1. Simons, R. N. and R. Q. Lee, "Feasibility study of optically transparent microstrip patch antenna," IEEE Antennas and Propagation Society International Symposium, Montreal, Quebec, Canada, Jul. 13-18, 1997. Google Scholar
2. Syed Feroze Hussain, S. and D. Thiripurasundari, "A review on optically transparent antenna fabricated with conductive nano-material oxides," J. Electron. Mater., Sep. 2022, https://doi.org/10.1007/s11664-022-09916-w. Google Scholar
3. Sayem, A. S. M., A. Lalbakhsh, K. P. Esselle, J. L. Buckley, B. O'Flynn, and R. B. V. B. Simorangkir, "Flexible transparent antennas: Advancements, challenges, and prospects," IEEE Open J. Antennas Propag., Vol. 3, 1109-1133, Sep. 2022.
doi:10.1109/OJAP.2022.3206909 Google Scholar
4. Lee, S. Y., M. Choo, S. Jung, and W. Hong, "Optically transparent nano-patterned antennas: A review and future directions," Appl. Sci. --- Basel, Vol. 8, No. 6, 901, May 2018.
doi:10.3390/app8060901 Google Scholar
5. Thampy, A. S. and S. K. Dhamodharan, "Performance analysis and comparison of ITO- and FTO-based optically transparent terahertz U-shaped patch antennas," Physica E, Vol. 66, 52-58, Feb. 2015.
doi:10.1016/j.physe.2014.09.016 Google Scholar
6. So, K. K., B.-J. Chen, and C. H. Chan, "Microwave and millimeter-wave MIMO antenna using conductive ITO film," IEEE Access, Vol. 8, 207024-207033, Nov. 2020. Google Scholar
7. Potti, D., Y. Tusharika, M. G. N. Alsath, S. Kirubaveni, M. Kanagasabai, R. Sankararajan, S. Narendhiran, and P. Balagi Bhargav, "A novel optically transparent UWB antenna for automotive MIMO communications," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3821-3828, Jul. 2021.
doi:10.1109/TAP.2020.3044383 Google Scholar
8. Green, R. B., M. Guzman, N. Izyumskaya, B. Ullah, S. Hia, J. Pitchford, R. Timsina, V. Avrutin, Ü. Özgür, H. Morkoç, N. Dhar, and E. Topsakal, "Optically transparent antennas and filters," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 37-47, Jun. 2019.
doi:10.1109/MAP.2019.2907895 Google Scholar
9. Cairns, D. R., R. P. Witte II, D. K. Sparacin, S. M. Sachsman, D. C. Paine, and G. P. Crawford, "Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates," Appl. Phys. Lett., Vol. 76, No. 11, 1425-1427, Mar. 2000.
doi:10.1063/1.126052 Google Scholar
10. Colombel, F., X. Castel, M. Himdi, G. Legeay, S. Vigneron, and E. M. Cruz, "Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna," IET Sci. Meas. Technol., Vol. 3, No. 3, 229-234, May 2009.
doi:10.1049/iet-smt:20080060 Google Scholar
11. Hong, S., Y. Kim, and C. W. Jung, "Transparent microstrip patch antennas with multilayer and metal-mesh films," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 772-775, 2017.
doi:10.1109/LAWP.2016.2602389 Google Scholar
12. Zarbakhsh, S., M. Akbari, M. Farahani, A. Ghayekhloo, T. A. Denidni, and A.-R. Sebak, "Optically transparent subarray antenna based on solar panel for CubeSat application," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 319-328, Jan. 2020.
doi:10.1109/TAP.2019.2938740 Google Scholar
13. Peter, T., R. Nilavalan, H. F. AbuTarboush, and S. W. Cheung, "A novel technique and soldering method to improve performance of transparent polymer antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 918-921, 2010.
doi:10.1109/LAWP.2010.2077271 Google Scholar
14. Hakimi, S., S. K. A. Rahim, M. Abedian, S. M. Noghabaei, and M. Khalily, "CPW-fed transparent antenna for extended ultrawideband applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1251-1254, 2014.
doi:10.1109/LAWP.2014.2333091 Google Scholar
15. Malek, M. A., S. Hakimi, S. K. A. Rahim, and A. K. Evizal, "Dual-band CPW-fed transparent antenna for active RFID tags," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 919-922, 2015.
