Vol. 175
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-08-09
Machine Learning-Assisted Sensing Techniques for Integrated Communications and Sensing in WLANs: Current Status and Future Directions (Invited)
By
Progress In Electromagnetics Research, Vol. 175, 45-79, 2022
Abstract
Sensing is a key basis for building an intelligent environment. Using channel state information (CSI) from the IEEE 802.11 physical layer in the wireless local access networks, the CSIbased device-free sensing technique has become very promising to the current sensing solutions because of its non-invasion of privacy, non-contact, easy deployment, and low cost. In recent years, the integrated communication and sensing (ICAS) technology has become one of the popular research topics in both wireless communications and computer areas. Given the fruitful advancements of ICAS, it is essential to review these advancements to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey of CSI-based sensing techniques. This study categorizes the surveyed works into model-based methods, data-based methods, and model-data hybrid-driven methods. Some important physical models and machine learning algorithms are also introduced. The sensing functions are classified into detection, estimation, and recognition according to specific application scenarios. Furthermore, future directions and challenges are discussed.
Citation
Siyuan Shao, Min Fan, Cheng Yu, Yan Li, Xiaodong Xu, and Haiming Wang, "Machine Learning-Assisted Sensing Techniques for Integrated Communications and Sensing in WLANs: Current Status and Future Directions (Invited)," Progress In Electromagnetics Research, Vol. 175, 45-79, 2022.
doi:10.2528/PIER22042903
References

1. You, X. H., C.-X. Wang, J. Huang, X. Q. Gao, Z. C. Zhang, M. Wang, Y. M. Huang, C. Zhang, Y. X. Jiang, J. H. Wang, et al. "Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts," Sci. China --- Inf. Sci., Vol. 64, No. 1, 1-74, 2021.        Google Scholar

2. HUAWEI Huawei Wi-Fi 6 (802.11ax) Technology White Paper, 2019.

3. Viswanath, S. K., C. Yuen, W. Tushar, W.-T. Li, C.-K.Wen, K. Hu, C. Chen, and X. Liu, "System design of the internet of things for residential smart grid," IEEE Wirel. Commun., Vol. 23, No. 5, 90-98, 2016.        Google Scholar

4. Pokhrel, S. R., H. L. Vu, and A. L. Cricenti, "Adaptive admission control for IoT applications in home WiFi networks," IEEE Trans. Mobile Comput., Vol. 19, No. 12, 2731-2742, 2019.        Google Scholar

5. Chen, Q. H. and Y.-H. Zhu, "Scheduling channel access based on target wake time mechanism in 802.11ax WLANs," IEEE Trans. Wireless Commun., Vol. 20, No. 3, 1529-1543, 2020.        Google Scholar

6. He, Y., Y. Chen, Y. Hu, and B. Zeng, "WiFi vision: Sensing, recognition, and detection with commodity MIMO-OFDM WiFi," IEEE Internet Things J., Vol. 7, No. 9, 8296-8317, 2020.        Google Scholar

7. Paul, B., A. R. Chiriyath, and D. W. Bliss, "Survey of RF communications and sensing convergence research," IEEE Access, Vol. 5, 252-270, 2016.        Google Scholar

8. Wang, Z. J., K. K. Jiang, Y. S. Hou, W. W. Dou, C. M. Zhang, Z. H. Huang, and Y. J. Guo, "A survey on human behavior recognition using channel state information," IEEE Access, Vol. 7, 155986-156024, 2019.        Google Scholar

9. Ma, Y. S., G. Zhou, and S. Q. Wang, "WiFi sensing with channel state information: A survey," ACM Comput. Surv., Vol. 52, No. 3, 1-36, 2019.        Google Scholar

10. Rochim, A. F., B. Harijadi, Y. P. Purbanugraha, S. Fuad, and K. A. Nugroho, "Performance comparison of wireless protocol IEEE 802.11ax vs 802.11ac," Proc. Int. Conf. Smart Technol. Appl. (ICoSTA), 1-5, 2020.        Google Scholar

11. Nurchis, M. and B. Bellalta, "Target wake time: Scheduled access in IEEE 802.11ax WLANs," IEEE Wirel. Commun., Vol. 26, No. 2, 142-150, 2019.        Google Scholar

