1. Wade, S. A., S. F. Collins, and G. W. Baxter, "Fluorescence intensity ratio technique for optical fiber point temperature sensing," J. Appl. Phys., Vol. 94, 4743-4756, 2003.
doi:10.1063/1.1606526 Google Scholar
2. Li, E., X. Wang, and C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett., Vol. 89, 091119, 2006.
doi:10.1063/1.2344835 Google Scholar
3. Choi, H. Y., K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Opt. Lett., Vol. 33, 2455-2457, 2008.
doi:10.1364/OL.33.002455 Google Scholar
4. Ramakrishnan, M., G. Rajan, Y. Semenova, and G. Farrell, "Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials," Sensors, Vol. 16, 99, 2016.
doi:10.3390/s16010099 Google Scholar
5. Perez-Garcia, G. F., J. L. Camas-Anzueto, G. Anzueto-Sanchez, M. Perez-Patricio, and F. R. Lopez-Estrada, "Demonstration of improving the sensitivity of a fiber optic temperature sensor using the wavelength of maximum absorption of the lophine," Measurement, Vol. 187, 110378, 2022.
doi:10.1016/j.measurement.2021.110378 Google Scholar
6. Song, E., M. Chen, Z. Chen, et al. "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nat. Commun., Vol. 13, 1-9, 2022. Google Scholar
7. Moreira, M. F., et al., "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett., Vol. 85, 2691-2693, 2004.
doi:10.1063/1.1781363 Google Scholar
8. Zhao, L., Y. Wang, Y. Yuan, et al. "Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor," Opt. Commun., Vol. 402, 181-185, 2017.
doi:10.1016/j.optcom.2017.06.008 Google Scholar
9. Wang, F., Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, "High-sensitivity Fabry-Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect," Opt. Lett., Vol. 43, 5355-5358, 2018.
doi:10.1364/OL.43.005355 Google Scholar
10. Chiang, L. Y., C. T. Wang, T. S. Lin, S. Pappert, and P. Yu, "Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler," Opt. Express, Vol. 28, 29345-29356, 2020.
doi:10.1364/OE.403710 Google Scholar
11. Chen, C., W.-C. Lin, L.-S. Liao, et al. "Optical temperature sensing based on the Goos-Hanchen effect," Appl. Opt., Vol. 46, 5347-5351, 2007.
doi:10.1364/AO.46.005347 Google Scholar
12. Tang, T., C. Li, L. Luo, Y. Zhang, and Q. Yuan, "Thermo-optic Imbert-Fedorov effect in a prism- waveguide coupling system with silicon-on-insulator," Opt. Commun., Vol. 370, 49-54, 2016.
doi:10.1016/j.optcom.2016.03.005 Google Scholar
13. Turhan-Sayan, G., "Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor," J. Lightwave Technol., Vol. 21, 805, 2003.
doi:10.1109/JLT.2003.809552 Google Scholar
14. Chen, C. W., H. P. Chiang, D. P. Tsai, and P. T. Leung, "Temperature dependence of the surface- plasmon-induced Goos-Hanchen shifts," Appl. Phys. B, Vol. 107, 111-118, 2012.
doi:10.1007/s00340-011-4756-0 Google Scholar
15. Xu, Y., L. Wu, and L. K. Ang, "Ultrasensitive optical temperature transducers based on surface plasmon resonance enhanced composited Goos-Hanchen and Imbert-Fedorov shifts," IEEE J. Sel. Top. Quantum Electron., Vol. 27, 1-8, 2021.
doi:10.1109/JSTQE.2021.3093212 Google Scholar
16. Onoda, M., S. Murakami, and N. Nagaosa, "Hall effect of light," Phys. Rev. Lett., Vol. 93, 083901, 2004.
doi:10.1103/PhysRevLett.93.083901 Google Scholar
17. Bliokh, K. Y. and Y. P. Bliokh, "Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet," Phys. Rev. Lett., Vol. 96, 073903, 2006.
doi:10.1103/PhysRevLett.96.073903 Google Scholar
18. Hosten, O. and P. Kwiat, "Observation of the spin Hall effect of light via weak measurements," Science, Vol. 319, 787-790, 2008.
doi:10.1126/science.1152697 Google Scholar
19. Bliokh, K. Y., A. Niv, V. Kleiner, and E. Hasman, "Geometrodynamics of spinning light," Nat. Photon., Vol. 2, 748, 2008.
doi:10.1038/nphoton.2008.229 Google Scholar
20. Qin, Y., Y. Li, H. He, and Q. Gong, "Measurement of spin Hall effect of reflected light," Opt. Lett., Vol. 34, 2551, 2009.
