1. Kandwal, A., Z. Nie, T. Igbe, J. Li, Y. Liu, L. Liu, and Y. Hao, "Surface plasmonic feature microwave sensor with highly confined fields for aqueous-glucose and blood-glucose measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 70, No. 1-9, 8000309, 2021. Google Scholar
2. Blazquez-Bello, S., Y. Campos-Rocaa, A. Bangertb, and C. Sandhagen, "Impact of substrate and bending angle on the performance of microwave PCB sensors for permittivity measurements," Measurement, Vol. 175, 109114, 2021.
doi:10.1016/j.measurement.2021.109114 Google Scholar
3. Omer, A. E., G. Shaker, S. Safavi-Naeini, et al. "Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 6, 1407-1420, 2020.
doi:10.1109/TBCAS.2020.3038589 Google Scholar
4. Kiani, S., P. Rezaei, and M. Navaein, "Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection," Measurement, Vol. 160, 107805, 2020.
doi:10.1016/j.measurement.2020.107805 Google Scholar
5. Li, J., T. Igbe, Y. Liu, Z. Nie, et al. "An approach for noninvasive blood glucose monitoring based on bioimpedance difference considering blood volume pulsation," IEEE Access, Vol. 6, 51119-51129, 2018.
doi:10.1109/ACCESS.2018.2866601 Google Scholar
6. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, John Wiley Sons, 2017.
doi:10.1002/9781119079699
7. Karacolak, T., E. C. Moreland, and E. Topsakal, "Cole-cole model for glucose dependent dielectric properties of blood plasma for continuous glucose monitoring," Microw. Opt. Technol. Lett., Vol. 55, 2013. Google Scholar
8. Yilmaz, T., R. Foster, and Y. Hao, "Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels," IEEE Transactions on Antennas Propag., Vol. 62, 3064-3075, 2014.
doi:10.1109/TAP.2014.2313139 Google Scholar
9. Yilmaz, T., R. Foster, and Y. Hao, "Towards accurate dielectric property retrieval of biological tissues for blood glucose monitoring," IEEE Transactions on Microw. Theory Tech., Vol. 62, 3193-3204, 2014.
doi:10.1109/TMTT.2014.2365019 Google Scholar
10. Saha, S., H. Cano-Garcia, I. Sotiriou, et al. "A glucose sensing system based on transmission measurements at millimetre waves using microstrip patch antennas," Sci. Reports, Vol. 7, 6855, 2017. Google Scholar
11. Qiang, T., C. Wang, and N.-Y. Kim, "Quantitative detection of glucose level based on radiofrequency patch biosensor combined with volume-fixed structures," Biosensors and Bioelectronics, Vol. 98, 357-363, 2017.
doi:10.1016/j.bios.2017.06.057 Google Scholar
12. Kim, N. Y., R. Dhakal, K. K. Adhikari, E. S. Kim, and C. Wang, "A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level," Biosensors and Bioelectronics, Vol. 67, 687-693, 2015.
doi:10.1016/j.bios.2014.10.021 Google Scholar
13. Maosn, A., A. Shaw, and A. Al-Shamma, "A co-planar sensor for biomedical applications," Procedia Engineering, Vol. 47, 438-441, 2012.
doi:10.1016/j.proeng.2012.09.178 Google Scholar
14. Kim, S., H. Melikyan, J. Kim, A. Babajanyan, J.-H. Lee, L. Enkhtur, B. Friedman, and K. Lee, "Noninvasive in vitro measurement of pig-blood d-glucose by using a microwave cavity sensor," Diabetes Research and Clinical Practice, Vol. 96, No. 3, 379-384, 2012.
doi:10.1016/j.diabres.2012.01.018 Google Scholar
15. Kandwal, A., J. Li, T. Igbe, et al. "Young's double slit method-based higher order mode surface plasmon microwave antenna sensor: Modeling, measurements, and application," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-11, 2022.
doi:10.1109/TIM.2022.3214289 Google Scholar
16. Choi, H., J. Naylon, S. Luzio, et al. "Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor," IEEE Transactions on Microw. Theory Tech., Vol. 63, 3016-3025, 2015.
doi:10.1109/TMTT.2015.2472019 Google Scholar
17. Camli, B., E. Kusakci, B. Lafci, et al. "A microwave ring resonator based glucose sensor," Procedia Eng., Vol. 168, 465-468, 2016.