12. Deng, D.-J., Y.-P. Lin, X. Yang, J. Zhu, Y.-B. Li, J. Luo, and K.-C. Chen, "IEEE 802.11ax: Highly efficient WLANs for intelligent information infrastructure," IEEE Commun. Mag., Vol. 55, No. 12, 52-59, 2017.        Google Scholar

13. Halperin, D., W. J. Hu, A. Sheth, and D. Wetherall, "Tool release: Gathering 802.11 n traces with channel state information," ACM SIGCOMM Comp. Commun. Rev., Vol. 41, No. 1, 53-53, 2011.        Google Scholar

14. Xie, Y. X., Z. J. Li, and M. Li, "Precise power delay profiling with commodity Wi-Fi," IEEE. Trans. Mob. Comput., Vol. 18, No. 6, 1342-1355, 2018.        Google Scholar

15. Adib, F. and D. Katabi, "See through walls with Wi-Fi!," Proc. ACM SIGCOMM Conf. SIGCOMM, 75-86, 2013.        Google Scholar

16. Wang, F., J. W. Feng, Y. L. Zhao, X. B. Zhang, S. Y. Zhang, and J. S. Han, "Joint activity recognition and indoor localization with Wi-Fi fingerprints," IEEE Access, Vol. 7, 80058-80068, 2019.        Google Scholar

17. Adib, F., Z. Kabelac, D. Katabi, and R. C. Miller, "3D tracking via body radio reflections," Proc. NSDI, 317-329, 2014.        Google Scholar

18. Cianca, E., D. S. Mauro, and D. D. Simone, "Radios as sensors," IEEE Internet Things J., Vol. 4, No. 2, 363-373, 2016.        Google Scholar

19. Adib, F., Z. Kabelac, and D. Katabi, "Multi-person localization via RF body reflections," Proc. 12th USENIX Conf. Netw. Syst. Des. Implementation, 279-292, 2015.        Google Scholar

20. Xiong, J., K. Sundaresan, and K. Jamieson, "ToneTrack: Leveraging frequency-agile radios for time-based indoor wireless localization," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 537-548, 2015.        Google Scholar

21. Li, X., D. Q. Zhang, Q. Lv, J. Xiong, S. J. Li, Y. Zhang, and H. Mei, "IndoTrack: Device-free indoor human tracking with commodity Wi-Fi," Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 3, 1-22, 2017.        Google Scholar

22. Zhang, F. S., D. Q. Zhang, J. Xiong, H. Wang, K. Niu, B. H. Jin, and Y. X. Wang, "From fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices," Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., Vol. 2, No. 1, 53, 2018.        Google Scholar

23. Zhang, D. Q., F. S. Zhang, D. Wu, J. Xiong, and K. Niu, "Fresnel zone based theories for contactless sensing," Contactless Hum. Activity Anal., 145-164, 2021.        Google Scholar

24. Qialn, K., C. S. Wu, Z. Yang, Y. H. Liu, and K. Jamieson, "Widar: Decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi," Proc. 18th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 1-10, 2017.        Google Scholar

25. Liu, X. F., J. N. Cao, S. J. Tang, and J. Q. Wen, "Wi-Sleep: Contactless sleep monitoring via Wi-Fi signals," Proc. IEEE Real-Time Syst. Symp., 346-355, 2014.        Google Scholar

26. Tian, L. P., L. Q. Chen, Z. M. Xu, and Z. Chen, "Wits: An efficient Wi-Fi based indoor positioning and tracking system," Remote Sens., Vol. 14, No. 1, 19, 2022.        Google Scholar

27. Bahadori, N., J. Ashdown, and F. Restuccia, "ReWiS: Reliable Wi-Fi sensing through few-shot multi-antenna multi-receiver CSI learning," arXiv preprint arXiv:2201.00869, 2022.        Google Scholar

28. Cortes, C. and V. Vapnik, "Support-vector networks," Mach. Learn., Vol. 20, No. 3, 273-297, 1995.        Google Scholar

29. Cover, T. and P. Hart, "Nearest neighbor pattern classification," IEEE Trans. Inf. Theory, Vol. 13, No. 1, 21-27, 1967.        Google Scholar

30. Quinlan, J. R., "Induction of decision trees," Mach. Learn., Vol. 1, No. 1, 81-106, 1986.        Google Scholar

31. Quinlan, J. R., C4. 5: Programs for Machine Learning, Elsevier, 2014.

32. Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Routledge, 2017.

