Vol. 173
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-03-09
On Fresnel-Airy Equations, Fabry-Perot Resonances and Surface Electromagnetic Waves in Arbitrary Bianisotropic Metamaterials
By
Progress In Electromagnetics Research, Vol. 173, 53-69, 2022
Abstract
We introduce a theory of optical responses of bianisotropic layers with arbitrary effective medium parameters, which results in generalized Fresnel-Airy equations for reflection and transmission coefficients at all incidence directions and polarizations. The poles of these equations provide explicit expressions for the dispersion of Fabry-Perot resonances and surface electromatic waves in bianisotropic layers and interfaces. The existence conditions of these resonances are topologically related to the zeros of the high-k characteristic function h(k)=0 of bulk bianisotropic materials and taxonomy of bianisotropic media according to the hyperbolic topological classes [32, 33].
Citation
Maxim Durach, Robert Williamson, Jacob Adams, Tonilynn Holtz, Pooja Bhatt, Rebecka Moreno, and Franchescia Smith, "On Fresnel-Airy Equations, Fabry-Perot Resonances and Surface Electromagnetic Waves in Arbitrary Bianisotropic Metamaterials," Progress In Electromagnetics Research, Vol. 173, 53-69, 2022.
doi:10.2528/PIER22020701
References

1. Sihvola, A., I. Semchenko, and S. Khakhomov, "View on the history of electromagnetics of metamaterials: Evolution of the congress series of complex media," Photonics and Nanostructures - Fundamentals and Applications, Vol. 12, No. 4, 279-283, 2014.        Google Scholar

2. Tretyakov, S. A., F. Bilotti, and A. Schuchinsky, "Metamaterials congress series: Origins and history," 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 361-363, IEEE, 2016.        Google Scholar

3. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, 2010.

4. Cheng, D. K. and J. A. Kong, "Covariant descriptions of bianisotropic media," Proceedings of the IEEE, Vol. 56, No. 3, 248-251, 1968.        Google Scholar

5. Cheng, D. K. and J. A. Kong, "Time-harmonic fields in source-free bianisotropic media," Journal of Applied Physics, Vol. 39, No. 12, 5792-5796, 1968.        Google Scholar

6. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1990.

7. Lindell, I., A. Sihvola, S. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.

8. Röntgen, W. C., "Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft," Annalen der Physik, Vol. 271, No. 10, 264-270, 1888.        Google Scholar

9. Wilson, H. A., "On the electric effect of rotating a dielectric in a magnetic field," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, Vol. 204, No. 372-386, 121-137, 1905.        Google Scholar

10. Chen, H. C., Theory of Electromagnetic Waves: A Coordinate-free Approach, McGraw-Hill, 1983.

11. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media. Theoretical Physics, Vol. 8, 51, Fizmatlit, 2005.

12. Dzyaloshinskii, I. E., J. Exp. Theoret. Phys., Vol. 37, 881, 1959 [translation: Soviet Phys. - JETP, Vol. 10, 628, 1960].

13. Astrov, D. N., J. Exp. Theoret. Phys., Vol. 38, 984, 1960 [translation: Soviet Phys. - JETP, Vol. 11, 708, 1960].

14. Rado, G. T. and V. J. Folen, Phys. Rev. Letters, Vol. 7, 310, 1961.

15. Rado, G. T. and V. J. Folen, "Magnetoelectric effects in antiferromagnetics," Proceedings of the Seventh Conference on Magnetism and Magnetic Materials, 1126-1132, Springer, 1962.        Google Scholar

16. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.        Google Scholar

17. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.        Google Scholar

18. Boston, S. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Physical Review D, Vol. 91, No. 12, 124035, 2015.        Google Scholar

19. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Physics Letters A, Vol. 374, No. 23, 2305-2308, 2010.        Google Scholar

20. Smolyaninov, I. I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Physical Review Letters, Vol. 105, No. 6, 067402, 2010.        Google Scholar

21. Simovski, C. and S. Tretyakov, An Introduction to Metamaterials and Nanophotonics, Cambridge University Press, 2020.

22. Noginov, M. A. and V. A. Podolskiy (eds.), Tutorials in Metamaterials, CRC Press, 2011.

23. Engheta, N. and R. W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.

24. Noginov, M. A., G. Dewar, M. W. McCall, and N. I. Zheludev, Tutorials in Complex Photonic Media, SPIE Press, 2009.

25. Tretyakov, S. A., "A personal view on the origins and developments of the metamaterial concept," Journal of Optics, Vol. 19, No. 1, 013002, 2016.        Google Scholar

