1. Hong, G., A. L. Antaris, and H. Dai, "Near-infrared fluorophores for biomedical imaging," Nat. Biomed. Eng., Vol. 1, 0010, Jan. 2017.
doi:10.1038/s41551-016-0010 Google Scholar
2. Zhang, F., V. Gradinaru, A. R. Adamantidis, et al. "Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures," Nat. Protoc., Vol. 5, No. 3, 439-456, Mar. 2010.
doi:10.1038/nprot.2009.226 Google Scholar
3. Yun, S. H. and S. J. J. Kwok, "Light in diagnosis, therapy and surgery," Nat. Biomed. Eng., Vol. 1, 0008, 2017.
doi:10.1038/s41551-016-0008 Google Scholar
4. Jiang, S., X. Wu, N. J. Rommelfanger, et al. "Shedding light on neurons: Optical approaches for neuromodulation," Natl. Sci. Rev., Vol. 9, nwac007, Jan. 18, 2022. Google Scholar
5. Kim, T.-I., J. G. McCall, Y. H. Jung, et al. "Injectable, cellular-scale optoelectronics with applications for wireless optogenetics," Science, Vol. 340, No. 6129, 211-216, 2013.
doi:10.1126/science.1232437 Google Scholar
6. Chen, S., A. Z. Weitemier, X. Zeng, et al. "Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics," Science, Vol. 359, No. 6376, 679-684, Feb. 9, 2018.
doi:10.1126/science.aaq1144 Google Scholar
7. Montgomery, K. L., A. J. Yeh, J. S. Ho, et al. "Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice," Nat. Methods, Vol. 12, No. 10, 969-974, Oct. 2015.
doi:10.1038/nmeth.3536 Google Scholar
8. Ruan, H., J. Brake, J. E. Robinson, et al. "Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light," Sci. Adv., Vol. 3, No. 12, eaao5520, Dec. 2017.
doi:10.1126/sciadv.aao5520 Google Scholar
9. Wu, X., X. Zhu, P. Chong, et al. "Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics," Proc. Natl. Acad. Sci. USA, Vol. 116, No. 52, 26332-26342, Dec. 6, 2019.
doi:10.1073/pnas.1914387116 Google Scholar
10. Yang, F., X. Wu, H. Cui, et al. "A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source," Sci. Adv., Vol. 8, No. 30, eabo6743, Jul. 29, 2022.
doi:10.1126/sciadv.abo6743 Google Scholar
11. Yang, F., X. Wu, H. Cui, et al. "Palette of rechargeable mechanoluminescent uids produced by a biomineral-inspired suppressed dissolution approach," J. Am. Chem. Soc., Vol. 144, No. 40, 18406-18418, Oct. 12, 2022.
doi:10.1021/jacs.2c06724 Google Scholar
12. Wang, W., X. Wu, K. W. Kevin Tang, et al. "Ultrasound-triggered in situ photon emission for noninvasive optogenetics," J. Am. Chem. Soc., Vol. 145, No. 2, 1097-1107, Jan. 18, 2023.
doi:10.1021/jacs.2c10666 Google Scholar
13. Yang, F., S. J. Kim, X. Wu, et al. "Principles and applications of sono-optogenetics," Adv. Drug Deliv. Rev., Vol. 194, 114711, Jan. 25, 2023. Google Scholar
14. Zhang, J. C., X. S. Wang, G. Marriott, et al. "Trap-controlled mechanoluminescent materials," Prog. Mater. Sci., Vol. 103, 678-742, Jun. 2019.
doi:10.1016/j.pmatsci.2019.02.001 Google Scholar
15. Zhuang, Y. and R. J. Xie, "Mechanoluminescence rebrightening the prospects of stress sensing: A review," Adv. Mater., Vol. 33, No. 50, e2005925, Dec. 2021.
doi:10.1002/adma.202005925 Google Scholar
16. Li, Y., M. Gecevicius, and J. Qiu, "Long persistent phosphors --- From fundamentals to applications," Chem. Soc. Rev., Vol. 45, No. 8, 2090-2136, Apr. 21, 2016.