33. Breiman, L., "Random forests," Mach. Learn., Vol. 45, No. 1, 5-32, 2001.        Google Scholar

34. Baum, L. E., T. Petrie, G. Soules, and N. Weiss, "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains," The Annals of Mathematical Statistics, Vol. 41, No. 1, 164-171, 1970.        Google Scholar

35. Hinton, G. E. and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, Vol. 313, No. 5786, 504-507, 2006.        Google Scholar

36. He, K. M., X. Y. Zhang, S. Q. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 770-778, 2016.        Google Scholar

37. LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, "Backpropagation applied to handwritten zip code recognition," Neural Comput., Vol. 1, No. 4, 541-551, 1989.        Google Scholar

38. Hopfield, J. J., "Neural networks and physical systems with emergent collective computational abilities," Proc. Natl. Acad. Sci., Vol. 79, No. 8, 2554-2558, 1982.        Google Scholar

39. Hochreiter, S. and J. Schmidhuber, "Long short-term memory," Neural Comput., Vol. 9, No. 8, 1735-1780, 1997.        Google Scholar

40. Yang, Y. N., J. N. Cao, X. L. Liu, and X. F. Liu, "Door-monitor: Counting in-and-out visitors with COTS Wi-Fi devices," IEEE Internet Things J., Vol. 7, No. 3, 1704-1717, 2019.        Google Scholar

41. Yadav, S. K., S. Sai, A. Gundewar, H. Rathore, K. Tiwari, H. M. Pandey, and M. Mathur, "CSITime: Privacy-preserving human activity recognition using Wi-Fi channel state information," Neural Netw., Vol. 146, 11-21, 2022.        Google Scholar

42. Yang, J. F., X. Y. Chen, H. Zou, D. Z. Wang, Q. W. Xu, and L. H. Xie, "EfficientFi: Towards large-scale lightweight Wi-Fi sensing via CSI compression," IEEE Internet Things J., 2022.        Google Scholar

43. Shi, Z. G., J. Zhang, R. Y. D. Xu, and Q. Q. Cheng, "Environment-robust device-free human activity recognition with channel-state-information enhancement and one-shot learning," IEEE. Trans. Mob. Comput., Vol. 21, No. 2, 540-554, 2020.        Google Scholar

44. Ma, Y. S., G. Zhou, S. Q. Wang, H. Y. Zhao, and W. Jung, "SignFi: Sign language recognition using Wi-Fi," Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., Vol. 2, No. 1, 1-21, 2018.        Google Scholar

45. Wang, F. X., W. Gong, and J. C. Liu, "On spatial diversity in Wi-Fi-based human activity recognition: A deep learning-based approach," IEEE Internet Things J., Vol. 6, No. 2, 2035-2047, 2018.        Google Scholar

46. Zhou, R., Z. Y. Gong, X. Lu, and Y. Fu, "WiFlowCount: Device-free people flow counting by exploiting Doppler effect in commodity Wi-Fi," IEEE Syst. J., Vol. 14, No. 4, 4919-4930, 2020.        Google Scholar

47. Qian, K., C. S. Wu, Z. Yang, Y. H. Liu, and Z. M. Zhou, "PADS: Passive detection of moving targets with dynamic speed using PHY layer information," Proc. IEEE ICPADS, 1-8, 2014.        Google Scholar

48. Xiao, J., K. S.Wu, Y. W. Yi, L.Wang, and L. M. Ni, "Pilot: Passive device-free indoor localization using channel state information," Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst. (ICDCS), 236-245, 2013.        Google Scholar

49. Zhu, H., F. Xiao, L. J. Sun, R. C. Wang, and P. L. Yang, "R-TTWD: Robust device-free through-the-wall detection of moving human with Wi-Fi," IEEE J. Sel. Areas Commun., Vol. 35, No. 5, 1090-1103, 2017.        Google Scholar

50. Zhang, F., C. Chen, B. B. Wang, H. -Q. Lai, Y. Han, and K. J. R. Liu, "Widetect: A robust and low-complexity wireless motion detector," IEEE ICASSP, 6398-6402, 2018.        Google Scholar

51. Zhou, Z. M., Z. Yang, C. S. Wu, L. F. Shangguan, and Y. H. Liu, "Towards omnidirectional passive human detection," Proc. IEEE INFOCOM, 3057-3065, 2013.        Google Scholar

