U. C., G. Ozturk, Y. Kaya, J. J. Barroso, and M. Ertugrul, "Simple and accurate electromagnetic characterization of omega-class bianisotropic metamaterials using the state transition matrix method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 7064-7067, 2021. Google Scholar
50. Kraft, M., A. Braun, Y. Luo, S. A. Maier, and J. B. Pendry, "Bianisotropy and magnetism in plasmonic gratings," ACS Photonics, Vol. 3, No. 5, 764-769, 2016. Google Scholar
51. Kriegler, C. E., M. S. Rill, S. Linden, and M. Wegener, "Bianisotropic photonic metamaterials," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 2, 367-375, 2009. Google Scholar
52. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients," Physical Review E, Vol. 79, No. 2, 026610, 2009. Google Scholar
53. Odit, M., P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, "Experimental realisation of all-dielectric bianisotropic metasurfaces," Applied Physics Letters, Vol. 108, No. 22, 221903, 2016. Google Scholar
54. Ozturk, G., U. C. Hasar, M. Bute, and M. Ertugrul, "Determination of constitutive parameters of strong-coupled bianisotropic metamaterials using oblique incidence scattering parameters," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 918-927, 2020. Google Scholar
55. Achouri, K., M. A. Salem, and C. Caloz, "General metasurface synthesis based on susceptibility tensors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 2977-2991, 2015. Google Scholar
56. Lannebère, S., S. Campione, A. Aradian, M. Albani, and F. Capolino, "Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling," JOSA B, Vol. 31, No. 5, 1078-1086, 2014. Google Scholar
57. Liu, X.-X. and A. Alù, "Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach," Physical Review B, Vol. 87, No. 23, 235136, 2013. Google Scholar
58. Liu, X.-X., Y. Zhao, and A. Alù, "Polarizability tensor retrieval for subwavelength particles of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2301-2310, 2016. Google Scholar
59. Alaee, R., M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, "Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications," Physical Review B, Vol. 91, No. 11, 115119, 2015. Google Scholar
60. Albooyeh, M., S. Tretyakov, and C. Simovski, "Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework," Annalen der Physik, Vol. 528, No. 9-10, 721-737, 2016. Google Scholar
61. Belov, P. A., C. R. Simovski, and S. A. Tretyakov, "Example of bianisotropic electromagnetic crystals: The spiral medium," Physical Review E, Vol. 67, No. 5, 056622, 2003. Google Scholar
62. Ciattoni, A. and C. Rizza, "Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality," Physical Review B, Vol. 91, No. 18, 184207, 2015. Google Scholar
63. Fietz, C., "Electro-magnetostatic homogenization of bianisotropic metamaterials," JOSA B, Vol. 30, No. 7, 1937-1944, 2013. Google Scholar
64. Firestein, C. and R. Shavit, "Effective electrical parameters evaluation for non-dispersive metamaterials with highly interaction fields," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1151-1157, 2019. Google Scholar
65. Karamanos, T. D., S. D. Assimonis, A. I. Dimitriadis, and N. V. Kantartzis, "Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory," Photonics and Nanostructures-Fundamentals and Applications, Vol. 12, No. 4, 291-297, 2014. Google Scholar
66. Kildishev, A. V., J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, "Bianisotropic effective parameters of optical metamagnetics and negative-index materials," Proceedings of the IEEE, Vol. 99, No. 10, 1691-1700, 2011. Google Scholar
67. Pors, A., I. Tsukerman, and S. I. Bozhevolnyi, "Effective constitutive parameters of plasmonic metamaterials: Homogenization by dual field interpolation," Physical Review E, Vol. 84, No. 1, 016609, 2011. Google Scholar
68. Pors, A., M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, "Detuned electrical dipoles metamaterial with bianisotropic response," Physical Review B, Vol. 83, No. 24, 245409, 2011. Google Scholar
69. Shaltout, A., V. Shalaev, and A. Kildishev, "Homogenization of bi-anisotropic metasurfaces," Optics Express, Vol. 21, No. 19, 21941-21950, 2013. Google Scholar
70. Sihvola, A., "Olyslager approach to bianisotropic mixtures," 2010 URSI International Symposium on Electromagnetic Theory, IEEE, 2010. Google Scholar
71. Silveirinha, M. G., "Design of linear-to-circular polarization transformers made of long densely packed metallic helices," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 390-401, 2008. Google Scholar