doi:10.1039/C5CS00582E Google Scholar
17. Huang, K., N. Le, J. S. Wang, et al. "Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles," Adv. Mater., Vol. 34, No. 14, e2107962, Apr. 2022.
doi:10.1002/adma.202107962 Google Scholar
18. Yang, F., H. Cui, X. Wu, et al. "Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots," Nanoscale, Vol. 15, No. 4, 1629-1636, Jan. 27, 2023.
doi:10.1039/D2NR06129E Google Scholar
19. Maldiney, T., A. Bessiere, J. Seguin, et al. "The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells," Nat. Mater., Vol. 13, No. 4, 418-426, Apr. 2014.
doi:10.1038/nmat3908 Google Scholar
20. Li, Z., Y. Zhang, X. Wu, et al. "Direct aqueous-phase synthesis of sub-10nm ``luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence," J. Am. Chem. Soc., Vol. 137, No. 16, 5304-5307, Apr. 29, 2015.
doi:10.1021/jacs.5b00872 Google Scholar
21. Pei, P., Y. Chen, C. Sun, et al. "X-ray-activated persistent luminescence nanomaterials for NIR-II imaging," Nat. Nanotechnol., Vol. 16, No. 9, 1011-1018, Sep. 2021.
doi:10.1038/s41565-021-00922-3 Google Scholar
22. Miao, Q., C. Xie, X. Zhen, et al. "Molecular afterglow imaging with bright, biodegradable polymer nanoparticles," Nat. Biotechnol., Vol. 35, No. 11, 1102-1110, Nov. 2017.
doi:10.1038/nbt.3987 Google Scholar
23. Wu, X., Y. Jiang, N. J. Rommelfanger, et al. "Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window," Nat. Biomed. Eng., Vol. 6, No. 6, 754-770, Jun. 2022.
doi:10.1038/s41551-022-00862-w Google Scholar
24. Day, R. N. and M. W. Davidson, "The fluorescent protein palette: Tools for cellular imaging," Chem. Soc. Rev., Vol. 38, No. 10, 2887-2921, Oct. 2009.
doi:10.1039/b901966a Google Scholar
25. Fenno, L., O. Yizhar, and K. Deisseroth, "The development and application of optogenetics," Annu. Rev. Neurosci., Vol. 34, 389-412, 2011.
doi:10.1146/annurev-neuro-061010-113817 Google Scholar
26. Zhou, X. X., X. Zou, H. K. Chung, et al. "A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription," ACS Chem. Biol., Vol. 13, No. 2, 443-448, Feb. 16, 2018.
doi:10.1021/acschembio.7b00603 Google Scholar
27. Nihongaki, Y., F. Kawano, T. Nakajima, et al. "Photoactivatable CRISPR-Cas9 for optogenetic genome editing," Nat. Biotechnol., Vol. 33, No. 7, 755-760, Jul. 2015.
doi:10.1038/nbt.3245 Google Scholar
28. Su, X. L., X. Y. Kong, K. S. Sun, et al. "Enhanced blue afterglow through molecular fusion for bio-applications," Angew. Chem. Int. Edit., Vol. 61, e202201630, Jul. 4, 2022. Google Scholar
29. Lawson, N. D. and B. M. Weinstein, "In vivo imaging of embryonic vascular development using transgenic zebrafish," Dev. Biol., Vol. 248, No. 2, 307-318, Aug. 15, 2002.
doi:10.1006/dbio.2002.0711 Google Scholar
30. Kim, T. H. and M. J. Schnitzer, "Fluorescence imaging of large-scale neural ensemble dynamics," Cell, Vol. 185, No. 1, 9-41, Jan. 6, 2022.
doi:10.1016/j.cell.2021.12.007 Google Scholar
31. Kim, S., T. Kyung, J. H. Chung, et al. "Non-invasive optical control of endogenous Ca(2+) channels in awake mice," Nat. Commun., Vol. 11, 210, Jan. 10, 2020.
doi:10.1038/s41467-019-14005-4 Google Scholar
32. Xu, X., H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photonics, Vol. 5, No. 3, 154-157, Mar. 2011.
doi:10.1038/nphoton.2010.306 Google Scholar
33. Hampson, K. M., R. Turcotte, D. T. Miller, et al. "Adaptive optics for high-resolution imaging," Nat. Rev. Methods Primers, Vol. 1, 68, 2021.