52. Wu, C. S., Z. Yang, Z. M. Zhou, X. F. Liu, Y. H. Liu, and J. N. Cao, "Non-invasive detection of moving and stationary human with Wi-Fi," IEEE J. Sel. Areas Commun., Vol. 33, No. 11, 2329-2342, 2015.        Google Scholar

53. Zhang, F., C. Chen, B. B. Wang, and K. J. R. Liu, "WiSpeed: A statistical electromagnetic approach for device-free indoor speed estimation," IEEE Internet Things J., Vol. 5, No. 3, 2163-2177, 2018.        Google Scholar

54. Zheng, X. L., J. L. Wang, L. F. Shangguan, Z. M. Zhou, and Y. H. Liu, "Smokey: Ubiquitous smoking detection with commercial Wi-Fi infrastructures," Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), 1-9, 2016.        Google Scholar

55. Wu, C. S., Z. Yang, Z. M. Zhou, K. Qian, Y. H. Liu, and M. Y. Liu, "PhaseU: Real-time LOS identification with Wi-Fi," Proc. IEEE INFOCOM, 2038-2046, 2015.        Google Scholar

56. Zhou, Z. M., Z. Yang, C. S. Wu, W. Sun, and Y. H. Liu, "LiFi: Line-of-sight identification with WiFi," IEEE INFOCOM, 2688-2696, 2014.        Google Scholar

57. Wu, D., D. Q. Zhang, C. R. Xu, Y. S. Wang, and H. Wang, "WiDir: Walking direction estimation using wireless signals," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 351-362, 2016.        Google Scholar

58. Xi, W., J. Z. Zhao, X. Y. Li, K. Zhao, S. J. Tang, X. Liu, and Z. P. Jiang, "Electronic frog eye: Counting crowd using Wi-Fi," IEEE INFOCOM 2014, 361-369, 2014.        Google Scholar

59. Depatla, S., A. Muralidharan, and Y. Mostofi, "Occupancy estimation using only Wi-Fi power measurements," IEEE J. Sel. Areas Commun., Vol. 33, No. 7, 1381-1393, 2015.        Google Scholar

60. Yang, Y. N., J. N. Cao, X. F. Liu, and X. L. Liu, "Wi-Count: Passing people counting with COTS Wi-Fi devices," Proc. 27th Int. Conf. Comput. Commun. Netw. (ICCCN), 1-9, 2018.        Google Scholar

61. Qian, K., C. S. Wu, Y. Zhang, G. D. Zhang, Z. Yang, and Y. H. Liu, "Widar2. 0: Passive human tracking with a single Wi-Fi link," Proc. 16th Annu. Int. Conf. Mobile Syst. Appl. Services, 350-361, 2018.        Google Scholar

62. Poudel, K. N., D. Schurig, and N. Patwari, "Spatial imaging using a communication system's channel state information," Proc. USNC-URSI Radio Sci. Meeting, 41-42, 2016.        Google Scholar

63. Vakalis, S., L. Gong, and N. A. Jeffrey, "Imaging with Wi-Fi," IEEE Access, Vol. 34, 28616-28624, 2019.        Google Scholar

64. Wang, X. Y., C. Yang, and S. W. Mao, "PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity Wi-Fi devices," Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), 1230-1239, 2017.        Google Scholar

65. Zeng, Y. W., D. Wu, J. Xiong, E. Yi, R. Y. Gao, and D. Q. Zhang, "FarSense: Pushing the range limit of Wi-Fi-based respiration sensing with CSI ratio of two antennas," Proc. ACM Interact. Mobile Wearable Ubiquitous Technol., Vol. 3, No. 3, 1-26, 2019.        Google Scholar

66. Wang, L., K. Sun, H. P. Dai, W. Wang, K. Huang, A. X. Liu, X. Y. Wang, and Q. Gu, "WiTrace: Centimeter-level passive gesture tracking using OFDM signals," IEEE. Trans. Mob. Comput., Vol. 20, No. 4, 1730-1745, 2019.        Google Scholar

67. Sun, L., S. Sen, D. Koutsonikolas, and K.-H. Kim, "Widraw: Enabling hands-free drawing in the air on commodity Wi-Fi devices," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 77-89, 2015.        Google Scholar