26. Kong, J. A., "Theorems of bianisotropic media," Proceedings of the IEEE, Vol. 60, No. 9, 1036-1046, 1972.        Google Scholar

27. Berry, M., "The optical singularities of bianisotropic crystals," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 461, No. 2059, 2071-2098, 2005.        Google Scholar

28. Bateman, H., "Kummer's quartic surface as a wave surface," Proceedings of the London Mathematical Society, Vol. 2, No. 1, 375-382, 1910.        Google Scholar

29. Baekler, P., A. Favaro, Y. Itin, and F. W. Hehl, "The Kummer tensor density in electrodynamics and in gravity," Annals of Physics, Vol. 349, 297-324, 2014.        Google Scholar

30. Favaro, A. and F. W. Hehl, "Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points," Physical Review A, Vol. 93, No. 1, 013844, 2016.        Google Scholar

31. Mulkey, T., J. Dillies, and M. Durach, "Inverse problem of quartic photonics," Optics Letters, Vol. 43, No. 6, 1226-1229, 2018.        Google Scholar

32. Durach, M., R. F. Williamson, M. Laballe, and T. Mulkey, "Tri-and tetrahyperbolic isofrequency topologies complete classification of bianisotropic materials," Applied Sciences, Vol. 10, No. 3, 763, 2020.        Google Scholar

33. Durach, M., "Tetra-hyperbolic and tri-hyperbolic optical phases in anisotropic metamaterials without magnetoelectric coupling due to hybridization of plasmonic and magnetic Bloch high-k polaritons," Optics Communications, Vol. 476, 126349, 2020.        Google Scholar

34. Jessop, C. M., Quartic Surfaces with Singular Points, University Press, 1916.

35. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, 2003.

36. Kruk, S. S., J. W. Zi, E. Pshenay-Severin, K. O'Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, "Magnetic hyperbolic optical metamaterials," Nature Commun., Vol. 7, No. 1, 1-7, 2016.        Google Scholar

37. Tuz, V. R., I. V. Fedorin, and V. I. Fesenko, "Bi-hyperbolic isofrequency surface in a magnetic-semiconductor superlattice," Optics Letters, Vol. 42, 4561, 2017.        Google Scholar

38. Tuz, V. R. and V. I. Fesenko, "Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media," Journal of Applied Physics, Vol. 128, 013107, 2020.        Google Scholar

39. Guo, Z., H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics, Vol. 127, No. 7, 071101, 2020.        Google Scholar

40. Takayama, O. and A. V. Lavrinenko, "Optics with hyperbolic materials," JOSA B, Vol. 36, No. 8, F38-F48, 2019.        Google Scholar

41. Aladadi, Y. T. and M. A. Alkanhal, "Extraction of tensor parameters of general biaxial anisotropic materials," AIP Advances, Vol. 10, No. 2, 025113, 2020.        Google Scholar

42. Arslanagić, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.        Google Scholar

43. Chen, L., Z.-Y. Lei, R. Yang, X.-W. Shi, and J. Zhang, "Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures," Progress In Electromagnetics Research, Vol. 29, 79-93, 2013.        Google Scholar

44. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Physical Review E, Vol. 71, No. 4, 046610, 2005.        Google Scholar

45. Cheng, X., H. Chen, L. Ran, B.-I. Wu, T. M. Grzegorczyk, and J. A. Kong, "Negative refraction and cross polarization effects in metamaterial realized with bianisotropic S-ring resonator," Physical Review B, Vol. 76, No. 2, 024402, 2007.        Google Scholar

46. Cohen, D. and R. Shavit, "Bi-anisotropic metamaterials effective constitutive parameters extraction using oblique incidence S-parameters method," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2071-2078, 2015.        Google Scholar

47. Farahbakhsh, A., D. Zarifi, A. Abdolali, and M. Soleimani, "Technique for inversion of an inhomogeneous bianisotropic slab through an optimisation approach," IET Microwaves, Antennas & Propagation, Vol. 7, No. 6, 436-443, 2013.        Google Scholar

48. Hasar, U. C., G. Buldu, Y. Kaya, and G. Ozturk, "Determination of effective constitutive parameters of inhomogeneous metamaterials with bianisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 8, 3734-3744, 2018.        Google Scholar

49. Hasar, U. C., G. Ozturk, Y. Kaya, J. J. Barroso, and M. Ertugrul, "Simple and accurate electromagnetic characterization of omega-class bianisotropic metamaterials using the state transition matrix method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 7064-7067, 2021.        Google Scholar

