1. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photonics, Vol. 14, No. 1., 383-390, 2020.
doi:10.1038/s41566-020-0604-2 Google Scholar
2. Jia, Y., C. Qian, Z. Fan, T. Cai, E. Li, and H. Chen, "A knowledge-inherited learning for intelligent metasurface design and assembly," Light: Science $$$$$$$$$&$$$$$$$$$ Applications, Vol. 12, No. 2., 82, 2023.
doi:10.1038/s41377-023-01131-4 Google Scholar
3. Zhang, J., C. Qian, J. Chen, B. Wu, and H. Chen, "Uncertainty qualification for metasurface design with amendatory Bayesian network," Laser $$$$$$$$$&$$$$$$$$$ Photonics Reviews, No. 3., 2200807, 2023.
doi:10.1002/lpor.202200807 Google Scholar
4. Maass, W., T. Natschl ager, and H. Markram, "Real-time computing without stable states: A new framework for neural computation based on perturbations," Neural Comput., Vol. 14, No. 11, 2531-2560, 2002.
doi:10.1162/089976602760407955 Google Scholar
5. Jaeger, H. and H. Haas, "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication," Science, Vol. 304, No. 5667, 78-80, 2004.
doi:10.1126/science.1091277 Google Scholar
6. Der Sande, G. V., D. Brunner, and M. C. Soriano, "Advances in photonic reservoir computing," Nanophotonics, Vol. 6, No. 3, 561-576, 2017.
doi:10.1515/nanoph-2016-0132 Google Scholar
7. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system," Opt. Express, Vol. 27, No. 16, 23293-23306, 2019.
doi:10.1364/OE.27.023293 Google Scholar
8. Vandoorne, K., J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, "Parallel reservoir computing using optical amplifiers," IEEE Transactions on Neural Networks, Vol. 22, No. 9, 1469-1481, 2011.
doi:10.1109/TNN.2011.2161771 Google Scholar
9. Takano, K., C. Sugano, M. Inubushi, K. Yoshimura, S. Sunada, K. Kanno, and A. Uchida, "Compact reservoir computing with a photonic integrated circuit," Opt. Express, Vol. 26, No. 22, 29424-29439, 2018.
doi:10.1364/OE.26.029424 Google Scholar
10. Vatin, J., D. Rontani, and M. Sciamanna, "Enhanced performance of a reservoir computer using polarization dynamics in VCSELs," Opt. Lett., Vol. 43, No. 18, 4497-4500, 2018.
doi:10.1364/OL.43.004497 Google Scholar
11. Appeltant, L., M. C. Soriano, G. van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, "Information processing using a single dynamical node as complex system," Nature Commun., Vol. 2, No. 11., 468, 2011.
doi:10.1038/ncomms1476 Google Scholar
12. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, No. 12., 1364, 2013.
doi:10.1038/ncomms2368 Google Scholar
13. Ortin, S. and L. Pesquera, "Reservoir computing with an ensemble of time-delay reservoirs," Cogn. Comput., Vol. 9, No. 3, 327-336, 2017.
doi:10.1007/s12559-017-9463-7 Google Scholar
14. Goldmann, M., F. Koster, K. Ludge, and S. Yanchuk, "Deep time-delay reservoir computing: Dynamics and memory capacity," Chaos, Vol. 30, No. 14., 093124, 2020.
doi:10.1063/5.0017974 Google Scholar
15. Stelzer, F., A. Rohm, K. Ludge, and S. Yanchuk, "Performance boost of time-delay reservoir computing by non-resonant clock cycle," Neural Networks, Vol. 124, No. 15., 158-169, 2020.
doi:10.1016/j.neunet.2020.01.010 Google Scholar
16. Vatin, J., D. Rontani, and M. Sciamanna, "Experimental reservoir computing using VCSEL polarization dynamics," Opt. Express, Vol. 27, No. 16., 18579-18584, 2019.
doi:10.1364/OE.27.018579 Google Scholar
17. Soriano, M. C., S. Ortin, L. Keuninckx, L. Appeltant, J. Danckaert, L. Pesquera, and G. van der Sande, "Delay-based reservoir computing: Noise effects in a combined analog and digital implementation," IEEE Trans. Neural Netw. Learn. Syst., Vol. 26, No. 2, 388-393, 2015.
