1. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334 Google Scholar
2. Wang, Y. M. and W. C. Chew, "An iterative solution of the two-dimensional electromagnetic inverse scattering problem," Int. J. Imag. Syst. Technol., Vol. 1, No. 1, 100-108, 1989.
doi:10.1002/ima.1850010111 Google Scholar
3. Cui, T. J. and W. C. Chew, "Inverse scattering of two-dimensional dielectric objects buried in a lossy Earth using the distorted Born iterative method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242 Google Scholar
4. Van den Berg, P. M. and A. Abubakar, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013 Google Scholar
5. Gilmore, C., P. Mojabi, and J. LoVetri, "Comparison of an enhanced distorted born iterative method and the multiplicative-regularized contrast source inversion method," IEEE Trans. Ant. Prop., Vol. 57, No. 8, 2341-2351, 2009.
doi:10.1109/TAP.2009.2024478 Google Scholar
6. Poli, L., G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," Journal of the Optical Society of America, Vol. 30, No. 6, 1261-1272, 2013.
doi:10.1364/JOSAA.30.001261 Google Scholar
7. Takenaka, T., Z. Q. Meng, T. Tanaka, and W. C. Chew, "Local shape function combined with genetic algorithm applied to inverse scattering for strips," Microw. Opt. Technol. Lett., Vol. 16, 337-341, 1997.
doi:10.1002/(SICI)1098-2760(19971220)16:6<337::AID-MOP5>3.0.CO;2-L Google Scholar
8. Otto, G. P. and W. C. Chew, "Microwave inverse scattering --- local shape function imaging for improved resolution of strong scatterers," IEEE Trans. Microw. Theory Technol., Vol. 42, No. 1, 137-141, 1994.
doi:10.1109/22.265541 Google Scholar
9. Ye, X., "Electromagnetic imaging of wave impenetrable objects," Proc. 11th Eur. Conf. Antennas Propag., 1421-1428, Paris, France, 2017. Google Scholar
10. Ye, X., Y. Zhong, and X. Chen, "Reconstructing perfectly electric conductors by the subspace-based optimization method with continuous variables," Inverse Problems, Vol. 27, No. 55011, 2011. Google Scholar
11. Shen, J., Y. Zhong, X. Chen, and L. Ran, "Inverse scattering problems of reconstructing perfectly electric conductors with TE illumination," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4713-4721, Sep. 2013.
doi:10.1109/TAP.2013.2271891 Google Scholar
12. Bevacqua, M. and T. Isernia, "Shape reconstruction via equivalence principles, constrained inverse source problems and sparsity promotion," Progress In Electromagnetic Research, Vol. 158, 37-48, 2017.
doi:10.2528/PIER16111404 Google Scholar
13. Bevacqua, M. and R. Palmeri, "Qualitative methods for the inverse obstacle problem: A comparison on experimental data," Journal of Imaging, Vol. 5, No. 4, 47, 2019.
doi:10.3390/jimaging5040047 Google Scholar
14. Stevanovic, M., L. Crocco, A. Djordjevic, and A. Nehorai, "Higher order sparse microwave imaging of PEC scatterers," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 988-997, 2016.
doi:10.1109/TAP.2016.2521879 Google Scholar
15. Vojnovic, N., M. Stevanovic, L. Crocco, and A. Djordjevic, "High-order sparse shape imaging of pec and dielectric targets using TE polarized fields," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 2035-2043, 2018.
doi:10.1109/TAP.2018.2809455 Google Scholar
16. Nikolic, M. M., A. Nehorai, and A. R. Djordjevic, "Electromagnetic imaging of hidden 2-D PEC targets using sparse-signal modeling," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 5, 2707-2721, 2013.
doi:10.1109/TGRS.2012.2215042 Google Scholar
17. Wang, F. F. and Q. H. Liu, "A Bernoulli-Gaussian binary inversion method for high-frequency electromagnetic imaging of metallic reflectors," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3184-3193, 2020.
doi:10.1109/TAP.2019.2952005 Google Scholar
18. Soldovieri, F., A. Brancaccio, G. Leone, and R. Pierri, "Shape reconstruction of perfectly conducting objects by multiview experimental data," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 1, 65-71, 2005.
doi:10.1109/TGRS.2004.839432 Google Scholar
19. Solimene, R., A. Buonanno, F. Soldovieri, R. Pierri, and , "Physical optics imaging of 3-D PEC objects: Vector and multipolarized approaches," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 4, 1799-1808, 2010.
doi:10.1109/TGRS.2009.2035053 Google Scholar
20. Cakoni, F., D. Colton, and P. Monk, The Linear Sampling Method in Inverse Scattering Theory, Society for Industrial and Applied Mathematics, 2011.
21. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, Vol. 19, S105-S137, 2003.
doi:10.1088/0266-5611/19/6/057 Google Scholar
22. Cakoni, F. and D. Colton, "The linear sampling method for cracks," Inverse Problems, Vol. 19, 279-295, 2003.
doi:10.1088/0266-5611/19/2/303 Google Scholar
23. Cakoni, F., D. Colton, and H. Haddar, "The linear sampling method for anisotropic media," J. Comp. App. Math., Vol. 146, 285-299, 2002.
doi:10.1016/S0377-0427(02)00361-8 Google Scholar
24. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563 Google Scholar
25. Guzina, B., F. Cakoni, and C. Bellis, "On the multifrequency obstacle reconstruction via the linear sampling method," Inverse Problems, Vol. 29, 125005, 2010.
doi:10.1088/0266-5611/26/12/125005 Google Scholar
26. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704 Google Scholar
27. Ambrosanio, M., M. Bevacqua, T. Isernia, and V. Pascazio, "Performance analysis of tomographic methods against experimental contactless multistatic ground penetrating radar," IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, Vol. 14, 1171-1183, 2021.
doi:10.1109/JSTARS.2020.3034996 Google Scholar
28. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3265-3273, 2008.
doi:10.1109/TGRS.2008.921745 Google Scholar
29. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, No. 4, 591-595, 2000.
doi:10.1088/0266-5611/17/4/301 Google Scholar
30. Guo, Y., P. Monk, and D. Colton, "The linear sampling method for sparse small aperture data," Applicable Analysis, Vol. 95, No. 8, 1599-1615, 2016.
doi:10.1080/00036811.2015.1065317 Google Scholar
31. Haddar, H., A. Lechleiter, and S. Marmorat, "An improved time domain linear sampling method for Robin and Neumann obstacles," Applicable Analysis, Vol. 93, No. 2, 369-390, 2014.
doi:10.1080/00036811.2013.772583 Google Scholar
32. Audibert, L. and H. Haddar, "The generalized linear sampling method for limited aperture measurements," SIAM J. Imag. Sci., Vol. 10, No. 2, 845-870, 2017.
doi:10.1137/16M110112X Google Scholar
33. Kuo, Y.-H. and J.-F. Kiang, "Deep-learning linear sampling method for shape restoration of multilayered scatterers," Progress In Electromagnetics Research C, Vol. 124, 197-209, 2022.
doi:10.2528/PIERC22081005 Google Scholar
34. Cakoni, F., M. Fares, and H. Haddar, "Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects," Inverse Problems, Vol. 22, 845-867, 2006.
doi:10.1088/0266-5611/22/3/007 Google Scholar
35. Burfeindt, M. and H. Alqadah, "Boundary-condition-enhanced linear sampling method imaging of conducting targets from sparse receivers," IEEE Trans. Ant. Prop., Vol. 70, No. 3, 2246-2260, 2022.
doi:10.1109/TAP.2021.3118831 Google Scholar
36. Burfeindt, M. and H. Alqadah, "Qualitative inverse scattering for sparse-aperture data collections using a phase-delay frequency variation constraint," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7530-7540, 2020.
doi:10.1109/TAP.2020.2998217 Google Scholar
37. Burfeindt, M. and H. Alqadah, "Qualitative inverse scattering from three-dimensional limited apertures using phase-delay frequency variation regularization," Proc. IEEE Int. Symp. Ant. Prop. USNC-URSI Nat. Radio Sci. Meeting, 1696-1697, 2022. Google Scholar
38. Burfeindt, M. and H. Alqadah, "Receive-beamforming-enhanced linear sampling method imaging," Proceedings of the IEEE Research and Applications of Photonics in Defense (RAPID) Conference, 2021. Google Scholar
39. Burfeindt, M. and H. Alqadah, "Phase-encoded linear sampling method imaging of conducting surfaces from full and limited synthetic apertures," IEEE Open Journal of Antennas and Propagation, Vol. 3, 1191-1205, 2022.
doi:10.1109/OJAP.2022.3214613 Google Scholar
40. Burfeindt, M. and H. Alqadah, "Ground penetrating radar imaging via the linear sampling method under a phase-encoded formulation," Proceedings of the IEEE Research and Applications of Photonics in Defense (RAPID) Conference, 2022. Google Scholar
41. Balanis, C., Advanced Engineering Electromagnetics, Sec. 6.6, John Wiley and Sons, 1989.
42. Alqadah, H. and M. Burfeindt, "An adaptive monostatic inverse scattering approach using virtual multistatic geometries," Proc. IEEE Radar Conference, 2023. Google Scholar
43. Akinci, M. N., M. Cayoren, and I. Akduman, "Near-field orthogonality sampling method for microwave imaging: Theory and experimental verification," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 8, 2489-2501, 2016.
doi:10.1109/TMTT.2016.2585488 Google Scholar
44. Leem, K. H., J. Liu, and G. Pelekanos, "Two direct factorization methods for inverse scattering problems," Inverse Problems, Vol. 34, No. 12, 125004, 2018.
doi:10.1088/1361-6420/aae15e Google Scholar
45. Satopaa, V., J. Albrecht, D. Irwin, and B. Raghavan, "Finding a `Kneedle' in a Haystack: Detecting knee points in system behavior," Proc. Int. Conf. Dist. Comp. Sys. Workshops, 2011. Google Scholar
46. Hansen, P. C., Rank-Deficient and Discrete Ill-posed Problems, Society for Industrial and Applied Mathematics, 1998.
doi:10.1137/1.9780898719697
47. Crocco, L., I. Catapano, L. Di Donato, and T. Isernia, "The linear sampling method as a way to quantitative inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1844-1853, 2012.
doi:10.1109/TAP.2012.2186250 Google Scholar
48. Palmeri, R., M. Bevacqua, L. Crocco, T. Isernia, and L. Di Donato, "Microwave imaging via distorted iterated virtual experiments," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 829-838, 2017.
doi:10.1109/TAP.2016.2633070 Google Scholar
49. Geffrin, J. and P. Sabouroux, "Continuing with the Fresnel database: experimental setup and improvements in 3D scattering measurements," Inverse Problems, Vol. 25, No. 024001, 1-18, 2009. Google Scholar