50. Kraft, M., A. Braun, Y. Luo, S. A. Maier, and J. B. Pendry, "Bianisotropy and magnetism in plasmonic gratings," ACS Photonics, Vol. 3, No. 5, 764-769, 2016.        Google Scholar

51. Kriegler, C. E., M. S. Rill, S. Linden, and M. Wegener, "Bianisotropic photonic metamaterials," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 2, 367-375, 2009.        Google Scholar

52. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients," Physical Review E, Vol. 79, No. 2, 026610, 2009.        Google Scholar

53. Odit, M., P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, "Experimental realisation of all-dielectric bianisotropic metasurfaces," Applied Physics Letters, Vol. 108, No. 22, 221903, 2016.        Google Scholar

54. Ozturk, G., U. C. Hasar, M. Bute, and M. Ertugrul, "Determination of constitutive parameters of strong-coupled bianisotropic metamaterials using oblique incidence scattering parameters," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 918-927, 2020.        Google Scholar

55. Achouri, K., M. A. Salem, and C. Caloz, "General metasurface synthesis based on susceptibility tensors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 2977-2991, 2015.        Google Scholar

56. Lannebère, S., S. Campione, A. Aradian, M. Albani, and F. Capolino, "Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling," JOSA B, Vol. 31, No. 5, 1078-1086, 2014.        Google Scholar

57. Liu, X.-X. and A. Alù, "Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach," Physical Review B, Vol. 87, No. 23, 235136, 2013.        Google Scholar

58. Liu, X.-X., Y. Zhao, and A. Alù, "Polarizability tensor retrieval for subwavelength particles of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2301-2310, 2016.        Google Scholar

59. Alaee, R., M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, "Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications," Physical Review B, Vol. 91, No. 11, 115119, 2015.        Google Scholar

60. Albooyeh, M., S. Tretyakov, and C. Simovski, "Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework," Annalen der Physik, Vol. 528, No. 9-10, 721-737, 2016.        Google Scholar

61. Belov, P. A., C. R. Simovski, and S. A. Tretyakov, "Example of bianisotropic electromagnetic crystals: The spiral medium," Physical Review E, Vol. 67, No. 5, 056622, 2003.        Google Scholar

62. Ciattoni, A. and C. Rizza, "Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality," Physical Review B, Vol. 91, No. 18, 184207, 2015.        Google Scholar

63. Fietz, C., "Electro-magnetostatic homogenization of bianisotropic metamaterials," JOSA B, Vol. 30, No. 7, 1937-1944, 2013.        Google Scholar

64. Firestein, C. and R. Shavit, "Effective electrical parameters evaluation for non-dispersive metamaterials with highly interaction fields," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1151-1157, 2019.        Google Scholar

65. Karamanos, T. D., S. D. Assimonis, A. I. Dimitriadis, and N. V. Kantartzis, "Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory," Photonics and Nanostructures-Fundamentals and Applications, Vol. 12, No. 4, 291-297, 2014.        Google Scholar

66. Kildishev, A. V., J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, "Bianisotropic effective parameters of optical metamagnetics and negative-index materials," Proceedings of the IEEE, Vol. 99, No. 10, 1691-1700, 2011.        Google Scholar

67. Pors, A., I. Tsukerman, and S. I. Bozhevolnyi, "Effective constitutive parameters of plasmonic metamaterials: Homogenization by dual field interpolation," Physical Review E, Vol. 84, No. 1, 016609, 2011.        Google Scholar

68. Pors, A., M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, "Detuned electrical dipoles metamaterial with bianisotropic response," Physical Review B, Vol. 83, No. 24, 245409, 2011.        Google Scholar

69. Shaltout, A., V. Shalaev, and A. Kildishev, "Homogenization of bi-anisotropic metasurfaces," Optics Express, Vol. 21, No. 19, 21941-21950, 2013.        Google Scholar

70. Sihvola, A., "Olyslager approach to bianisotropic mixtures," 2010 URSI International Symposium on Electromagnetic Theory, IEEE, 2010.        Google Scholar

71. Silveirinha, M. G., "Design of linear-to-circular polarization transformers made of long densely packed metallic helices," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 390-401, 2008.        Google Scholar

72. Simovski, C. and S. Tretyakov, "On effective electromagnetic parameters of artificial nanostructured magnetic materials," Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, No. 4, 254-263, 2010.        Google Scholar