doi:10.1109/LAWP.2014.2387157 Google Scholar
16. Kirsch, N. J., N. A. Vacirca, E. E. Plowman, T. P. Kurzweg, A. K. Fontecchio, and K. R. Dandekar, "Optically transparent conductive polymer RFID meandering dipole antenna," IEEE International Conference on RFID, Orlando, FL, USA, Apr. 30-May 2, 2013. Google Scholar
17. Rmili, H., J. L. Miane, H. Zangar, and T. Olinga, "Design of microstrip-fed proximity-coupled conducting-polymer patch antenna," Microw. Opt. Technol. Lett., Vol. 48, No. 4, 655-660, Apr. 2006.
doi:10.1002/mop.21435 Google Scholar
18. Yin, M., L. Wu, H. Chen, X. Zhang, W. Wang, and Z. Liu, "Transparent UHF RFID tags based on CVD-grown graphene films," Nanotechnology, Vol. 33, No. 50, 505501, Oct. 2022.
doi:10.1088/1361-6528/ac8e74 Google Scholar
19. Kosuga, S., S. Nagata, S. Kuromatsu, R. Suga, T.Watanabe, O. Hashimoto, and S. Koh, "Optically transparent antenna based on carrier-doped three-layer stacked graphene," AIP Adv., Vol. 11, No. 3, 035136, Mar. 2021.
doi:10.1063/5.0037907 Google Scholar
20. Kosuga, S., R. Suga, O. Hashimoto, and S. Koh, "Graphene-based optically transparent dipole antenna," Appl. Phys. Lett., Vol. 110, No. 23, 233102, Jun. 2017.
doi:10.1063/1.4984956 Google Scholar
21. Raji, A.-R. O., S. Salters, E. L. G. Samuel, Y. Zhu, V. Volman, and J. M. Tour, "Functionalized graphene nanoribbon films as a radiofrequency and optically transparent material," ACS Appl. Mater. Interfaces, Vol. 6, No. 19, 16661-16668, Sep. 2014.
doi:10.1021/am503478w Google Scholar
22. Sadat, S., M. Shokooh-Saremi, M. M. Mirsalehi, and M.-M. Bagheri-Mohagheghi, "Electromagnetic characterisation of multi-wall carbon nanotube-doped fluorine tin oxide for transparent antenna applications," IET Microw. Antennas Propag., Vol. 13, No. 6, 859-863, Mar. 2019.
doi:10.1049/iet-map.2018.5877 Google Scholar
23. Goliya, Y., A. Rivadeneyra, J. F. Salmeron, A. Albrecht, J. Mock, M. Haider, J. Russer, B. Cruz, P. Eschlwech, E. Biebl, M. Becherer, and M. R. Bobinger, "Next generation antennas based on screen-printed and transparent silver nanowire films," Adv. Opt. Mater., Vol. 7, No. 21, 1900995, Aug. 2019.
doi:10.1002/adom.201900995 Google Scholar
24. Kim, B. S., K.-Y. Shin, J. B. Pyo, J. Lee, J. G. Son, S.-S. Lee, and J. H. Park, "Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks," ACS Appl. Mater. Interfaces, Vol. 8, No. 4, 2582-2590, Jan. 2016.
doi:10.1021/acsami.5b10317 Google Scholar
25. Song, L., A. C. Myers, J. J. Adams, and Y. Zhu, "Stretchable and reversibly deformable radio frequency antennas based on silver nanowires," ACS Appl. Mater. Interfaces, Vol. 6, No. 6, 4248-4253, Mar. 2014.
doi:10.1021/am405972e Google Scholar
26. Rai, T., P. Dantes, B.Bahreyni, and W. S. Kim, "A stretchable RF antenna with silver nanowires," IEEE Electron Device Lett., Vol. 34, No. 4, 544-546, Apr. 2013.
doi:10.1109/LED.2013.2245626 Google Scholar
27. Komoda, N., M. Nogi, K. Suganuma, K. Kohno, Y. Akiyama, and K. Otsuka, "Printed silver nanowire antennas with low signal loss at high-frequency radio," Nanoscale, Vol. 4, No. 10, 3148-3153, Mar. 2012.
doi:10.1039/c2nr30485f Google Scholar
28. Sayem, A. S. M., R. Simorangkir, K. P. Esselle, and R. M. Hashmi, "Development of robust transparent conformal antennas based on conductive mesh-polymer composite for unobtrusive wearable applications," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7216-7224, Dec. 2019.
doi:10.1109/TAP.2019.2930116 Google Scholar
29. Sayem, A. S. M., K. P. Esselle, R. M. Hashmi, and H. Liu, "Experimental studies of the robustness of the conductive-mesh-polymer composite towards the development of conformal and transparent antennas," Smart Mater. Struct., Vol. 29, No. 8, 085015, Aug. 2020.
doi:10.1088/1361-665X/ab92df Google Scholar
30. Kang, S. H. and C. W. Jung, "Transparent patch antenna using metal mesh," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2095-2100, Apr. 2018.