doi:10.1364/OL.34.002551 Google Scholar
21. Ling, X., X. Zhou, K. Huang, and Y. Liu, "Recent advances in the spin Hall effect of light," Rep. Prog. Phys., Vol. 80, 066401, 2017.
doi:10.1088/1361-6633/aa5397 Google Scholar
22. Kim, M., D. Lee, and J. Rho, "Spin Hall effect: Spin Hall effect under arbitrarily polarized or unpolarized light," Laser Photonics Rev., Vol. 15, 7, 2021. Google Scholar
23. Petersen, J., J. Volz, and A. Rauschenbeutel, "Chiral nanophotonic waveguide interface based on spin-orbit interaction of light," Science, Vol. 34, 67-71, 2014.
doi:10.1126/science.1257671 Google Scholar
24. Bliokh, K. Y., F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, "Spin-orbit interactions of light," Nat. Photon., Vol. 9, 796, 2015.
doi:10.1038/nphoton.2015.201 Google Scholar
25. Cardano, F. and L. Marrucci, "Spin-orbit photonics," Nat. Photon., Vol. 9, 776, 2015.
doi:10.1038/nphoton.2015.232 Google Scholar
26. Shao, Z., J. Zhu, Y. Chen, Y. Zhang, and S. Yu, "Spin-orbit interaction of light induced by transverse spin angular momentum engineering," Nat. Commun., Vol. 9, 1-11, 2018.
doi:10.1038/s41467-017-02088-w Google Scholar
27. Fu, S., C. Guo, G. Liu, Y. Li, H. Yin, Z. Li, and Z. Chen, "Spin-orbit optical Hall effect," Phys. Rev. Lett., Vol. 123, 243904, 2019.
doi:10.1103/PhysRevLett.123.243904 Google Scholar
28. Fang, L., H. Wang, Y. Liang, H. Cao, and J. Wang, "Spin-orbit mapping of light," Phys. Rev. Lett., Vol. 127, 233901, 2021.
doi:10.1103/PhysRevLett.127.233901 Google Scholar
29. Chi, C., Q. Jiang, Z. Liu, L. Zheng, M. Jiang, H. Zhang, F. Lin, B. Shen, and Z. Fang, "Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect," Sci. Adv., Vol. 7, eabf8011, 2021.
doi:10.1126/sciadv.abf8011 Google Scholar
30. Zhou, X., Z. Xiao, H. Luo, and S. Wen, "Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements," Phys. Rev. A, Vol. 85, 043809, 2012.
doi:10.1103/PhysRevA.85.043809 Google Scholar
31. Mi, C., S. Chen, X. Zhou, K. Tian, H. Luo, and S. Wen, "Observation of tiny polarization rotation rate in total internal reflection via weak measurements," Photonics Res., Vol. 5, 92-96, 2017.
doi:10.1364/PRJ.5.000092 Google Scholar
32. Wang, B., K. Rong, E. Maguid, V. Kleiner, and E. Hasman, "Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect," Nat. Nanotechnol., Vol. 15, 450-456, 2020.
doi:10.1038/s41565-020-0670-0 Google Scholar
33. Wang, R., J. Zhou, K. Zeng, et al. "Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect," Apl. Photonics, Vol. 5, 016105, 2020.
doi:10.1063/1.5131183 Google Scholar
34. Li, S., Z. Chen, L. Xie, Q. Liao, X. Zhou, Y. Chen, and X. Lin, "Weak measurements of the waist of an arbitrarily polarized beam via in-plane spin splitting," Opt. Express, Vol. 29, 8777-8785, 2021.
doi:10.1364/OE.420432 Google Scholar
35. Zhou, X., L. Sheng, and X. Ling, "Photonic spin Hall effect enabled refractive index sensor using weak measurements," Sci. Rep., Vol. 8, 1-8, 2018. Google Scholar
36. Zhu, W., H. Xu, J. Pan, et al. "Black phosphorus terahertz sensing based on photonic spin Hall effect," Opt. Express, Vol. 28, 25869-25878, 2020.
doi:10.1364/OE.399071 Google Scholar
37. Nie, P., L. Sheng, L. Xie, Z. Chen, X. Zhou, Y. Chen, and X. Lin, "Gas sensing near exceptional points," J. Phys. D, Vol. 54, 254001, 2021.
doi:10.1088/1361-6463/abf167 Google Scholar
38. Liu, S., X. Yin, and H. Zhao, "Dual-function photonic spin Hall effect sensor for high-precision refractive index sensing and graphene layer detection," Opt. Express, Vol. 30, 31925-31936, 2022.
doi:10.1364/OE.463923 Google Scholar
39. Zhou, J., H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, "Broadband photonic spin Hall meta-lens," ACS Nano, Vol. 12, 82-88, 2018.
