1. Singer, M., C. S. Deutschman, C. W. Seymour, et al. "The third international consensus definitions for sepsis and septic shock (Sepsis-3)," JAMA, Vol. 315, 801-810, 2016.
doi:10.1001/jama.2016.0287 Google Scholar
2. Evans, L., A. Rhodes, W. Alhazzani, et al. "Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021," Intensive Care Med., Vol. 47, 1181-1247, 2021.
doi:10.1007/s00134-021-06506-y Google Scholar
3. Rudd, K. E., S. C. Johnson, K. M. Agesa, et al. "Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the global burden of disease study," Lancet, Vol. 395, 200-211, 2020.
doi:10.1016/S0140-6736(19)32989-7 Google Scholar
4. Cecconi, M., L. Evans, M. Levy, et al. "Sepsis and septic shock," Lancet, Vol. 392, 75-87, 2018.
doi:10.1016/S0140-6736(18)30696-2 Google Scholar
5. Liu, V. X., Y. Lu, K. A. Carey, E. R. Gilbert, M. Afshar, M. Akel, N. S. Shah, J. Dolan, C. Winslow, P. Kipnis, D. P. Edelson, G. J. Escobar, and M. M. Churpek, "Comparison of early warning scoring systems for hospitalized patients with and without infection at risk for in-hospital mortality and transfer to the intensive care unit," JAMA Netw. Open, Vol. 3, e205191, 2020.
doi:10.1001/jamanetworkopen.2020.5191 Google Scholar
6. Reinhart, K., R. Daniels, N. Kissoon, F. R. Machado, R. D. Schachter, and S. Finfer, "Recognizing sepsis as a global health priority --- A WHO resolution," N. Engl. J. Med., Vol. 377, 414-417, 2017.
doi:10.1056/NEJMp1707170 Google Scholar
7. Singer, M., "The role of mitochondrial dysfunction in sepsis-induced multi-organ failure," Virulence, Vol. 5, 66-72, 2014.
doi:10.4161/viru.26907 Google Scholar
8. Fink, M. P., "Cytopathic hypoxia, is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration?," Crit. Care Clin., Vol. 8, 165-175, 2002.
doi:10.1016/S0749-0704(03)00071-X Google Scholar
9. Galley, H. F., "Oxidative stress and mitochondrial dysfunction in sepsis," Br. J. Anaesth., Vol. 107, 57-64, 2011.
doi:10.1093/bja/aer093 Google Scholar
10. Crouser, E. D., M. W. Julian, J. E. Huff, J. Struck, and C. H. Cook, "Carbamoyl phosphate synthase-1: A marker of mitochondrial damage and depletion in the liver during sepsis," Crit. Care Med., Vol. 34, 2439-2446, 2006.
doi:10.1097/01.CCM.0000230240.02216.21 Google Scholar
11. Carré, J. E., J.-C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H. B. Suliman, C. A. Piantadosi, T. M. Mayhew, P. Breen, M. Stotz, and M. Singer, "Survival in critical illness is associated with early activation of mitochondrial biogenesis," Am. J. Respir Crit. Care Med., Vol. 182, 745-751, 2010.
doi:10.1164/rccm.201003-0326OC Google Scholar
12. Robert, B., "Resonance Raman spectroscopy," Photosynthesis Research, Vol. 101, 147-155, 2009.
doi:10.1007/s11120-009-9440-4 Google Scholar
13. Spiro, T. G., "Resonance Raman spectroscopy. New structure probe for biological chromophor," Acc. Chem. Res., Vol. 7, 339-344, 1974.
doi:10.1021/ar50082a004 Google Scholar
14. Spiro, T. G. and T. C. Strekas, "Resonance Raman spectra of hemoglobin and cytochrome c: Inverse polarization and vibronic scattering," Proc. Natl. Acad. Sci., Vol. 69, 2622-2626, USA, 1972.