doi:10.1109/TAP.2018.2804622 Google Scholar
31. Hautcoeur, J., F. Colombel, M. Himdi, X. Castel, and E. M. Cruz, "Large and optically transparent multilayer for broadband H-shaped slot antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 933-936, 2013.
doi:10.1109/LAWP.2013.2274033 Google Scholar
32. Hautcoeur, J., L. Talbi, and K. Hettak, "Feasibility study of optically transparent CPW-fed monopole antenna at 60-GHz ISM bands," IEEE Trans. Antennas Propag., Vol. 61, 1651-1657, Apr. 2013.
doi:10.1109/TAP.2012.2232265 Google Scholar
33. Li, Q. L., S. W. Cheung, D. Wu, and T. I. Yuk, "Optically transparent dual-band MIMO antenna using micro-metal mesh conductive film for WLAN system," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 920-923, 2017.
doi:10.1109/LAWP.2016.2614577 Google Scholar
34. Ding, C., L. Liu, and K.-M. Luk, "An optically transparent dual-polarized stacked patch antenna with metal-mesh films," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 1981-1985, Oct. 2019.
doi:10.1109/LAWP.2019.2935694 Google Scholar
35. Zhang, Y., S. Shen, C. Chiu, and R. Murch, "Hybrid RF-solar energy harvesting systems utilizing transparent multiport micromeshed antennas," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 11, 4534-4546, Nov. 2019.
doi:10.1109/TMTT.2019.2930507 Google Scholar
36. Tung, P. D. and C. W. Jung, "Optically transparent wideband dipole and patch external antennas using metal mesh for UHD TV applications," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1907-1917, Mar. 2020.
doi:10.1109/TAP.2019.2950077 Google Scholar
37. Hu, H.-T., B.-J. Chen, and C. H. Chan, "A transparent proximity-coupled-fed patch antenna with enhanced bandwidth and filtering response," IEEE Access, Vol. 9, 32774-32780, Feb. 2021.
doi:10.1109/ACCESS.2021.3061203 Google Scholar
38. Qiu, H., H. Liu, X. Jia, Z.-Y. Jiang, Y.-H. Liu, J. Xu, T. Lu, M. Shao, T.-L. Ren, and K. J. Chen, "Compact, flexible, and transparent antennas based on embedded metallic mesh for wearable devices in 5G wireless network," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 1864-1873, Apr. 2021.
doi:10.1109/TAP.2020.3035911 Google Scholar
39. Viti, L., . Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Adv. Mater., Vol. 27, No. 37, 5567-5572, Aug. 2015.
doi:10.1002/adma.201502052 Google Scholar
40. Viti, L., A. Politano, K. Zhang, and M. S. Vitiello, "Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes," Nanoscale, Vol. 11, No. 4, 1995-2002, Jan. 2019.
doi:10.1039/C8NR09060B Google Scholar
41. Wang, L., L. Han, W. Guo, L. Zhang, C. Yao, Z. Chen, Y. Chen, C. Guo, K. Zhang, C. Kuo, C. S. Lue, A. Politano, H. Xing, M. Jiang, X. Yu, X. Chen, and W. Lu, "Hybrid Dirac semimetal- based photodetector with efficient low-energy photon harvesting," Light-Sci. Appl., Vol. 11, No. 1, 53, Mar. 2022.
doi:10.1038/s41377-022-00741-8 Google Scholar
42. Guo, C., W. Guo, H. Xu, L. Zhang, G. Chen, G. D'Olimpio, C. Kuo, C. S. Lue, L. Wang, A. Politano, X. Chen, and W. Lu, "Ultrasensitive ambient-stable SnSe2-based broadband photodetectors for room-temperature IR/THz energy conversion and imaging," 2D Mater., Vol. 7, No. 3, 035026, Jun. 2020.
doi:10.1088/2053-1583/ab8ec0 Google Scholar
43. Liu, C., L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, No. 24, 1800836, Dec. 2018.
doi:10.1002/adom.201800836 Google Scholar
44. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies," Adv. Mater., Vol. 28, No. 34, 7390-7396, Sep. 2016.
doi:10.1002/adma.201601736 Google Scholar
45. Xu, H., C. Guo, J. Zhang, W. Guo, C. Kuo, C. S. Lue, W. Hu, L. Wang, G. Chen, A. Politano, X. Chen, and W. Lu, "PtTe2-based type --- II Dirac semimetal and its van der Waals heterostructure for sensitive room temperature terahertz photodetection," Small, Vol. 15, No. 52, 1903362, Dec. 2019.
doi:10.1002/smll.201903362 Google Scholar