73. Simovski, C. R., E. Verney, S. Zouhdi, and A. Fourrier-Lamer, "Homogenization of planar bianisotropic arrays on the dielectric interface," Electromagnetics, Vol. 22, No. 3, 177-189, 2002.        Google Scholar

74. Tsukerman, I., "Effective parameters of metamaterials: A rigorous homogenization theory via Whitney interpolation," JOSA B, Vol. 28, No. 3, 577-586, 2011.        Google Scholar

75. Wang, N. and G. P. Wang, "Effective medium theory with closed-form expressions for bi-anisotropic optical metamaterials," Optics Express, Vol. 27, No. 17, 23739-23750, 2019.        Google Scholar

76. Asadchy, V. S., A. Díaz-Rubio, and S. A. Tretyakov, "Bianisotropic metasurfaces: Physics and applications," Nanophotonics, Vol. 7, No. 6, 1069-1094, 2018.        Google Scholar

77. Asadchy, V. S. and S. A. Tretyakov, "Modular analysis of arbitrary dipolar scatterers," Physical Review Applied, Vol. 12, No. 2, 024059, 2019.        Google Scholar

78. Glybovski, S. B., S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports, Vol. 634, 1-72, 2016.        Google Scholar

79. Mirmoosa, M. S., Y. Ra'di, V. S. Asadchy, C. R. Simovski, and S. A. Tretyakov, "Polarizabilities of nonreciprocal bianisotropic particles," Physical Review Applied, Vol. 1, No. 3, 034005, 2014.        Google Scholar

80. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Physical Review Applied, Vol. 2, No. 4, 044011, 2014.        Google Scholar

81. Ranjbar, A. and A. Grbic, "Analysis and synthesis of cascaded metasurfaces using wave matrices," Physical Review B, Vol. 95, No. 20, 205114, 2017.        Google Scholar

82. Chang, P.-H., C.-Y. Kuo, and R.-L. Chern, "Wave propagation in bianisotropic metamaterials: Angular selective transmission," Optics Express, Vol. 22, No. 21, 25710-25721, 2014.        Google Scholar

83. Chern, R.-L. and P.-H. Chang, "Wave propagation in pseudochiral media: Generalized Fresnel equations," JOSA B, Vol. 30, No. 3, 552-558, 2013.        Google Scholar

84. Dimitriadis, A. I., N. V. Kantartzis, T. D. Tsiboukis, and C. Hafner, "Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers," Journal of Computational Physics, Vol. 281, 251-268, 2015.        Google Scholar

85. Evlyukhin, A. B., V. R. Tuz, V. S. Volkov, and B. N. Chichkov, "Bianisotropy for light trapping in all-dielectric metasurfaces," Physical Review B, Vol. 101, No. 20, 205415, 2020.        Google Scholar

86. Furs, A. N., "Surface electromagnetic waves in 1D optically active photonic crystals," Journal of Optics, Vol. 13, No. 5, 055103, 2011.        Google Scholar

87. Gauthier, R., "The bianisotropic formulation of the plane wave method from Faraday's and Ampere's Laws," Optics and Photonics Journal, Vol. 11, No. 8, 360-386, 2021.        Google Scholar

88. Guo, Q., W. Gao, J. Chen, Y. Liu, and S. Zhang, "Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials," Physical Review Letters, Vol. 115, No. 6, 067402, 2015.        Google Scholar

89. Guo, R.-P., Q.-H. Guo, L.-T. Wu, J. Chen, and D. Fan, "Optical spin-sensitive Zitterbewegung in bianisotropic metamaterials," Optics Express, Vol. 24, No. 13, 13788-13799, 2016.        Google Scholar

90. Hasar, U. C., J. J. Barroso, T. Karacali, and M. Ertugrul, "Semi-infinite reflection coefficients of bi-anisotropic metamaterial slabs including boundary effects," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 5, 283-285, 2015.        Google Scholar

91. Karimi, P., B. Rejaei, and A. Khavasi, "Unidirectional surface waves in bi-anisotropic media," IEEE Journal of Quantum Electronics, Vol. 54, No. 6, 1-6, 2018.        Google Scholar

92. Keller, S. M. and G. P. Carman, "Electromagnetic wave propagation in (bianisotropic) magnetoelectric materials," Journal of Intelligent Material Systems and Structures, Vol. 24, No. 5, 651-668, 2013.        Google Scholar

