Vol. 176
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-10-31
Optically Transparent and Mechanically Flexible Coplanar Waveguide-Fed Wideband Antenna Based on Sub-Micron Thick Micro-Metallic Meshes
By
Progress In Electromagnetics Research, Vol. 176, 11-23, 2023
Abstract
An optically transparent and flexible coplanar waveguide (CPW)-fed wideband antenna is proposed and demonstrated experimentally based on sub-micron thick micro-metallic meshes (μ-MMs). Due to the high visible transmittance (83.1%) and low sheet resistance (1.75 Ω/sq) of the silver μ-MM with thickness of only 190 nm, the transparent CPW has very low insertion loss and provides a good feed to the high-performance transparent antenna. The measured S11 spectrum of our antenna matches well with that of the opaque counterpart. The measured fractional bandwidth is 22% from 3.4 to 4.25 GHz. Based on numerical modeling, whose accuracy is experimentally verified, the radiation efficiency and the peak gain of our transparent antenna at 3.45 GHz are calculated to be 89.7% and 3.03 dBi, respectively. Besides the good optical and electromagnetic properties, our transparent antenna is also highly flexible. Despite the sub-micron thick μ-MMs, the transparency, radiation efficiency and mechanical properties of our transparent antenna are obviously superior to those of the transparent antennas reported previously, and the overall size and radiation gain are also comparable. Therefore, our transparent antenna has an excellent comprehensive performance, showing great potential for practical applications as well as the emerging applications in the field of flexible and wearable electronics.
Citation
Jing Pan Yuanqing Yao Liu Yang Hui Li Sailing He , "Optically Transparent and Mechanically Flexible Coplanar Waveguide-Fed Wideband Antenna Based on Sub-Micron Thick Micro-Metallic Meshes," Progress In Electromagnetics Research, Vol. 176, 11-23, 2023.
doi:10.2528/PIER22091503
http://www.jpier.org/PIER/pier.php?paper=22091503
References

1. Simons, R. N. and R. Q. Lee, "Feasibility study of optically transparent microstrip patch antenna," IEEE Antennas and Propagation Society International Symposium, Montreal, Quebec, Canada, Jul. 13-18, 1997.

2. Syed Feroze Hussain, S. and D. Thiripurasundari, "A review on optically transparent antenna fabricated with conductive nano-material oxides," J. Electron. Mater., Sep. 2022, https://doi.org/10.1007/s11664-022-09916-w.

3. Sayem, A. S. M., A. Lalbakhsh, K. P. Esselle, J. L. Buckley, B. O'Flynn, and R. B. V. B. Simorangkir, "Flexible transparent antennas: Advancements, challenges, and prospects," IEEE Open J. Antennas Propag., Vol. 3, 1109-1133, Sep. 2022.
doi:10.1109/OJAP.2022.3206909

4. Lee, S. Y., M. Choo, S. Jung, and W. Hong, "Optically transparent nano-patterned antennas: A review and future directions," Appl. Sci. --- Basel, Vol. 8, No. 6, 901, May 2018.
doi:10.3390/app8060901

5. Thampy, A. S. and S. K. Dhamodharan, "Performance analysis and comparison of ITO- and FTO-based optically transparent terahertz U-shaped patch antennas," Physica E, Vol. 66, 52-58, Feb. 2015.
doi:10.1016/j.physe.2014.09.016

6. So, K. K., B.-J. Chen, and C. H. Chan, "Microwave and millimeter-wave MIMO antenna using conductive ITO film," IEEE Access, Vol. 8, 207024-207033, Nov. 2020.

7. Potti, D., Y. Tusharika, M. G. N. Alsath, S. Kirubaveni, M. Kanagasabai, R. Sankararajan, S. Narendhiran, and P. Balagi Bhargav, "A novel optically transparent UWB antenna for automotive MIMO communications," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3821-3828, Jul. 2021.
doi:10.1109/TAP.2020.3044383

8. Green, R. B., M. Guzman, N. Izyumskaya, B. Ullah, S. Hia, J. Pitchford, R. Timsina, V. Avrutin, Ü. Özgür, H. Morkoç, N. Dhar, and E. Topsakal, "Optically transparent antennas and filters," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 37-47, Jun. 2019.
doi:10.1109/MAP.2019.2907895

9. Cairns, D. R., R. P. Witte II, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, "Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates," Appl. Phys. Lett., Vol. 76, No. 11, 1425-1427, Mar. 2000.
doi:10.1063/1.126052

10. Colombel, F., X. Castel, M. Himdi, G. Legeay, S. Vigneron, and E. M. Cruz, "Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna," IET Sci. Meas. Technol., Vol. 3, No. 3, 229-234, May 2009.
doi:10.1049/iet-smt:20080060

11. Hong, S., Y. Kim, and C. W. Jung, "Transparent microstrip patch antennas with multilayer and metal-mesh films," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 772-775, 2017.
doi:10.1109/LAWP.2016.2602389