68. Qian, K., C. S. Wu, Z. M. Zhou, Y. Zheng, Z. Yang, and Y. H. Liu, "Inferring motion direction using commodity wi-fi for interactive exergames," Proc. CHI Conf. Human Factors Comput. Syst. (CHI), 1961-1972, 2017.        Google Scholar

69. Wang, Y. X., K. S. Wu, and L. M. Ni, "Wifall: Device-free fall detection by wireless networks," IEEE. Trans. Mob. Comput., Vol. 16, No. 2, 581-594, 2016.        Google Scholar

70. Simone, D. D., D. S. Mauro, and C. Ernestina, B. Giuseppe, "A trained-once crowd counting method using differential Wi-Fi channel state information," Proc. 3rd Int. Workshop Phys. Analytics, 37-42, 2016.        Google Scholar

71. Liu, S. Q., Y. C. Zhao, and B. Chen, "WiCount: A deep learning approach for crowd counting using Wi-Fi signals," Proc. IEEE Int. Symp. Parallel Distrib. Process. Appl. IEEE Int. Conf. Ubiquitous Comput. Commun. (ISPA/IUCC), 967-974, 2017.        Google Scholar

72. Sharma, A., J. Y. Li, D. Mishra, G. Batista, and A. Seneviratne, "Passive Wi-Fi CSI sensing based machine learning framework for COVID-Safe occupancy monitoring," IEEE ICC, 1-6, 2021.        Google Scholar

73. Gao, Q. H., J. Wang, X. R. Ma, X. Y. Feng, and H. Y. Wang, "CSI-based device-free wireless localization and activity recognition using radio image features," IEEE Trans. Veh. Technol., Vol. 66, No. 11, 10346-10356, 2017.        Google Scholar

74. Zhao, Z. Z., Z. Y. Lou, R. B.Wang, Q. Y. Li, and X. Xu, "I-WKNN: Fast-speed and high-accuracy WI-FI positioning for intelligent sports stadiums," Comput. Electr. Eng., Vol. 98, 107619, 202.        Google Scholar

75. Ali, K., A. X. Liu, W. Wang, and M. Shahzad, "Recognizing keystrokes using Wi-Fi devices," IEEE J. Sel. Areas Commun., Vol. 35, No. 5, 1175-1190, 2017.        Google Scholar

76. Ali, K., A. X. Liu, W. Wang, and M. Shahzad, "Keystroke recognition using Wi-Fi signals," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 90-102, 2015.        Google Scholar

77. Zhang, J., B. Wei, W. Hu, and S. S. Kanhere, "Wi-Fi-id: Human identification using Wi-Fi signal," Proc. Int. Conf. Distrib. Comput. Sensor Syst., 75-82, 2016.        Google Scholar

78. Xin, T., B. Guo, Z. Wang, M. Y. Li, Z. W. Yu, and X. S. Zhou, "Freesense: Indoor human identification with Wi-Fi signals," Proc. IEEE Global Commun. Conf. (GLOBECOM), 1-7, 2016.        Google Scholar

79. Abdelnasser, H., M. Youssef, and K. A. Harras, "Wigest: A ubiquitous Wi-Fi-based gesture recognition system," Proc. IEEE Conf. Comput. Commun. (INFOCOM), 1472-1480, 2015.        Google Scholar

80. Melgarejo, P., X. Y. Zhang, P. Ramanathan, and D. Chu, "Leveraging directional antenna capabilities for fine-grained gesture recognition," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 541-551, 2014.        Google Scholar

81. He, W. F., K. S. Wu, Y. P. Zou, and Z. Ming, "WiG: WiFi-based gesture recognition system," 24th Int. Conf. on Computer Commun. and Networks (ICCCN), 1-7, 2015.        Google Scholar

82. Wang, W., A. X. Liu, M. Shahzad, K. Ling, and S. L. Lu, "Device-free human activity recognition using commercial Wi-Fi devices," IEEE J. Sel. Areas Commun., Vol. 35, No. 5, 1118-1131, 2017.        Google Scholar

83. Arshad, S., C. H. Feng, Y. H. Liu, Y. P. Hu, R. Y. Yu, S. W. Zhou, and H. Li, "Wi-chase: A Wi-Fi based human activity recognition system for sensorless environments," Proc. IEEE 18th Int. Symp. World Wireless Mobile Multimedia Netw. (WoWMoM), 1-6, 2017.        Google Scholar

