Vol. 176
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-03-01
Designing Highly Sensitive Microwave Antenna Sensor with Novel Model for Noninvasive Glucose Measurements
By
Progress In Electromagnetics Research, Vol. 176, 129-141, 2023
Abstract
The concentration induced permittivity change involves a dispersion which occurs at the resonant frequency, and is often not predictable by simulation using the traditional Cole-Cole model. To overcome this problem, a new Lorentz's model is proposed as a substitute for the Cole-Cole model. Under this new model, the glucose concentration is expected to be measured at the contact interface in the form of a resonant frequency shift. With the help of the model, a contact-based meander-line antenna sensor (CMS) is realized with a high ``sensitivity of 1.3158 dB/(mmol/L) in terms of d |S11|/dC, or of 17~18 MHz/(mmol/L) in terms of'' dω/dC. The model has been experimentally validated with in-vitro measurements and for proof-of-concept with in-vivo clinical investigations in the microwave frequency. Consistent with the predictions of model, a linear ``correlation is observed not only between the resonant frequency shift and the glucose concentration, but also between the S-parameters magnitude and glucose'' concentration.
Citation
Abhishek Kandwal, Louis W. Y. Liu, Jingzhen Li, Yuhang Liu, Huajie Tang, Ziheng Ju, Tobore Igbe, Rohit Jasrotia, and Zedong Nie, "Designing Highly Sensitive Microwave Antenna Sensor with Novel Model for Noninvasive Glucose Measurements," Progress In Electromagnetics Research, Vol. 176, 129-141, 2023.
doi:10.2528/PIER22113002
References

1. Kandwal, A., Z. Nie, T. Igbe, J. Li, Y. Liu, L. Liu, and Y. Hao, "Surface plasmonic feature microwave sensor with highly confined fields for aqueous-glucose and blood-glucose measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 70, No. 1-9, 8000309, 2021.

2. Blazquez-Bello, S., Y. Campos-Rocaa, A. Bangertb, and C. Sandhagen, "Impact of substrate and bending angle on the performance of microwave PCB sensors for permittivity measurements," Measurement, Vol. 175, 109114, 2021.
doi:10.1016/j.measurement.2021.109114

3. Omer, A. E., G. Shaker, S. Safavi-Naeini, et al. "Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 6, 1407-1420, 2020.
doi:10.1109/TBCAS.2020.3038589

4. Kiani, S., P. Rezaei, and M. Navaein, "Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection," Measurement, Vol. 160, 107805, 2020.
doi:10.1016/j.measurement.2020.107805

5. Li, J., T. Igbe, Y. Liu, Z. Nie, et al. "An approach for noninvasive blood glucose monitoring based on bioimpedance difference considering blood volume pulsation," IEEE Access, Vol. 6, 51119-51129, 2018.
doi:10.1109/ACCESS.2018.2866601

6. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, John Wiley Sons, 2017.
doi:10.1002/9781119079699

7. Karacolak, T., E. C. Moreland, and E. Topsakal, "Cole-cole model for glucose dependent dielectric properties of blood plasma for continuous glucose monitoring," Microw. Opt. Technol. Lett., Vol. 55, 2013.

8. Yilmaz, T., R. Foster, and Y. Hao, "Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels," IEEE Transactions on Antennas Propag., Vol. 62, 3064-3075, 2014.
doi:10.1109/TAP.2014.2313139

9. Yilmaz, T., R. Foster, and Y. Hao, "Towards accurate dielectric property retrieval of biological tissues for blood glucose monitoring," IEEE Transactions on Microw. Theory Tech., Vol. 62, 3193-3204, 2014.
doi:10.1109/TMTT.2014.2365019

10. Saha, S., H. Cano-Garcia, I. Sotiriou, et al. "A glucose sensing system based on transmission measurements at millimetre waves using microstrip patch antennas," Sci. Reports, Vol. 7, 6855, 2017.

11. Qiang, T., C. Wang, and N.-Y. Kim, "Quantitative detection of glucose level based on radiofrequency patch biosensor combined with volume-fixed structures," Biosensors and Bioelectronics, Vol. 98, 357-363, 2017.
doi:10.1016/j.bios.2017.06.057

12. Kim, N. Y., R. Dhakal, K. K. Adhikari, E. S. Kim, and C. Wang, "A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level," Biosensors and Bioelectronics, Vol. 67, 687-693, 2015.
doi:10.1016/j.bios.2014.10.021

13. Maosn, A., A. Shaw, and A. Al-Shamma, "A co-planar sensor for biomedical applications," Procedia Engineering, Vol. 47, 438-441, 2012.
doi:10.1016/j.proeng.2012.09.178