doi:10.1038/s43586-021-00066-7 Google Scholar
34. Streich, L., J. C. Boffi, L. Wang, et al. "High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy," Nat. Methods, Vol. 18, No. 10, 1253-1258, Oct. 2021.
doi:10.1038/s41592-021-01257-6 Google Scholar
35. Canales, A., S. Park, A. Kilias, et al. "Multifunctional fibers as tools for neuroscience and neuroengineering," Acc. Chem. Res., Vol. 51, No. 4, 829-838, Apr. 17, 2018.
doi:10.1021/acs.accounts.7b00558 Google Scholar
36. Park, S. I., D. S. Brenner, G. Shin, et al. "Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics," Nat. Biotechnol., Vol. 33, No. 12, 1280-1286, Dec. 2015.
doi:10.1038/nbt.3415 Google Scholar
37. Gunaydin, L. A., L. Grosenick, J. C. Finkelstein, et al. "Natural neural projection dynamics underlying social behavior," Cell, Vol. 157, No. 7, 1535-1551, Jun. 19, 2014.
doi:10.1016/j.cell.2014.05.017 Google Scholar
38. Salatino, J. W., K. A. Ludwig, T. D. Y. Kozai, et al. "Glial responses to implanted electrodes in the brain," Nat. Biomed. Eng., Vol. 1, No. 11, 862-877, Nov. 2017.
doi:10.1038/s41551-017-0154-1 Google Scholar
39. Chen, Y., N. J. Rommelfanger, A. I. Mahdi, et al. "Low is flxible electronics advancing neuroscience research?," Biomaterials, Vol. 268, 120559, Jan. 2021.
doi:10.1016/j.biomaterials.2020.120559 Google Scholar
40. Miyazaki, T., S. Chowdhury, T. Yamashita, et al. "Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles," Cell Rep., Vol. 26, No. 4, 1033-1043, Jan. 22, 2019.
doi:10.1016/j.celrep.2019.01.001 Google Scholar
41. Pisanello, F., G. Mandelbaum, M. Pisanello, et al. "Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber," Nat. Neurosci., Vol. 20, No. 8, 1180-1188, Aug. 2017.
doi:10.1038/nn.4591 Google Scholar
42. Mohanty, A., Q. Li, M. A. Tadayon, et al. "Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation," Nat. Biomed. Eng., Vol. 4, No. 2, 223-231, Feb. 2020.
doi:10.1038/s41551-020-0516-y Google Scholar
43. Speed, C. A., "Therapeutic ultrasound in soft tissue lesions," Rheumatology, Vol. 40, No. 12, 1331-1336, Dec. 2001.
doi:10.1093/rheumatology/40.12.1331 Google Scholar
44. Pascoli, V., M. Turiault, and C. Luscher, "Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour," Nature, Vol. 481, No. 7379, 71-75, Dec. 7, 2011.
doi:10.1038/nature10709 Google Scholar
45. Morikawa, K., K. Furuhashi, C. de Sena-Tomas, et al. "Photoactivatable Cre recombinase 3.0 for in vivo mouse applications," Nat. Commun., Vol. 11, 2141, May 1, 2020. Google Scholar
46. Lin, M. Z. and M. J. Schnitzer, "Genetically encoded indicators of neuronal activity," Nat. Neurosci., Vol. 19, No. 9, 1142-1153, Aug. 26, 2016.
doi:10.1038/nn.4359 Google Scholar
47. Alter, K. E. and B. I. Karp, "Ultrasound guidance for botulinum neurotoxin chemodenervation procedures," Toxins, Vol. 10, No. 1, Dec. 28, 2017. Google Scholar
48. Zhong, Y., Z. Ma, F. Wang, et al. "In vivo molecular imaging for immunotherapy using ultra- bright near-infrared-IIb rare-earth nanoparticles," Nat. Biotechnol., Vol. 37, No. 11, 1322-1331, Nov. 2019.
doi:10.1038/s41587-019-0262-4 Google Scholar