93. Lunnemann, P., I. Sersic, and A. Femius Koenderink, "Optical properties of two-dimensional magnetoelectric point scattering lattices," Physical Review B, Vol. 88, No. 24, 245109, 2013.        Google Scholar

94. Mackay, T. G. and A. Lakhtakia, "Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials," Physical Review B, Vol. 79, No. 23, 235121, 2009.        Google Scholar

95. Morgado, T. A., S. I. Maslovski, and M. G. Silveirinha, "Uniaxial indefinite material formed by helical-shaped wires," New Journal of Physics, Vol. 14, No. 6, 063002, 2012.        Google Scholar

96. Peng, L., Y. Chen, Y. Yang, Z. Wang, F. Yu, G. Wang, N.-H. Shen, B. Zhang, C. M. Soukoulis, and H. Chen, "Spin momentum-locked surface states in metamaterials without topological transition," Laser & Photonics Reviews, Vol. 12, No. 8, 1800002, 2018.        Google Scholar

97. Peng, L., L. Duan, K. Wang, F. Gao, L. Zhang, G. Wang, Y. Yang, H. Chen, and S. Zhang, "Transverse photon spin of bulk electromagnetic waves in bianisotropic media," Nature Photonics, Vol. 13, No. 12, 878-882, 2019.        Google Scholar

98. Ra'di, Y. and A. Alù, "Nonreciprocal wavefront manipulation in synthetically moving metagratings," Photonics, 2020.        Google Scholar

99. Ra'di, Y. and A. Grbic, "Magnet-free nonreciprocal bianisotropic metasurfaces," Physical Review B, Vol. 94, No. 19, 195432, 2016.        Google Scholar

100. Ranjbar, A. and A. Grbic, "Broadband, multiband, and multifunctional all-dielectric metasurfaces," Physical Review Applied, Vol. 11, No. 5, 054066, 2019.        Google Scholar

101. Semchenko, I. V., S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, "Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves," Journal of Physics D: Applied Physics, Vol. 31, No. 19, 2458, 1998.        Google Scholar

102. Tretyakov, S. and A. Sochava, "Novel uniaxial bianisotropic materials: Reflection and transmission in planar structures," Progress In Electromagnetics Research, Vol. 9, 157-179, 1994.        Google Scholar

103. Barkovskii, L. M., G. N. Borzdov, and A. V. Lavrinenko, "Fresnel's reflection and transmission operators for stratified gyroanisotropic media," Journal of Physics A: Mathematical and General, Vol. 20, No. 5, 1095, 1987.        Google Scholar

104. LaBalle, M. and M. Durach, "Additional waves and additional boundary conditions in local quartic metamaterials," OSA Continuum, Vol. 2, No. 1, 17-24, 2019.        Google Scholar

105. Durach, M., "Complete 72-parametric classification of surface plasmon polaritons in quartic metamaterials," OSA Continuum, Vol. 1, No. 1, 162-169, 2018.        Google Scholar

106. Achouri, K. and O. J. Martin, "Surface-wave dispersion retrieval method and synthesis technique for bianisotropic metasurfaces," Physical Review B, Vol. 99, No. 15, 155140, 2019.        Google Scholar

107. Lunnemann, P. and A. F. Koenderink, "Dispersion of guided modes in two-dimensional split ring lattices," Physical Review B, Vol. 90, No. 24, 245416, 2014.        Google Scholar

108. Mousvai, S. M., B. A. Arand, and K. Forooraghi, "Surface wave propagation on bianisotropic metasurfaces by using electric and magnetic polarizabilities," IEEE Access, Vol. 9, 54241-54253, 2021.        Google Scholar

109. Popov, V., A. V. Lavrinenko, and A. Novitsky, "Surface waves on multilayer hyperbolic metamaterials: Operator approach to effective medium approximation," Physical Review B, Vol. 97, No. 12, 125428, 2018.        Google Scholar

110. Xia, L., B. Yang, Q. Guo, W. Gao, H. Liu, J. Han, W. Zhang, and S. Zhang, "Simultaneous TE and TM designer surface plasmon supported by bianisotropic metamaterials with positive permittivity and permeability," Nanophotonics, Vol. 8, No. 8, 1357-1362, 2019.        Google Scholar

111. Yu, Y.-Z., C.-Y. Kuo, R.-L. Chern, and C. T. Chan, "Photonic topological semimetals in bianisotropic metamaterials," Scientific Reports, Vol. 9, No. 1, 1-13, 2019.        Google Scholar

112. Darinskii, A., "Surface electromagnetic waves in bianisotropic superlattices and homogeneous media," Physical Review A, Vol. 103, No. 3, 033501, 2021.        Google Scholar