doi:10.1109/TNNLS.2014.2311855 Google Scholar
18. Larger, L., M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, "Photonic information processing beyond turing: An optoelectronic implementation of reservoir computing," Opt. Express, Vol. 20, No. 3, 3241-3249, 2012.
doi:10.1364/OE.20.003241 Google Scholar
19. Hulser, T., F. Koster, K. Ludge, and L. Jaurigue, "Deriving task specific performance from the information processing capacity of a reservoir computer," Nanophotonics, Vol. 12, No. 19., 937-947, 2023.
doi:10.1515/nanoph-2022-0415 Google Scholar
20. Chen, Y., L. Yi, J. Ke, Z. Yang, Y. Yang, L. Huang, Q. Zhuge, and W. Hu, "Reservoir computing system with double optoelectronic feedback loops," Opt. Express, Vol. 27, No. 20, 27431-27440, 2019.
doi:10.1364/OE.27.027431 Google Scholar
21. Li, Z., S. S. Li, X. Zou, W. Pan, and L. Yan, "Processing-speed enhancement in a delay-laser-based reservoir," Photonics, Vol. 9, No. 21., 240, 2022.
doi:10.3390/photonics9040240 Google Scholar
22. Chemboa, Y. K., "Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems," Chaos, Vol. 30, No. 22., 013111, 2020.
doi:10.1063/1.5120788 Google Scholar
23. Ashner, M. N., U. Paudel, M. Luengo-Kovac, J. Pilawa, T. Justin Shaw, and G. C. Valley, "Photonic reservoir computer with all-optical reservoir," Proc. SPIE, AI and Optical Data Sciences II, No. 23., 117030L, 2021. Google Scholar
24. Skontranis, M., G. Sarantoglou, A. Bogris, and C. Mesaritakis, "Time-delayed reservoir computing based on a dual-waveband quantum-dot spin polarized vertical cavity surface-emitting laser," Optical Materials Express, Vol. 12, No. 24., 4047-4060, 2022.
doi:10.1364/OME.451585 Google Scholar
25. Chen, P., R. Liu, K. Aihara, and L. Chen, "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Commun., Vol. 11, No. 25., 4568, 2020.
doi:10.1038/s41467-020-18381-0 Google Scholar
26. Xu, Y., M. Zhang, L. Zhang, P. Lu, S. Mihailov, and X. Bao, "Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback," Opt. Lett., Vol. 42, No. 26., 4107-4110, 2017.
doi:10.1364/OL.42.004107 Google Scholar
27. Zhang, L., B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, "640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser," Sci. Rep., Vol. 7, No. 27., 45900, 2017.
doi:10.1038/srep45900 Google Scholar
28. Estebanez, I., J. Schwind, I. Fischer, and A. Argyris, "Accelerating photonic computing by bandwidth enhancement of a time-delay reservoir," Nanophotonics, Vol. 9, No. 13, 4163-4171, 2020.
doi:10.1515/nanoph-2020-0184 Google Scholar
29. Wang, T., X. Wang, Z. Deng, J. Sun, G. P. Puccioni, G. Wang, and G. L. Lippi, "Dynamics of a micro-VCSEL operated in the threshold region under low-level optical feedback," IEEE J. Sel. Top. Quantum Electron., Vol. 25, No. 29., 1700308, 2019. Google Scholar
30. Wang, T. and G. L. Lippi, "Polarization-resolved cartography of light emission of a vertical-cavity surface-emitting laser with high space and frequency resolution," Appl. Phys. Lett., Vol. 107, No. 30., 181103, 2015.
doi:10.1063/1.4935040 Google Scholar
31. Torre, M. S., C. Masoller, P. Mandel, and K. A. Shore, "Enhanced sensitivity to current modulation near dynamic instability in semiconductor lasers with optical feedback and optical injection," J. Opt. Soc. Am. B, Vol. 21, No. 31., 302-306, 2004.
doi:10.1364/JOSAB.21.000302 Google Scholar
32. Nazhan, S., Z. Ghassemlooy, K. Busawon, and A. Gholami, "Investigation of polarization switching of VCSEL subject to intensity modulated and optical feedback," Optics $$$$$$$$$&$$$$$$$$$ Laser Technology, Vol. 75, No. 32., 240-245, 2015.