doi:10.1016/j.proeng.2016.11.127 Google Scholar
18. Islam, M., A. Hoque, A. Almutairi, and N. Amin, "Left-handed metamaterial-inspired unit cell for S-band glucose sensing application," Sensors, Vol. 19, 169, 2019.
doi:10.3390/s19010169 Google Scholar
19. Abedeen, Z. and P. Agarwal, "Microwave sensing technique based label-free and real-time planar glucose analyzer fabricated on FR4," Sensors and Actuators A: Physical, Vol. 279, 132-139, 2018.
doi:10.1016/j.sna.2018.06.011 Google Scholar
20. Liu., L. W. Y., A. Kandwal, Q. Cheng, et al. "Non-invasive blood glucose monitoring using a curved goubau line," Electronics, Vol. 8, 662, 2019.
doi:10.3390/electronics8060662 Google Scholar
21. Liu., L. W. Y., A. Kandwal, A. Kogut, et al. "In-vivo and ex-vivo measurements of blood glucose using whispering gallery modes," Sensors, Vol. 20, 830, 2020.
doi:10.3390/s20030830 Google Scholar
22. Tobore, I., J. Li, A. Kandwal, et al. "Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring," BMC Med. Inform. Decis. Mak., Vol. 19, 266, 2019.
doi:10.1186/s12911-019-0959-9 Google Scholar
23. Kandwal, A., T. Igbe, J. Li, et al. "Highly sensitive closed loop enclosed split ring biosensor with high field confinement for aqueous and blood-glucose measurements," Sci. Rep., Vol. 10, 4081, 2020.
doi:10.1038/s41598-020-60806-9 Google Scholar
24. Tobore, I., A. Kandwal, J. Li, et al. "Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach," Knowledge-Based Systems, Vol. 209, 106464, 2020.
doi:10.1016/j.knosys.2020.106464 Google Scholar
25. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 5, 121-123, May 1997.
doi:10.1109/75.569723 Google Scholar
26. Tang, L., S. J. Chang, C.-J. Chen, and J.-T. Liu, "Non-invasive blood glucose monitoring technology: A review," Sensors, Vol. 20, No. 23, 6925, 2020.
doi:10.3390/s20236925 Google Scholar
27. Tang, W.-X., H. Zhao, J. Y. Chin, and T. J. Cui, "A meander line resonator to realize negative index materials," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008. Google Scholar
28. Keiser, G. R., H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, "Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies," Applied Physics Letters, Vol. 105, 081112, 2014.
doi:10.1063/1.4894466 Google Scholar
29. Mehrotra, P., B. Chatterjee, and S. Sen, "EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing," Sensors, Vol. 19, No. 5, 1013, 2019.
doi:10.3390/s19051013 Google Scholar
30. Schmickl, S., T. Faseth, H. Pretl, and , "An RF-energy harvester and IR-UWB transmitter for ultra-low-power battery-less biosensors," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 5, 1459-1468, 2020.
doi:10.1109/TCSI.2020.2970765 Google Scholar
31. Ahmadivand, A., B. Gerislioglu, R. Ahuja, and Y. K. Mishra, "Terahertz plasmonics: The rise of toroidal metadevices towards immune biosensings," Materials Today, Vol. 32, 108-130, 2020.
doi:10.1016/j.mattod.2019.08.002 Google Scholar
32. Suwalak, R., C. Phongcharoenpanich, D. Torrungrueng, and M. Krairiksh, "Determination of dielectric property of construction material products using a novel RFID sensor," Progress In Electromagnetics Research, Vol. 130, 601-617, 2012.
doi:10.2528/PIER12070107 Google Scholar
33. Guillod, T., F. Kehl, and C. V. Hafner, "FEM-based method for the simulation of dielectric waveguide grating biosensors," Progress In Electromagnetics Research, Vol. 137, 565-583, 2013.
doi:10.2528/PIER13020502 Google Scholar
34. Caratelli, D., A. G. Yarovoy, A. Massaro, and A. Lay-Ekuakille, "Design and full-wave analysis of piezoelectric micro-needle antenna sensors for enhanced near-field detection of skin cancer," Progress In Electromagnetics Research, Vol. 125, 391-413, 2012.
doi:10.2528/PIER11101205 Google Scholar