doi:10.1073/pnas.69.9.2622 Google Scholar
15. Perry, D. A., J. W. Salvin, P. Romfh, P. L. Chen, K. Krishnamurthy, L. M. Thomson, B. D. Polizzotti, F. X. McGowan, D. Vakhshoori, and J. N. K, "Responsive monitoring of mitochondrial redox states in heart muscle predicts impending cardiac arrest," Sci. Transl. Med., Vol. 9, eaan0117, 2017.
doi:10.1126/scitranslmed.aan0117 Google Scholar
16. Carré, J. E., J.-C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H. B. Suliman, C. A. Piantadosi, T. M. Mayhew, P. Breen, M. Stotz, and M. Singer, "Survival in critical illness is associated with early activation of mitochondrial biogenesis," Am. J. Respir Crit. Care Med., Vol. 182, 745-751, 2010.
doi:10.1164/rccm.201003-0326OC Google Scholar
17. Lalonde, J. W., G. D. Noojin, N. J. Pope, S. M. Powell, V. V. Yakovlev, and M. L. Denton, "Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy," Journal of Biophotonics, Vol. 14, e202000384, 202. Google Scholar
18. Morimoto, T., L. D. Chiu, H. Kanda, H. Kawagoe, T. Ozawa, M. Nakamura, K. Nishida, K. Fujita, and T. Fujikado, "Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction," Analyst, Vol. 144, 2531-2540, 2019.
doi:10.1039/C8AN02213E Google Scholar
19. Brazhe, N. A., M. Treiman, B. Faricelli, J. H. Vestergaard, and O. Sosnovtseva, "In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart," PLoS One, Vol. 8, e70488, 2013.
doi:10.1371/journal.pone.0070488 Google Scholar
20. Rittirsch, D., M. S. Huber-Lang, M. A. Flierl, and P. A. Ward, "Immunodesign of experimental sepsis by cecal ligation and puncture," Nat. Protoc., Vol. 4, 31-36, 2009.
doi:10.1038/nprot.2008.214 Google Scholar
21. Brazhe, N. A., M. Treiman, A. R. Brazhe, N. L. Find, G. V. Maksimov, and O. V. Sosnovtseva, "Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy," PLoS One, Vol. 7, e41990, 2012.
doi:10.1371/journal.pone.0041990 Google Scholar
22. Chen, Z., J. Liu, L. Tian, Q. Zhang, Y. Guan, L. Chen, G. Liu, H.-Q. Yu, Y. Tian, and Q. Huang, "Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress," Analyst, Vol. 145, 2020. Google Scholar
23. Brückner, M., K. Becker, J. Popp, and T. Frosch, "Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells," Analytica Chimica Acta, Vol. 894, 76-84, 2015.
doi:10.1016/j.aca.2015.08.025 Google Scholar
24. Luo, J., S. Li, E. Forsberg, and S. He, "4D surface shape measurement system with high spectral resolution and great depth accuracy," OE, Vol. 29, 13048-13070, 2021.
doi:10.1364/OE.423755 Google Scholar
25. Luo, J., Z. Lin, Y. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fast spectral and surface morphology measurements," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702 Google Scholar
26. Li, J., F. Cai, Y. Dong, Z. Zhu, X. Sun, H. Zhang, and S. He, "A portable confocal hyperspectral microscope without any scan or tube lens and its application in uorescence and Raman spectral imaging," Optics Communications, Vol. 392, 1-6, 2017.
doi:10.1016/j.optcom.2017.01.031 Google Scholar
27. Shen, F., H. Deng, L. Yu, and F. Cai, "Open-source mobile multispectral imaging system and its applications in biological sample sensing," Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, Vol. 280, 121504, 2022.
doi:10.1016/j.saa.2022.121504 Google Scholar
28. Xu, Z., Y. Jiang, J. Ji, E. Forsberg, Y. Li, and S. He, "Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning," OE, Vol. 28, 30686, 2020.
doi:10.1364/OE.406036 Google Scholar
29. Xu, Z., Y. Jiang, and S. He, "Multi-mode microscopic hyperspectral imager for the sensing of biological samples," Applied Sciences, Vol. 10, 4876, 2020.
doi:10.3390/app10144876 Google Scholar