doi:10.1016/j.optlastec.2015.07.008 Google Scholar
33. Deng, H., G. L. Lippi, J. Mork, J. Wiersig, and S. Reitzenstein, "Physics and applications of high-β micro- and nanolasers," Adv. Optical Mater., Vol. 9, No. 33., 2100415, 2021.
doi:10.1002/adom.202100415 Google Scholar
34. Javanshir, A., T. T. Nguyen, M. A. Parvez Mahmud, and A. Z. Kouzani, "Advancements in algorithms and neuromorphic hardware for spiking neural networks," Neural Comput., Vol. 34, No. 6, 1289-1328, 2022.
doi:10.1162/neco_a_01499 Google Scholar
35. Wang, T., G. P. Puccioni, and G. L. Lippi, "Dynamical buildup of lasing in mesoscale devices," Scientific Reports, Vol. 5, No. 35., 15858, 2015.
doi:10.1038/srep15858 Google Scholar
36. Wang, T., C. Jiang, J. Zou, J. Yang, K. Xu, C. Jin, G. Wang, G. P. Puccioni, and G. L. Lippi, "Nanolasers with feedback as low-coherence illumination sources for speckle-free imaging: A numerical analysis of the superthermal emission regime," Nanomaterials, Vol. 11, No. 36., 3325, 2021.
doi:10.3390/nano11123325 Google Scholar
37. Brunner, D., L. Larger, and M. C. Soriano, "Nonlinear photonic dynamical systems for unconventional computing," Nonlinear Theory and Its Applications, IEICE, Vol. 13, No. 37., 26-35, 2022.
doi:10.1587/nolta.13.26 Google Scholar
38. Puccioni, G. P. and G. L. Lippi, "Stochastic Simulator for modeling the transition to lasing," Opt. Express, Vol. 23, No. 3, 2369-2374, 2015.
doi:10.1364/OE.23.002369 Google Scholar
39. Lippi, G. L., T. Wang, and G. P. Puccioni, "`Phase transitions' in small systems: Why standard threshold definitions fail for nanolasers," Chaos, Solitons and Fractals, Vol. 157, No. 39., 111850, 2022.
doi:10.1016/j.chaos.2022.111850 Google Scholar
40. Rice, P. R. and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy," Phys. Rev. A, Vol. 50, No. 40., 4318, 1994.
doi:10.1103/PhysRevA.50.4318 Google Scholar
41. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "High-speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation," IEEE J. Sel. Top. Quantum Electron., Vol. 26, No. 41., 1500707, 2020. Google Scholar
42. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, No. 42., 1364, 2013.
doi:10.1038/ncomms2368 Google Scholar
43. Yue, D., Z. Wu, Y. Hou, B. Cui, Y. Jin, M. Dai, and G. Xia, "Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection," Opt. Exp., Vol. 27, No. 14, 19931-19939, 2019.
doi:10.1364/OE.27.019931 Google Scholar
44. Yue, D., Y. Hou, Z. Wu, C. Hu, Z. Xiao, and G. Xia, "Experimental investigation of an optical reservoir computing system based on two parallel time-delay reservoirs," IEEE Photonics Journal, Vol. 13, No. 3, 8500111, 2021.
doi:10.1109/JPHOT.2021.3075055 Google Scholar
45. Koster, F., S. Yanchuk, and K. Ludge, "Insight into delay based reservoir computing via eigenvalue analysis," J. Phys. Photonics, Vol. 3, No. 45., 024011, 2021.
doi:10.1088/2515-7647/abf237 Google Scholar
46. Hulser, T., F. Koster, L. Jaurigue, and K. Ludge, "Role of delay-times in delay-based photonic reservoir computing," Opt. Mater. Express, Vol. 12, No. 46., 1214-1231, 2022.
doi:10.1364/OME.451016 Google Scholar
47. Sugano, C., K. Kanno, and A. Uchida, "Reservoir computing using multiple lasers with feedback on a photonic integrated circuit," IEEE J. Sel. Topics Quantum Electron., Vol. 26, No. 1, 1-9, 2020.
doi:10.1109/JSTQE.2019.2929179 Google Scholar
48. Taylor, J., "Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements," University Science Books, No. 48., 349 (cit. on p. 84), 1997. Google Scholar