84. Wang, Y., J. Liu, Y. Y. Chen, M. Gruteser, J. Yang, and H. B. Liu, "E-eyes: Device-free location-oriented activity identification using fine-grained Wi-Fi signatures," Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 617-628, 2014.        Google Scholar

85. Chen, Z. H., L. Zhang, C. Y. Jiang, Z. G. Cao, and W. Cui, "Wi-Fi CSI based passive human activity recognition using attention based BLSTM," IEEE. Trans. Mob. Comput., Vol. 18, No. 11, 2714-2724, 2018.        Google Scholar

86. Yan, H., Y. Zhang, Y. J. Wang, and K. L. Xu, "WiAct: A passive Wi-Fi-based human activity recognition system," IEEE Sens. J., Vol. 20, No. 1, 296-305, 2019.        Google Scholar

87. Yousefi, S., H. Narui, S. Dayal, S. Ermon, and S. Valaee, "A survey on behavior recognition using Wi-Fi channel state information," IEEE Commun. Mag., Vol. 55, No. 10, 98-104, 2017.        Google Scholar

88. Li, H. J., X. He, X. K. Chen, Y. Y. Fang, and Q. Fang, "Wi-Motion: A robust human activity recognition using Wi-Fi signals," IEEE Access, Vol. 7, 153287-153299, 2019.        Google Scholar

89. Xiao, F., J. Chen, X. H. Xie, L. Q. Gui, L. J. Sun, and R. C. Wang, "SEARE: A system for exercise activity recognition and quality evaluation based on green sensing," IEEE Trans. Emerg. Top. Comput., Vol. 8, No. 3, 752-761, 2018.        Google Scholar

90. Wang, W., A. X. Liu, M. Shahzad, K. Ling, and S. L. Lu, "Understanding and modeling of Wi-Fi signal based human activity recognition," Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 65-76, 2015.        Google Scholar

91. Hu, Y. Q., F. Zhang, C. S. Wu, B. B. Wang, and K. J. R. Liu, "DeFall: Environment-independent passive fall detection using Wi-Fi," IEEE Internet Things J., Vol. 9, No. 11, 8515-8530, 2021.        Google Scholar

92. Wang, H., D. Q. Zhang, Y. S. Wang, J. Y. Ma, Y. X. Wang, and S. J. Li, "RT-Fall: A real-time and contactless fall detection system with commodity Wi-Fi devices," IEEE. Trans. Mob. Comput., Vol. 16, No. 2, 511-526, 2016.        Google Scholar

93. Chen, C., Y. Han, Y. Chen, H. Q. Lai, F. Zhang, B. B. Wang, and K. J. R. Liu, "TR-BREATH: Time-reversal breathing rate estimation and detection," IEEE Trans. Biomed. Eng., Vol. 65, No. 3, 489-501, 2017.        Google Scholar

94. Guo, X. N., B. Liu, C. Shi, H. B. Liu, Y. Y. Chen, and M. C. Chuah, "Wi-Fi-enabled smart human dynamics monitoring," Proc. 15th ACM Conf. Embedded Netw. Sensor Syst. (SenSys), 1-13, 2017.        Google Scholar

95. Feng, C. H., S. Arshad, and Y. H. Liu, "Mais: Multiple activity identification system using channel state information of Wi-Fi signals," Proc. 12th Int. Conf. Wireless Algorithms Syst. Appl. (WASA), 419-432, 2017.        Google Scholar

96. Liu, X. F., J. N. Cao, S. J. Tang, J. Q. Wen, and P. Guo, "Contactless respiration monitoring via off-the-shelf Wi-Fi devices," IEEE. Trans. Mob. Comput., Vol. 15, No. 10, 2466-2479, 2015.        Google Scholar

97. Zeng, Y. Z., P. H. Pathak, and P. Mohapatra, "WiWho: Wi-Fi-based person identification in smart spaces," Proc. 15th Int. Conf. Inf. Process. Sensor Netw., 1-12, 2016.        Google Scholar

98. Wang, W., A. X. Liu, and M. Shahzad, "Gait recognition using Wi-Fi signals," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput. (UbiComp), 363-373, 2016.        Google Scholar