14. Kim, S., H. Melikyan, J. Kim, A. Babajanyan, J.-H. Lee, L. Enkhtur, B. Friedman, and K. Lee, "Noninvasive in vitro measurement of pig-blood d-glucose by using a microwave cavity sensor," Diabetes Research and Clinical Practice, Vol. 96, No. 3, 379-384, 2012.
doi:10.1016/j.diabres.2012.01.018

15. Kandwal, A., J. Li, T. Igbe, et al. "Young's double slit method-based higher order mode surface plasmon microwave antenna sensor: Modeling, measurements, and application," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-11, 2022.
doi:10.1109/TIM.2022.3214289

16. Choi, H., J. Naylon, S. Luzio, et al. "Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor," IEEE Transactions on Microw. Theory Tech., Vol. 63, 3016-3025, 2015.
doi:10.1109/TMTT.2015.2472019

17. Camli, B., E. Kusakci, B. Lafci, et al. "A microwave ring resonator based glucose sensor," Procedia Eng., Vol. 168, 465-468, 2016.
doi:10.1016/j.proeng.2016.11.127

18. Islam, M., A. Hoque, A. Almutairi, and N. Amin, "Left-handed metamaterial-inspired unit cell for S-band glucose sensing application," Sensors, Vol. 19, 169, 2019.
doi:10.3390/s19010169

19. Abedeen, Z. and P. Agarwal, "Microwave sensing technique based label-free and real-time planar glucose analyzer fabricated on FR4," Sensors and Actuators A: Physical, Vol. 279, 132-139, 2018.
doi:10.1016/j.sna.2018.06.011

20. Liu., L. W. Y., A. Kandwal, Q. Cheng, et al. "Non-invasive blood glucose monitoring using a curved goubau line," Electronics, Vol. 8, 662, 2019.
doi:10.3390/electronics8060662

21. Liu., L. W. Y., A. Kandwal, A. Kogut, et al. "In-vivo and ex-vivo measurements of blood glucose using whispering gallery modes," Sensors, Vol. 20, 830, 2020.
doi:10.3390/s20030830

22. Tobore, I., J. Li, A. Kandwal, et al. "Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring," BMC Med. Inform. Decis. Mak., Vol. 19, 266, 2019.
doi:10.1186/s12911-019-0959-9

23. Kandwal, A., T. Igbe, J. Li, et al. "Highly sensitive closed loop enclosed split ring biosensor with high field confinement for aqueous and blood-glucose measurements," Sci. Rep., Vol. 10, 4081, 2020.
doi:10.1038/s41598-020-60806-9

24. Tobore, I., A. Kandwal, J. Li, et al. "Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach," Knowledge-Based Systems, Vol. 209, 106464, 2020.
doi:10.1016/j.knosys.2020.106464

25. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 5, 121-123, May 1997.
doi:10.1109/75.569723

26. Tang, L., S. J. Chang, C.-J. Chen, and J.-T. Liu, "Non-invasive blood glucose monitoring technology: A review," Sensors, Vol. 20, No. 23, 6925, 2020.
doi:10.3390/s20236925

27. Tang, W.-X., H. Zhao, J. Y. Chin, and T. J. Cui, "A meander line resonator to realize negative index materials," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

28. Keiser, G. R., H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, "Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies," Applied Physics Letters, Vol. 105, 081112, 2014.
doi:10.1063/1.4894466

29. Mehrotra, P., B. Chatterjee, and S. Sen, "EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing," Sensors, Vol. 19, No. 5, 1013, 2019.
doi:10.3390/s19051013

30. Schmickl, S., T. Faseth, H. Pretl, and , "An RF-energy harvester and IR-UWB transmitter for ultra-low-power battery-less biosensors," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 5, 1459-1468, 2020.
doi:10.1109/TCSI.2020.2970765

31. Ahmadivand, A., B. Gerislioglu, R. Ahuja, and Y. K. Mishra, "Terahertz plasmonics: The rise of toroidal metadevices towards immune biosensings," Materials Today, Vol. 32, 108-130, 2020.
doi:10.1016/j.mattod.2019.08.002

32. Suwalak, R., C. Phongcharoenpanich, D. Torrungrueng, and M. Krairiksh, "Determination of dielectric property of construction material products using a novel RFID sensor," Progress In Electromagnetics Research, Vol. 130, 601-617, 2012.
doi:10.2528/PIER12070107

33. Guillod, T., F. Kehl, and C. V. Hafner, "FEM-based method for the simulation of dielectric waveguide grating biosensors," Progress In Electromagnetics Research, Vol. 137, 565-583, 2013.
doi:10.2528/PIER13020502

34. Caratelli, D., A. G. Yarovoy, A. Massaro, and A. Lay-Ekuakille, "Design and full-wave analysis of piezoelectric micro-needle antenna sensors for enhanced near-field detection of skin cancer," Progress In Electromagnetics Research, Vol. 125, 391-413, 2012.
doi:10.2528/PIER11101205