12. Zarbakhsh, S., M. Akbari, M. Farahani, A. Ghayekhloo, T. A. Denidni, and A.-R. Sebak, "Optically transparent subarray antenna based on solar panel for CubeSat application," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 319-328, Jan. 2020.
doi:10.1109/TAP.2019.2938740

13. Peter, T., R. Nilavalan, H. F. AbuTarboush, and S. W. Cheung, "A novel technique and soldering method to improve performance of transparent polymer antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 918-921, 2010.
doi:10.1109/LAWP.2010.2077271

14. Hakimi, S., S. K. A. Rahim, M. Abedian, S. M. Noghabaei, and M. Khalily, "CPW-fed transparent antenna for extended ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1251-1254, 2014.
doi:10.1109/LAWP.2014.2333091

15. Malek, M. A., S. Hakimi, S. K. A. Rahim, and A. K. Evizal, "Dual-band CPW-fed transparent antenna for active RFID tags," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 919-922, 2015.
doi:10.1109/LAWP.2014.2387157

16. Kirsch, N. J., N. A. Vacirca, E. E. Plowman, T. P. Kurzweg, A. K. Fontecchio, and K. R. Dandekar, "Optically transparent conductive polymer RFID meandering dipole antenna," IEEE International Conference on RFID, Orlando, FL, USA, Apr. 30-May 2, 2013.

17. Rmili, H., J. L. Miane, H. Zangar, and T. Olinga, "Design of microstrip-fed proximity-coupled conducting-polymer patch antenna," Microw. Opt. Technol. Lett., Vol. 48, No. 4, 655-660, Apr. 2006.
doi:10.1002/mop.21435

18. Yin, M., L. Wu, H. Chen, X. Zhang, W. Wang, and Z. Liu, "Transparent UHF RFID tags based on CVD-grown graphene films," Nanotechnology, Vol. 33, No. 50, 505501, Oct. 2022.
doi:10.1088/1361-6528/ac8e74

19. Kosuga, S., S. Nagata, S. Kuromatsu, R. Suga, T.Watanabe, O. Hashimoto, and S. Koh, "Optically transparent antenna based on carrier-doped three-layer stacked graphene," AIP Adv., Vol. 11, No. 3, 035136, Mar. 2021.
doi:10.1063/5.0037907

20. Kosuga, S., R. Suga, O. Hashimoto, and S. Koh, "Graphene-based optically transparent dipole antenna," Appl. Phys. Lett., Vol. 110, No. 23, 233102, Jun. 2017.
doi:10.1063/1.4984956

21. Raji, A.-R. O., S. Salters, E. L. G. Samuel, Y. Zhu, V. Volman, and J. M. Tour, "Functionalized graphene nanoribbon films as a radiofrequency and optically transparent material," ACS Appl. Mater. Interfaces, Vol. 6, No. 19, 16661-16668, Sep. 2014.
doi:10.1021/am503478w

22. Sadat, S., M. Shokooh-Saremi, M. M. Mirsalehi, and M.-M. Bagheri-Mohagheghi, "Electromagnetic characterisation of multi-wall carbon nanotube-doped fluorine tin oxide for transparent antenna applications," IET Microw. Antennas Propag., Vol. 13, No. 6, 859-863, Mar. 2019.
doi:10.1049/iet-map.2018.5877

23. Goliya, Y., A. Rivadeneyra, J. F. Salmeron, A. Albrecht, J. Mock, M. Haider, J. Russer, B. Cruz, P. Eschlwech, E. Biebl, M. Becherer, and M. R. Bobinger, "Next generation antennas based on screen-printed and transparent silver nanowire films," Adv. Opt. Mater., Vol. 7, No. 21, 1900995, Aug. 2019.
doi:10.1002/adom.201900995

24. Kim, B. S., K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, "Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks," ACS Appl. Mater. Interfaces, Vol. 8, No. 4, 2582-2590, Jan. 2016.
doi:10.1021/acsami.5b10317

25. Song, L., A. C. Myers, J. J. Adams, and Y. Zhu, "Stretchable and reversibly deformable radio frequency antennas based on silver nanowires," ACS Appl. Mater. Interfaces, Vol. 6, No. 6, 4248-4253, Mar. 2014.
doi:10.1021/am405972e

26. Rai, T., P. Dantes, B.Bahreyni, and W. S. Kim, "A stretchable RF antenna with silver nanowires," IEEE Electron Device Lett., Vol. 34, No. 4, 544-546, Apr. 2013.
doi:10.1109/LED.2013.2245626

27. Komoda, N., M. Nogi, K. Suganuma, K. Kohno, Y. Akiyama, and K. Otsuka, "Printed silver nanowire antennas with low signal loss at high-frequency radio," Nanoscale, Vol. 4, No. 10, 3148-3153, Mar. 2012.
doi:10.1039/c2nr30485f