99. Gu, Y., X. Zhang, Z. Liu, and F. J. Ren, "BeSense: Leveraging Wi-Fi channel data and computational intelligence for behavior analysis," IEEE Comput. Intell. Mag., Vol. 14, No. 4, 31-41, 2019.        Google Scholar

100. Tan, S. and J. Yang, "Wi-Finger: Leveraging commodity Wi-Fi for fine-grained finger gesture recognition," Proc. 17th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 201-210, 2016.        Google Scholar

101. Li, H., W. Yang, J. X. Wang, Y. Xu, and L. S. Huang, "Wi-Finger: Talk to your smart devices with finger-grained gesture," Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 250-261, 2016.        Google Scholar

102. Wang, G. H., Y. P. Zou, Z. M. Zhou, K. S. Wu, and L. M. Ni, "We can hear you with Wi-Fi!," IEEE. Trans. Mob. Comput., Vol. 15, No. 11, 2907-2920, 2016.        Google Scholar

103. Li, S. J., X. Li, Q. Lv, G. Y. Tian, and D. Q. Zhang, "Wi-Fit: Ubiquitous bodyweight exercise monitoring with commodity wi-fi devices," Proc. IEEE SmartWorld, Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput. Commun., Cloud Big Data Comput., Internet People Smart City Innov. (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 530-537, 201.        Google Scholar

104. Wright, J., A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 31, No. 2, 210-227, 2009.        Google Scholar

105. Rao, B. D. and K. V. S. Hari, "Performance analysis of Root-Music," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, No. 12, 1939-1949, 1989.        Google Scholar

106. Hyvärinen, A. and E. Oja, "Independent component analysis: Algorithms and applications," Neural Netw., Vol. 13, No. 4-5, 411-430, 2000.        Google Scholar

107. Miyazaki, M., S. Ishida, A. Fukuda, T. Murakami, and S. Otsuki, "Initial attempt on outdoor human detection using IEEE 802.11ac WLAN signal," Proc. IEEE Sensors Appl. Symp. (SAS), 1-6, 2019.        Google Scholar

108. Takahashi, R., S. Ishida, A. Fukuda, T. Murakami, and S. Otsuki, "DNN-based outdoor NLOS human detection using IEEE 802.11ac WLAN signal," Proc. IEEE Sensors, 1-4, 2019.        Google Scholar

109. Geng, C. H., X. Yuan, and H. Huang, "Exploiting channel correlations for NLOS ToA localization with multivariate Gaussian mixture models," IEEE Wirel. Commun. Lett., Vol. 9, No. 1, 70-73, 2020.        Google Scholar

110. He, J. H. M., S. Terashima, H. Yamada, and S. Kidera, "Diffraction signal-based human recognition in Non-Line-of-Sight (NLOS) situation for millimeter wave radar," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., Vol. 14, 4370-4380, 2021.        Google Scholar

111. Wei, J. S., S. J. Wei, X. Y. Liu, M. Wang, J. Shi, and X. L. Zhang, "Non-Line-Of-Sight imaging by millimeter wave radar," Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2983-2986, 2021.        Google Scholar

112. Huang, B. Q., G. Q. Mao, Y. Qin, and Y. Wei, "Pedestrian flow estimaton through passive wifi sensing," IEEE. Trans. Mob. Comput., Vol. 20, No. 4, 1529-1542, 2019.        Google Scholar

113. Trivedi, A., C. Zakaria, R. Balan, A. Becker, G. Corey, and P. Shenoy, "Wifitrace: Network-based contact tracing for infectious diseases using passive wifi sensing," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 5, No. 1, 1-26, 2021.        Google Scholar

114. Mammen, P. M., C. Zakaria, T. Molom-Ochir, A. Trivedi, P. Shenoy, and R. Balan, "WiSleep: Scalable sleep monitoring and analytics using passive WiFi sensing," arXiv preprint arXiv:2102.03690, 2021.        Google Scholar

115. Huang, Y. X., Q. Luo, S. Y. Ma, S. Hu, and Y. Gao, "Constant envelope OFDM RadCom system," Proceedings of the International Conference on Communications, Signal Processing, and Systems, 896-904, 2017.        Google Scholar

116. Shi, C. G., F. Wang, M. Sellathurai, J. J. Zhou, and S. Salous, "Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence," IEEE Trans. Signal Process., Vol. 66, No. 5, 1316-1330, 2018.        Google Scholar

