Vol. 177
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-07-28
Two-Dimensional Acoustic Asymmetric Vortex Focusing Lens by Binary-Phase Mode Converters
By
Progress In Electromagnetics Research, Vol. 177, 127-137, 2023
Abstract
Recently, the study of acoustic vortex beams has attracted a great attention owing to its potential applications in medical ultrasound imaging and trapping particles. In some special applications of medical ultrasound, it generally needs the simultaneous realization of vortex focusing and asymmetric propagation in three-dimensional (3D) space. However, the design of a two-dimensional (2D) device with asymmetric acoustic vortex focusing (AAVF) remains a challenge. To overcome it, we experimentally demonstrate a 2D AAVF lens composed of three types of binary-phase mode converters. By simultaneously introducing the phase profiles of acoustic focusing and vortex caused by the mode converters, we design a 2DAAVF lens with the topological charge n = 2, i.e., the sound energy can pass through the lens from the upper side and forms a vortex focus in 3D space; however, it cannot transmit through the lens from the other side. The vortex focusing and asymmetric transmission arise from the phase manipulation and the conversion between the zero-order and first-order waves caused by the mode converters, respectively. The measured fractional bandwidth can reach about 0.19. The proposed lens has the advantages of high-performance AAVF, broad bandwidth and complex sound modulation in 3D space, which provides diverse routes for designing 3D multi-functional sound devices with promising applications in medical ultrasound.
Supplementary Information
Citation
Yin Wang, Hong-Yu Zou, Yu-Jing Lu, Shuai Gu, Jiao Qian, Jian-Ping Xia, Yong Ge, Hong-Xiang Sun, Shou-Qi Yuan, and Xiao-Jun Liu, "Two-Dimensional Acoustic Asymmetric Vortex Focusing Lens by Binary-Phase Mode Converters," Progress In Electromagnetics Research, Vol. 177, 127-137, 2023.
doi:10.2528/PIER23042502
References

1. Shi, C. Z., M. Dubois, Y. Wang, and X. Zhang, "High-speed acoustic communication by multiplexing orbital angular momentum," Proc. Natl. Acad. Sci. U. S. A., Vol. 114, No. 28, 7250-7253, 2017.
doi:10.1073/pnas.1704450114        Google Scholar

2. Li, X. J., Y. Z. Li, Q. Y. Ma, G. P. Guo, J. Tu, and D. Zhang, "Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays," J. Appl. Phys., Vol. 127, No. 12, 124902, 2020.
doi:10.1063/1.5135991        Google Scholar

3. Jimenez-Gambin, S., N. Jimenez, and F. Camarena, "Transcranial focusing of ultrasonic vortices by acoustic holograms," Phys. Re. Applied, Vol. 14, No. 15, 054070, 2020.
doi:10.1103/PhysRevApplied.14.054070        Google Scholar

4. Cao, J. M., K. X. Yang, X. S. Fang, L. Guo, Y. Li, and Q. Cheng, "Holographic tomography of dynamic three-dimensional acoustic vortex beam in liquid," Appl. Phys. Lett., Vol. 119, No. 14, 143501, 2021.
doi:10.1063/5.0062529        Google Scholar

5. Melde, K., E. Choi, Z. Wu, S. Palagi, T. Qiu, and P. Fischer, "Acoustic fabrication via the assembly and fusion of particles," Adv. Mater., Vol. 30, No. 3, 1704507, 2018.
doi:10.1002/adma.201704507        Google Scholar

6. Lim, M. X., A. Souslov, V. Vitelli, and H. M. Jaeger, "Cluster formation by acoustic forces and active fluctuations in levitated granular matter," Nat. Phys., Vol. 15, No. 5, 460-464, 2019.
doi:10.1038/s41567-019-0440-9        Google Scholar

7. Meng, L., F. Cai, F. Li, W. Zhou, L. Niu, and H. Zheng, "Acoustic tweezers," J. Phys. D: Appl. Phys., Vol. 52, No. 27, 273001, 2019.
doi:10.1088/1361-6463/ab16b5        Google Scholar