doi:10.1021/acsnano.7b07379 Google Scholar
40. Du, L., et al., "On-chip photonic spin Hall lens," ACS Photonics, Vol. 6, 1840-1847, 2019.
doi:10.1021/acsphotonics.9b00551 Google Scholar
41. Jin, R., L. Tang, J. Li, J. Wang, Q. Wang, Y. Liu, and Z. G. Dong, "Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin hall effect," ACS Photonics, Vol. 7, 512-518, 2020.
doi:10.1021/acsphotonics.9b01608 Google Scholar
42. Xie, Z., T. Lei, H. Qiu, Z. Zhang, H. Wang, and X. Yuan, "Broadband on-chip photonic spin Hall element via inverse design," Photonics Res., Vol. 8, 121-126, 2020.
doi:10.1364/PRJ.8.000121 Google Scholar
43. He, A., Y. Xu, B. Gao, T. Zhang, and J. Zhang, "Subwavelength broadband photonic spin hall devices via optical slot antennas," Laser Photonics Rev., Vol. 15, 2000460, 2021.
doi:10.1002/lpor.202000460 Google Scholar
44. Lei, T., C. Zhou, D. Wang, et al. "On-chip high-speed coherent optical signal detection based on photonic spin-Hall effect," Laser Photonics Rev., Vol. 16, 2100669, 2022.
doi:10.1002/lpor.202100669 Google Scholar
45. Jackson, J. D., Classical Electrodynamics, Wiley, 1962.
46. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2008.
47. Vuks, M. F., "Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals," Opt. Spectrosc., Vol. 20, 361, 1966. Google Scholar
48. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys., Vol. 95, 896-901, 2004.
doi:10.1063/1.1635971 Google Scholar
49. Li, J., S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys., Vol. 96, 19-24, 2004.
doi:10.1063/1.1757034 Google Scholar
50. Wu, S. T., "Birefringence dispersions of liquid crystals," Phys. Rev. A, Vol. 33, 1270, 1986.
doi:10.1103/PhysRevA.33.1270 Google Scholar
51. Haller, I., "Thermodynamic and static properties of liquid crystals," Prog. Solid State Chem., Vol. 10, 103-118, 1975.
doi:10.1016/0079-6786(75)90008-4 Google Scholar
52. Li, J., S. Gauzia, and S. T. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express, Vol. 12, 2002-2010, 2004.
doi:10.1364/OPEX.12.002002 Google Scholar
53. Luo, H., W. Hu, X. Yi, H. Liu, and J. Zhu, "Amphoteric refraction at the interface between isotropic and anisotropic media," Opt. Commun., Vol. 254, 353-360, 2005.
doi:10.1016/j.optcom.2005.05.050 Google Scholar
54. Shah, S., X. Lin, L. Shen, M. Renuka, B. Zhang, and H. Chen, "Interferenceless polarization splitting through nanoscale van der Waals heterostructures," Phys. Rev. Appl., Vol. 10, 034025, 2018.
doi:10.1103/PhysRevApplied.10.034025 Google Scholar
55. Aiello, A., M. Merano, and J. P. Woerdman, "Duality between spatial and angular shift in optical reflection," Phys. Rev. A, Vol. 80, 061801, 2009.
doi:10.1103/PhysRevA.80.061801 Google Scholar
56. Zhou, X., L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, "Large in-plane asymmetric spin angular shifts of a light beam near the critical angle," Opt. Lett., Vol. 44, 207-210, 2019.
doi:10.1364/OL.44.000207 Google Scholar
57. Ling, X., X. Zhou, X. Yi, et al. "Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence," Light: Sci. Appl., Vol. 4, e290, 2015.
doi:10.1038/lsa.2015.63 Google Scholar
58. Ling, X., F. Guan, X. Cai, et al. "Topology-induced phase transitions in spin-orbit photonics," Laser Photonics Rev., Vol. 15, 2000492, 2021.
doi:10.1002/lpor.202000492 Google Scholar
59. Ling, X., W. Xiao, S. Chen, X. Zhou, H. Luo, and L. Zhou, "Revisiting the anomalous spin-Hall effect of light near the Brewster angle," Phys. Rev. A, Vol. 103, 033515, 2021.
doi:10.1103/PhysRevA.103.033515 Google Scholar
60. Mazanov, M., O. Yermakov, A. Bogdanov, and A. Lavrinenko, "On anomalous optical beam shifts at near-normal incidence," APL Photonics, Vol. 7, 101301, 2022.
doi:10.1063/5.0111203 Google Scholar
61. Neugebauer, M., S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, "Weak measurement enhanced spin Hall effect of light for particle displacement sensing," Nano Lett., Vol. 19, 422, 2019.
doi:10.1021/acs.nanolett.8b04219 Google Scholar