72. Simovski, C. and S. Tretyakov, "On effective electromagnetic parameters of artificial nanostructured magnetic materials," Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, No. 4, 254-263, 2010. Google Scholar
73. Simovski, C. R., E. Verney, S. Zouhdi, and A. Fourrier-Lamer, "Homogenization of planar bianisotropic arrays on the dielectric interface," Electromagnetics, Vol. 22, No. 3, 177-189, 2002. Google Scholar
74. Tsukerman, I., "Effective parameters of metamaterials: A rigorous homogenization theory via Whitney interpolation," JOSA B, Vol. 28, No. 3, 577-586, 2011. Google Scholar
75. Wang, N. and G. P. Wang, "Effective medium theory with closed-form expressions for bi-anisotropic optical metamaterials," Optics Express, Vol. 27, No. 17, 23739-23750, 2019. Google Scholar
76. Asadchy, V. S., A. Díaz-Rubio, and S. A. Tretyakov, "Bianisotropic metasurfaces: Physics and applications," Nanophotonics, Vol. 7, No. 6, 1069-1094, 2018. Google Scholar
77. Asadchy, V. S. and S. A. Tretyakov, "Modular analysis of arbitrary dipolar scatterers," Physical Review Applied, Vol. 12, No. 2, 024059, 2019. Google Scholar
78. Glybovski, S. B., S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports, Vol. 634, 1-72, 2016. Google Scholar
79. Mirmoosa, M. S., Y. Ra'di, V. S. Asadchy, C. R. Simovski, and S. A. Tretyakov, "Polarizabilities of nonreciprocal bianisotropic particles," Physical Review Applied, Vol. 1, No. 3, 034005, 2014. Google Scholar
80. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Physical Review Applied, Vol. 2, No. 4, 044011, 2014. Google Scholar
81. Ranjbar, A. and A. Grbic, "Analysis and synthesis of cascaded metasurfaces using wave matrices," Physical Review B, Vol. 95, No. 20, 205114, 2017. Google Scholar
82. Chang, P.-H., C.-Y. Kuo, and R.-L. Chern, "Wave propagation in bianisotropic metamaterials: Angular selective transmission," Optics Express, Vol. 22, No. 21, 25710-25721, 2014. Google Scholar
83. Chern, R.-L. and P.-H. Chang, "Wave propagation in pseudochiral media: Generalized Fresnel equations," JOSA B, Vol. 30, No. 3, 552-558, 2013. Google Scholar
84. Dimitriadis, A. I., N. V. Kantartzis, T. D. Tsiboukis, and C. Hafner, "Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers," Journal of Computational Physics, Vol. 281, 251-268, 2015. Google Scholar
85. Evlyukhin, A. B., V. R. Tuz, V. S. Volkov, and B. N. Chichkov, "Bianisotropy for light trapping in all-dielectric metasurfaces," Physical Review B, Vol. 101, No. 20, 205415, 2020. Google Scholar
86. Furs, A. N., "Surface electromagnetic waves in 1D optically active photonic crystals," Journal of Optics, Vol. 13, No. 5, 055103, 2011. Google Scholar
87. Gauthier, R., "The bianisotropic formulation of the plane wave method from Faraday's and Ampere's Laws," Optics and Photonics Journal, Vol. 11, No. 8, 360-386, 2021. Google Scholar
88. Guo, Q., W. Gao, J. Chen, Y. Liu, and S. Zhang, "Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials," Physical Review Letters, Vol. 115, No. 6, 067402, 2015. Google Scholar
89. Guo, R.-P., Q.-H. Guo, L.-T. Wu, J. Chen, and D. Fan, "Optical spin-sensitive Zitterbewegung in bianisotropic metamaterials," Optics Express, Vol. 24, No. 13, 13788-13799, 2016. Google Scholar
90. Hasar, U. C., J. J. Barroso, T. Karacali, and M. Ertugrul, "Semi-infinite reflection coefficients of bi-anisotropic metamaterial slabs including boundary effects," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 5, 283-285, 2015. Google Scholar
91. Karimi, P., B. Rejaei, and A. Khavasi, "Unidirectional surface waves in bi-anisotropic media," IEEE Journal of Quantum Electronics, Vol. 54, No. 6, 1-6, 2018. Google Scholar
92. Keller, S. M. and G. P. Carman, "Electromagnetic wave propagation in (bianisotropic) magnetoelectric materials," Journal of Intelligent Material Systems and Structures, Vol. 24, No. 5, 651-668, 2013. Google Scholar
93. Lunnemann, P., I. Sersic, and A. Femius Koenderink, "Optical properties of two-dimensional magnetoelectric point scattering lattices," Physical Review B, Vol. 88, No. 24, 245109, 2013. Google Scholar
94. Mackay, T. G. and A. Lakhtakia, "Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials," Physical Review B, Vol. 79, No. 23, 235121, 2009. Google Scholar
95. Morgado, T. A., S. I. Maslovski, and M. G. Silveirinha, "Uniaxial indefinite material formed by helical-shaped wires," New Journal of Physics, Vol. 14, No. 6, 063002, 2012. Google Scholar