8. Wu, P. Y., Z. Ya, Y. Li, M. T. Zhu, L. Zhang, Y. J. Zong, S. F. Guo, and M. X. Wan, "Focused acoustic vortex-regulated composite nanodroplets combined with checkpoint blockade for high-performance tumor synergistic therapy," ACS Appl. Mater. Inter., Vol. 14, No. 27, 30466, 2022.
doi:10.1021/acsami.2c02137        Google Scholar

9. Zhang, L. K., "Reversals of orbital angular momentum transfer and radiation torque," Phys. Rev. Applied, Vol. 10, No. 3, 034039, 2018.
doi:10.1103/PhysRevApplied.10.034039        Google Scholar

10. Li, Y. Z., G. P. Guo, J Tu, Q. Y. Ma, X. S. Guo, D. Zhang, and O. A. Sapozhnikov, "Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects," Appl. Phys. Lett., Vol. 112, No. 25, 254101, 2018.
doi:10.1063/1.5036976        Google Scholar

11. Baresch, D., J. L. Thomas, and R. Marchiano, "Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams," Phys. Rev. Lett., Vol. 121, No. 7, 074301, 2018.
doi:10.1103/PhysRevLett.121.074301        Google Scholar

12. Li, J. F., A. Crivoi, X. Y. Peng, L. Shen, Y. J. Pu, Z. Fan, and S. A. Cummer, "Three dimensional acoustic tweezers with vortex streaming," Commun. Phys., Vol. 4, No. 1, 113, 2021.
doi:10.1038/s42005-021-00617-0        Google Scholar

13. Riaud, A., J. L. Thomas, E. Charron, A. Bussonniere, O. B. Matar, and M. Baudoin, "Anisotropic swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic vortices," Phys. Rev. Applied, Vol. 4, No. 3, 034004, 2015.
doi:10.1103/PhysRevApplied.4.034004        Google Scholar

14. Muelas-Hurtado, R. D., J. L. Ealo, and K. Volke-Sepulveda, "Active-spiral Fresnel zone plate with tunable focal length for airborne generation of focused acoustic vortices," Appl. Phys. Lett., Vol. 116, No. 11, 114101, 2020.
doi:10.1063/1.5137766        Google Scholar

15. Huang, H. F. and H. M. Huang, "Millimeter-wave wideband high efficiency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405        Google Scholar

16. Liang, Z. and J. Li, "Extreme acoustic metamaterial by coiling up space," Phys. Rev. Lett., Vol. 108, No. 11, 114301, 2012.
doi:10.1103/PhysRevLett.108.114301        Google Scholar

17. Cummer, S. A., J. Christensen, and A. Alu, "Controlling sound with acoustic metamaterials," Nat. Rev. Mater., Vol. 1, No. 3, 16001, 2016.
doi:10.1038/natrevmats.2016.1        Google Scholar

18. Wu, Y., M. Yang, and P. Sheng, "Perspective: Acoustic metamaterials in transition," J. Appl. Phys., Vol. 123, No. 9, 090901, 2018.
doi:10.1063/1.5007682        Google Scholar

19. Fan, X. D., Z. Zou, and L. Zhang, "Acoustic vortices in inhomogeneous media," Phys. Rev. Res., Vol. 1, No. 3, 032014, 2019.
doi:10.1103/PhysRevResearch.1.032014        Google Scholar

20. Ma, F., J. Chen, and J. H. Wu, "Experimental study on performance of time reversal focusing," J. Phys. D: Appl. Phys., Vol. 53, No. 5, 055302, 2019.
doi:10.1088/1361-6463/ab5696        Google Scholar

21. Jia, D., Y. Wang, Y. Ge, S. Q. Yuan, and H. X. Sun, "Tunable topological refractions in valley sonic crystals with triple valley hall phase transitions," Progress In Electromagnetics Research, Vol. 172, 13-22, 2021.
doi:10.2528/PIER21102002        Google Scholar