117. Keskin, M. F., V. Koivunen, and H. Wymeersch, "Limited feedforward waveform design for OFDM dual-functional radar-communications," IEEE Trans. Signal Process., Vol. 69, 2955-2970, 2021.        Google Scholar

118. Kumbul, U., N. Petrov, F. van der Zwan, C. S. Vaucher, and A. Yarovoy, "Experimental investigation of phase coded FMCW for sensing and communications," 15 th European Conference on Antennas and Propagation (EuCAP), 1-5, 2021.        Google Scholar

119. Uysal, F., "Phase-coded FMCW automotive radar: System design and interference mitigation," IEEE Trans. Veh. Technol., Vol. 69, No. 1, 270-281, 2020.        Google Scholar

120. McCormick, P. M., C. Sahin, S. D. Blunt, and J. G. Metcalf, "FMCW implementation of Phase-Attached Radar-Communications (PARC)," IEEE Radar Conference (RadarConf), 1-6, 2019.        Google Scholar

121. Chen, K., H. X. Zhang, Z. Y. Xu, and S. L. Pan, "FMCW lidar with communication capability using phase-diversity coherent detection," Proc. 24th Optoelectron. Commun. Conf. (OECC) Int. Conf. Photon. Switching Comput. (PSC), 1-3, 2019.        Google Scholar

122. Barrenechea, P., F. Elferink, and J. Janssen, "FMCW radar with broadband communication capability," Proc. Eur. Radar Conf., 130-133, 2007.        Google Scholar

123. Hadani, R., S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, "Orthogonal time frequency space modulation," Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 1-6, 2017.        Google Scholar

124. Wei, Z. Q., W. J. Yuan, S. Y. Li, J. H. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, "Orthogonal time-frequency space modulation: A promising next-generation waveform," IEEE Wirel. Commun., Vol. 28, No. 4, 136-144, 2021.        Google Scholar

125. Gaudio, L., M. Kobayashi, B. Bissinger, and G. Caire, "Performance analysis of joint radar and communication using OFDM and OTFS," Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 1-6, 2019.        Google Scholar

126. Wild, T., V. Braun, and H. Viswanathan, "Joint design of communication and sensing for beyond 5G and 6G systems," IEEE Access, Vol. 9, 30845-30857, 2021.        Google Scholar

127. Cui, Y. H., X. J. Jing, and J. S. Mu, "Integrated sensing and communications via 5G NR waveform: Performance analysis," Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 8747-8751, 2022.        Google Scholar

128. Liu, F., Y. H. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, "Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond," IEEE J. Sel. Areas Commun., Vol. 40, No. 6, 1728-1767, 2022.        Google Scholar

129. Liu, F., W. J. Yuan, C. Masouros, and J. H. Yuan, "Radar-assisted predictive beamforming for vehicular links: Communication served by sensing," IEEE Trans. Wirel. Commun., Vol. 19, No. 11, 7704-7719, 2020.        Google Scholar

130. Yuan, W. J., F. Liu, C. Masouros, J. H. Yuan, D. W. K. Ng, and N. González-Prelcic, "Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach," IEEE Trans. Wirel. Commun., Vol. 20, No. 3, 1442-1456, 2021.        Google Scholar

131. Liu, C., W. J. Yuan, S. Y. Li, X. M. Liu, H. S. Li, D. W. K. Ng, and Y. H. Li, "Learning-based predictive beamforming for integrated sensing and communication in vehicular networks," IEEE J. Sel. Areas Commun., Vol. 40, No. 8, 2317-2334, 2022.        Google Scholar

132. Mu, J. S., Y. Gong, F. P. Zhang, Y. H. Cui, F. Zheng, and X. J. Jing, "Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks," IEEE Commun. Lett., Vol. 25, No. 10, 3301-3304, 2021.        Google Scholar

133. Wang, X. Y., Z. S. Fei, J. A. Zhang, and J. X. Huang, "Sensing-assisted secure uplink communications with full-duplex base station," IEEE Commun. Lett., Vol. 26, No. 2, 249-253, 2022.        Google Scholar

134. Mei, W. D. and R. Zhang, "UAV-sensing-assisted cellular interference coordination: A cognitive radio approach," IEEE Wirel. Commun. Lett., Vol. 9, No. 6, 799-803, 2020.        Google Scholar