96. Peng, L., Y. Chen, Y. Yang, Z. Wang, F. Yu, G. Wang, N.-H. Shen, B. Zhang, C. M. Soukoulis, and H. Chen, "Spin momentum-locked surface states in metamaterials without topological transition," Laser & Photonics Reviews, Vol. 12, No. 8, 1800002, 2018. Google Scholar
97. Peng, L., L. Duan, K. Wang, F. Gao, L. Zhang, G. Wang, Y. Yang, H. Chen, and S. Zhang, "Transverse photon spin of bulk electromagnetic waves in bianisotropic media," Nature Photonics, Vol. 13, No. 12, 878-882, 2019. Google Scholar
98. Ra'di, Y. and A. Alù, "Nonreciprocal wavefront manipulation in synthetically moving metagratings," Photonics, 2020. Google Scholar
99. Ra'di, Y. and A. Grbic, "Magnet-free nonreciprocal bianisotropic metasurfaces," Physical Review B, Vol. 94, No. 19, 195432, 2016. Google Scholar
100. Ranjbar, A. and A. Grbic, "Broadband, multiband, and multifunctional all-dielectric metasurfaces," Physical Review Applied, Vol. 11, No. 5, 054066, 2019. Google Scholar
101. Semchenko, I. V., S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, "Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves," Journal of Physics D: Applied Physics, Vol. 31, No. 19, 2458, 1998. Google Scholar
102. Tretyakov, S. and A. Sochava, "Novel uniaxial bianisotropic materials: Reflection and transmission in planar structures," Progress In Electromagnetics Research, Vol. 9, 157-179, 1994. Google Scholar
103. Barkovskii, L. M., G. N. Borzdov, and A. V. Lavrinenko, "Fresnel's reflection and transmission operators for stratified gyroanisotropic media," Journal of Physics A: Mathematical and General, Vol. 20, No. 5, 1095, 1987. Google Scholar
104. LaBalle, M. and M. Durach, "Additional waves and additional boundary conditions in local quartic metamaterials," OSA Continuum, Vol. 2, No. 1, 17-24, 2019. Google Scholar
105. Durach, M., "Complete 72-parametric classification of surface plasmon polaritons in quartic metamaterials," OSA Continuum, Vol. 1, No. 1, 162-169, 2018. Google Scholar
106. Achouri, K. and O. J. Martin, "Surface-wave dispersion retrieval method and synthesis technique for bianisotropic metasurfaces," Physical Review B, Vol. 99, No. 15, 155140, 2019. Google Scholar
107. Lunnemann, P. and A. F. Koenderink, "Dispersion of guided modes in two-dimensional split ring lattices," Physical Review B, Vol. 90, No. 24, 245416, 2014. Google Scholar
108. Mousvai, S. M., B. A. Arand, and K. Forooraghi, "Surface wave propagation on bianisotropic metasurfaces by using electric and magnetic polarizabilities," IEEE Access, Vol. 9, 54241-54253, 2021. Google Scholar
109. Popov, V., A. V. Lavrinenko, and A. Novitsky, "Surface waves on multilayer hyperbolic metamaterials: Operator approach to effective medium approximation," Physical Review B, Vol. 97, No. 12, 125428, 2018. Google Scholar
110. Xia, L., B. Yang, Q. Guo, W. Gao, H. Liu, J. Han, W. Zhang, and S. Zhang, "Simultaneous TE and TM designer surface plasmon supported by bianisotropic metamaterials with positive permittivity and permeability," Nanophotonics, Vol. 8, No. 8, 1357-1362, 2019. Google Scholar
111. Yu, Y.-Z., C.-Y. Kuo, R.-L. Chern, and C. T. Chan, "Photonic topological semimetals in bianisotropic metamaterials," Scientific Reports, Vol. 9, No. 1, 1-13, 2019. Google Scholar
112. Darinskii, A., "Surface electromagnetic waves in bianisotropic superlattices and homogeneous media," Physical Review A, Vol. 103, No. 3, 033501, 2021. Google Scholar
113. Darinskii, A., "Surface plasmon polaritons in metal films on anisotropic and bianisotropic substrates," Physical Review A, Vol. 104, No. 2, 023507, 2021. Google Scholar
114. Razzaz, F. and M. A. Alkanhal, "Terahertz evanescent wave tunneling in bianisotropic thin films," 2018 International Applied Computational Electromagnetics Society Symposium (ACES), IEEE, 2018. Google Scholar
115. Razzaz, F. and M. A. Alkanhal, "Electromagnetic tunneling and resonances in pseudochiral omega slabs," Scientific Reports, Vol. 7, No. 1, 1-9, 2017. Google Scholar
116. Razzaz, F. and M. A. Alkanhal, "Resonances in bianisotropic layers," IEEE Photonics Journal, Vol. 10, No. 1, 1-12, 2017. Google Scholar
117. Popov, V., A. V. Lavrinenko, and A. Novitsky, "Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation," Physical Review B, Vol. 94, No. 8, 085428, 2016. Google Scholar
118. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013.