113. Darinskii, A., "Surface plasmon polaritons in metal films on anisotropic and bianisotropic substrates," Physical Review A, Vol. 104, No. 2, 023507, 2021.        Google Scholar

114. Razzaz, F. and M. A. Alkanhal, "Terahertz evanescent wave tunneling in bianisotropic thin films," 2018 International Applied Computational Electromagnetics Society Symposium (ACES), IEEE, 2018.        Google Scholar

115. Razzaz, F. and M. A. Alkanhal, "Electromagnetic tunneling and resonances in pseudochiral omega slabs," Scientific Reports, Vol. 7, No. 1, 1-9, 2017.        Google Scholar

116. Razzaz, F. and M. A. Alkanhal, "Resonances in bianisotropic layers," IEEE Photonics Journal, Vol. 10, No. 1, 1-12, 2017.        Google Scholar

117. Popov, V., A. V. Lavrinenko, and A. Novitsky, "Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation," Physical Review B, Vol. 94, No. 8, 085428, 2016.        Google Scholar

118. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013.

119. Airy, G. B., "VI. On the phnomena of Newton's rings when formed between two transparent substances of different refractive powers," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 2, No. 7, 20-30, 1833.        Google Scholar

120. Fabry, C. and A. Perot, "Theorie et applications d'une nouvelle methode de spectroscopie interferentielle," Ann. Chim. Phys., Vol. 16, No. 7, 1899.        Google Scholar

121. Perot, A. and C. Fabry, "On the application of interference phenomena to the solution of various problems of spectroscopy and metrology," Astrophysical Journal, Vol. 9, 87, 1899.        Google Scholar

122. Kavokin, A. V., J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, Oxford University Press, 2011.

123. Bozhevolnyi, S. I., Plasmonic Nanoguides and Circuits, Pan Stanford Publishing, 2009.

124. Lindell, I. V., "On the classification of electromagnetic media," 2010 URSI International Symposium on Electromagnetic Theory, IEEE, 2010.        Google Scholar

125. Graglia, R. D., M. S. Sarto, and P. L. Uslenghi, "TE and TM modes in cylindrical metallic structures filled with bianisotropic material," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 8, 1470-1477, 1996.        Google Scholar

126. Lindell, I. V., L. Bergamin, and A. Favaro, "Decomposable medium conditions in four-dimensional representation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 367-376, 2011.        Google Scholar

127. Lindell, I. V. and F. Olyslager, "Generalized decomposition of electromagnetic fields in bi-anisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1584-1585, 1998.        Google Scholar

128. Uslenghi, P. L., "TE-TM decoupling for guided propagation in bianisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 284-286, 1997.        Google Scholar

129. Durach, M. and A. Rusina, "Transforming Fabry-Perot resonances into a Tamm mode," Physical Review B, Vol. 86, No. 23, 235312, 2012.        Google Scholar

130. Keene, D. and M. Durach, "Hyperbolic resonances of metasurface cavities," Optics Express, Vol. 23, No. 14, 18577-18588, 2015.        Google Scholar

131. Keene, D., M. LePain, and M. Durach, "Ultimately thin metasurface wave plates," Annalen der Physik, Vol. 528, No. 11-12, 767-777, 2016.        Google Scholar

132. Berreman, D. W., "Optics in stratified and anisotropic media: 4×4-matrix formulation," JOSA, Vol. 62, No. 4, 502-510, 1972.        Google Scholar

133. Hodges, R., C. Dean, and M. Durach, "Optical neutrality: Invisibility without cloaking," Optics Letters, Vol. 42, No. 4, 691-694, 2017.        Google Scholar

134. D'yakonov, M. I., "New type of electromagnetic wave propagating at an interface," Sov. Phys. JETP, Vol. 67, No. 4, 714-716, 1988.        Google Scholar

135. Takayama, O., L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, "Dyakonov surface waves: A review," Electromagnetics, Vol. 28, No. 3, 126-145, 2008.        Google Scholar

136. Takayama, O., L. Crasovan, D. Artigas, and L. Torner, "Observation of Dyakonov surface waves," Physical Review Letters, Vol. 102, No. 4, 043903, 2009.        Google Scholar

137. Takayama, O., D. Artigas, and L. Torner, "Practical dyakonons," Optics Letters, Vol. 37, No. 20, 4311-4313, 2012.        Google Scholar

138. Polo, J., T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective, Newnes, 2013.