22. Wang, B. B., Y. Ge, S. Q. Yuan, D. Jia, and H. X. Sun, "Exceptional ring by non-hermitian sonic crystals," Progress In Electromagnetics Research, Vol. 176, 1-10, 2023.        Google Scholar

23. Ye, L. P., C. Y. Qiu, J. Lu, K. Tang, H. Jia, M. Ke, S. Peng, and Z. Y. Liu, "Making sound vortices by metasurfaces," AIP Adv., Vol. 6, No. 8, 085007, 2016.
doi:10.1063/1.4961062        Google Scholar

24. Li, J., A. Diaz-Rubio, C. Shen, Z. Jia, S. Tretyakov, and S. A. Cummer, "Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces," Phys. Rev. Applied, Vol. 11, No. 2, 024016, 2019.
doi:10.1103/PhysRevApplied.11.024016        Google Scholar

25. Jiang, X., D. A. Ta, and W. Q. Wang, "Modulation of orbital-angular-momentum symmetry of nondiffractive acoustic vortex beams and realization using a metasurface," Phys. Rev. Applied, Vol. 14, No. 3, 034014, 2020.
doi:10.1103/PhysRevApplied.14.034014        Google Scholar

26. Zhang, H. K., W. X. Zhang, Y. H. Liao, X. M. Zhou, J. F. Li, G. K. Hu, and X. D. Zhang, "Creation of acoustic vortex knots," Nat. Commun., Vol. 11, No. 1, 3956, 2020.
doi:10.1038/s41467-020-17744-x        Google Scholar

27. Fan, S. W., Y. F. Wang, L. Y. Cao, Y. F. Zhu, A. L. Chen, B. Vincent, B. Assouar, and Y. S. Wang, "Acoustic vortices with high-order orbital angular momentum by a continuously tunable metasurface," Appl. Phys. Lett., Vol. 116, No. 16, 163504, 2020.
doi:10.1063/5.0007351        Google Scholar

28. Jimenez, N., J. P. Groby, and V. Romero-Garcia, "Spiral sound-diffusing metasurfaces based on holographic vortices," Sci. Rep., Vol. 11, No. 1, 1-13, 2021.
doi:10.1038/s41598-020-79139-8        Google Scholar

29. Han, T. C., K. H. Wen, Z. X. Xie, and X. L. Yue, "An ultra-thin wideband reflection reduction metasurface based on polarization conversion," Progress In Electromagnetics Research, Vol. 173, 1-8, 2022.
doi:10.2528/PIER21121405        Google Scholar

30. Long, Y., D. M. Zhang, C. W. Yang, J. M. Ge, H. Chen, and J. Ren, "Realization of acoustic spin transport in metasurface waveguides," Nat. Commun., Vol. 11, No. 1, 4716, 2020.
doi:10.1038/s41467-020-18599-y        Google Scholar

31. Gong, K. M., X. Zhou, and J. L. Mo, "Continuously tuneable acoustic metasurface for high order transmitted acoustic vortices," Smart Mater. Struct., Vol. 31, No. 11, 115001, 2022.
doi:10.1088/1361-665X/ac9265        Google Scholar

32. Hong, Z. Y., J. Zhang, and B. W. Drinkwater, "On the radiation force fields of fractional-order acoustic vortices," EPL, Vol. 110, No. 1, 14002, 2015.
doi:10.1209/0295-5075/110/14002        Google Scholar

33. Jia, Y. R., Q. Wei, D. J. Wu, Z. Xu, and X. J. Liu, "Generation of fractional acoustic vortex with a discrete Archimedean spiral structure plate," Appl. Phys. Lett., Vol. 112, No. 17, 173501, 2018.
doi:10.1063/1.5026646        Google Scholar

34. Ealo, J. L., J. C. Prieto, and F. Seco, "Airborne ultrasonic vortex generation using flexible ferroelectrets," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 58, No. 8, 1651-1657, 2011.
doi:10.1109/TUFFC.2011.1992        Google Scholar