119. Airy, G. B., "VI. On the phnomena of Newton's rings when formed between two transparent substances of different refractive powers," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 2, No. 7, 20-30, 1833. Google Scholar
120. Fabry, C. and A. Perot, "Theorie et applications d'une nouvelle methode de spectroscopie interferentielle," Ann. Chim. Phys., Vol. 16, No. 7, 1899. Google Scholar
121. Perot, A. and C. Fabry, "On the application of interference phenomena to the solution of various problems of spectroscopy and metrology," Astrophysical Journal, Vol. 9, 87, 1899. Google Scholar
122. Kavokin, A. V., J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, Oxford University Press, 2011.
123. Bozhevolnyi, S. I., Plasmonic Nanoguides and Circuits, Pan Stanford Publishing, 2009.
124. Lindell, I. V., "On the classification of electromagnetic media," 2010 URSI International Symposium on Electromagnetic Theory, IEEE, 2010. Google Scholar
125. Graglia, R. D., M. S. Sarto, and P. L. Uslenghi, "TE and TM modes in cylindrical metallic structures filled with bianisotropic material," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 8, 1470-1477, 1996. Google Scholar
126. Lindell, I. V., L. Bergamin, and A. Favaro, "Decomposable medium conditions in four-dimensional representation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 367-376, 2011. Google Scholar
127. Lindell, I. V. and F. Olyslager, "Generalized decomposition of electromagnetic fields in bi-anisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1584-1585, 1998. Google Scholar
128. Uslenghi, P. L., "TE-TM decoupling for guided propagation in bianisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 284-286, 1997. Google Scholar
129. Durach, M. and A. Rusina, "Transforming Fabry-Perot resonances into a Tamm mode," Physical Review B, Vol. 86, No. 23, 235312, 2012. Google Scholar
130. Keene, D. and M. Durach, "Hyperbolic resonances of metasurface cavities," Optics Express, Vol. 23, No. 14, 18577-18588, 2015. Google Scholar
131. Keene, D., M. LePain, and M. Durach, "Ultimately thin metasurface wave plates," Annalen der Physik, Vol. 528, No. 11-12, 767-777, 2016. Google Scholar
132. Berreman, D. W., "Optics in stratified and anisotropic media: 4×4-matrix formulation," JOSA, Vol. 62, No. 4, 502-510, 1972. Google Scholar
133. Hodges, R., C. Dean, and M. Durach, "Optical neutrality: Invisibility without cloaking," Optics Letters, Vol. 42, No. 4, 691-694, 2017. Google Scholar
134. D'yakonov, M. I., "New type of electromagnetic wave propagating at an interface," Sov. Phys. JETP, Vol. 67, No. 4, 714-716, 1988. Google Scholar
135. Takayama, O., L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, "Dyakonov surface waves: A review," Electromagnetics, Vol. 28, No. 3, 126-145, 2008. Google Scholar
136. Takayama, O., L. Crasovan, D. Artigas, and L. Torner, "Observation of Dyakonov surface waves," Physical Review Letters, Vol. 102, No. 4, 043903, 2009. Google Scholar
137. Takayama, O., D. Artigas, and L. Torner, "Practical dyakonons," Optics Letters, Vol. 37, No. 20, 4311-4313, 2012. Google Scholar
138. Polo, J., T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective, Newnes, 2013.