28. Sayem, A. S. M., R. Simorangkir, K. P. Esselle, and R. M. Hashmi, "Development of robust transparent conformal antennas based on conductive mesh-polymer composite for unobtrusive wearable applications," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7216-7224, Dec. 2019.
doi:10.1109/TAP.2019.2930116

29. Sayem, A. S. M., K. P. Esselle, R. M. Hashmi, and H. Liu, "Experimental studies of the robustness of the conductive-mesh-polymer composite towards the development of conformal and transparent antennas," Smart Mater. Struct., Vol. 29, No. 8, 085015, Aug. 2020.
doi:10.1088/1361-665X/ab92df

30. Kang, S. H. and C. W. Jung, "Transparent patch antenna using metal mesh," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2095-2100, Apr. 2018.
doi:10.1109/TAP.2018.2804622

31. Hautcoeur, J., F. Colombel, M. Himdi, X. Castel, and E. M. Cruz, "Large and optically transparent multilayer for broadband H-shaped slot antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 933-936, 2013.
doi:10.1109/LAWP.2013.2274033

32. Hautcoeur, J., L. Talbi, and K. Hettak, "Feasibility study of optically transparent CPW-fed monopole antenna at 60-GHz ISM bands," IEEE Trans. Antennas Propag., Vol. 61, 1651-1657, Apr. 2013.
doi:10.1109/TAP.2012.2232265

33. Li, Q. L., S. W. Cheung, D. Wu, and T. I. Yuk, "Optically transparent dual-band MIMO antenna using micro-metal mesh conductive film for WLAN system," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 920-923, 2017.
doi:10.1109/LAWP.2016.2614577

34. Ding, C., L. Liu, and K.-M. Luk, "An optically transparent dual-polarized stacked patch antenna with metal-mesh films," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 1981-1985, Oct. 2019.
doi:10.1109/LAWP.2019.2935694

35. Zhang, Y., S. Shen, C. Chiu, and R. Murch, "Hybrid RF-solar energy harvesting systems utilizing transparent multiport micromeshed antennas," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 11, 4534-4546, Nov. 2019.
doi:10.1109/TMTT.2019.2930507

36. Tung, P. D. and C. W. Jung, "Optically transparent wideband dipole and patch external antennas using metal mesh for UHD TV applications," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1907-1917, Mar. 2020.
doi:10.1109/TAP.2019.2950077

37. Hu, H.-T., B.-J. Chen, and C. H. Chan, "A transparent proximity-coupled-fed patch antenna with enhanced bandwidth and filtering response," IEEE Access, Vol. 9, 32774-32780, Feb. 2021.
doi:10.1109/ACCESS.2021.3061203

38. Qiu, H., H. Liu, X. Jia, Z.-Y. Jiang, Y.-H. Liu, J. Xu, T. Lu, M. Shao, T.-L. Ren, and K. J. Chen, "Compact, flexible, and transparent antennas based on embedded metallic mesh for wearable devices in 5G wireless network," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 1864-1873, Apr. 2021.
doi:10.1109/TAP.2020.3035911

39. Viti, L., . Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Adv. Mater., Vol. 27, No. 37, 5567-5572, Aug. 2015.
doi:10.1002/adma.201502052

40. Viti, L., A. Politano, K. Zhang, and M. S. Vitiello, "Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes," Nanoscale, Vol. 11, No. 4, 1995-2002, Jan. 2019.
doi:10.1039/C8NR09060B

41. Wang, L., L. Han, W. Guo, L. Zhang, C. Yao, Z. Chen, Y. Chen, C. Guo, K. Zhang, C. Kuo, C. S. Lue, A. Politano, H. Xing, M. Jiang, X. Yu, X. Chen, and W. Lu, "Hybrid Dirac semimetal- based photodetector with efficient low-energy photon harvesting," Light-Sci. Appl., Vol. 11, No. 1, 53, Mar. 2022.
doi:10.1038/s41377-022-00741-8

42. Guo, C., W. Guo, H. Xu, L. Zhang, G. Chen, G. D'Olimpio, C. Kuo, C. S. Lue, L. Wang, A. Politano, X. Chen, and W. Lu, "Ultrasensitive ambient-stable SnSe2-based broadband photodetectors for room-temperature IR/THz energy conversion and imaging," 2D Mater., Vol. 7, No. 3, 035026, Jun. 2020.
doi:10.1088/2053-1583/ab8ec0

43. Liu, C., L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, No. 24, 1800836, Dec. 2018.
doi:10.1002/adom.201800836

44. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies," Adv. Mater., Vol. 28, No. 34, 7390-7396, Sep. 2016.
doi:10.1002/adma.201601736

45. Xu, H., C. Guo, J. Zhang, W. Guo, C. Kuo, C. S. Lue, W. Hu, L. Wang, G. Chen, A. Politano, X. Chen, and W. Lu, "PtTe2-based type --- II Dirac semimetal and its van der Waals heterostructure for sensitive room temperature terahertz photodetection," Small, Vol. 15, No. 52, 1903362, Dec. 2019.
doi:10.1002/smll.201903362