35. Wunenburger, R., J. I. V. Lozano, and E. Brasselet, "Acoustic orbital angular momentum transfer to matter by chiral scattering," New J. Phys., Vol. 17, No. 1, 103022, 2015.
doi:10.1088/1367-2630/17/10/103022        Google Scholar

36. Jiang, X., J. J. Zhao, S. L. Liu, B. Liang, X. Y. Zou, J. Yang, C. W. Qiu, and J. C. Cheng, "Broadband and stable acoustic vortex emitter with multi-arm coiling slits," Appl. Phys. Lett., Vol. 108, No. 20, 203501, 2016.
doi:10.1063/1.4949337        Google Scholar

37. Jimenez, N., V. Romero-Garcia, L. M. Garcia-Raffi, F. Camarena, and K. Staliunas, "Sharp acoustic vortex focusing by Fresnel-spiral zone plates," Appl. Phys. Lett., Vol. 112, No. 20, 204101, 2018.
doi:10.1063/1.5029424        Google Scholar

38. Jiang, X., Y. Li, B. Liang, J. C. Cheng, and L. Zhang, "Convert acoustic resonances to orbital angular momentum," Phys. Rev. Lett., Vol. 117, No. 3, 034301, 2016.
doi:10.1103/PhysRevLett.117.034301        Google Scholar

39. Guo, Z. Y., H. J. Liu, H. Zhou, K. Y. Zhou, S. M. Wang, F. Shen, Y. B. Gong, J. Gao, S. T. Liu, and K. Guo, "High-order acoustic vortex field generation based on a metasurface," Phys. Rev. E, Vol. 100, No. 5, 053315, 2019.
doi:10.1103/PhysRevE.100.053315        Google Scholar

40. Chen, D. C., Q. X. Zhou, X. F. Zhu, Z. Xu, and D. J. Wu, "Focused acoustic vortex by an artificial structure with two sets of discrete Archimedean spiral slits," Appl. Phys. Lett., Vol. 115, No. 8, 083501, 2019.
doi:10.1063/1.5108687        Google Scholar

41. Guo, S. F., X. Y. Guo, X. Wang, X. Du, P. Y. Wu, A. Bouakaz, and M. X. Wan, "Manipulation of nanodroplets via a nonuniform focused acoustic vortex," Phys. Rev. Applied, Vol. 13, No. 3, 034009, 2020.
doi:10.1103/PhysRevApplied.13.034009        Google Scholar

42. Li, X. R., Y. R. Jia, Y. C. Luo, J. Yao, and D. J. Wu, "Mixed focused-acoustic-vortices generated by an artificial structure plate engraved with discrete rectangular holes," Appl. Phys. Lett., Vol. 118, No. 4, 043503, 2021.
doi:10.1063/5.0038892        Google Scholar

43. Li, X. R., D. J. Wu, Y. C. Luo, J. Yao, and X. J. Liu, "Coupled focused acoustic vortices generated by degenerated artificial plates for acoustic coded communication," Adv. Mater. Technol., Vol. 7, No. 9, 2200102, 2022.
doi:10.1002/admt.202200102        Google Scholar

44. Baudoin, M., J. C. Gerbedoen, A. Riaud, O. B. Matar, N. Smagin, and J. L. Thomas, "Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers," Sci. Adv., Vol. 5, No. 4, eaav1967, 2019.
doi:10.1126/sciadv.aav1967        Google Scholar

45. Baudoin, M., J. L. Thomas, R. A. Sahely, J. C. Gerbedoen, Z. Gong, A. Sivery, O. B. Matar, N. Smagin, P. Favreau, and A. Vlandas, "Spatially selective manipulation of cells with single-beam acoustical tweezers," Nat. Commun,, Vol. 11, No. 1, 4244, 2020.
doi:10.1038/s41467-020-18000-y        Google Scholar

46. Fu, Y. Y., C. Shen, X. H. Zhu, J. F. Li, Y. W. Liu, S. A. Cummer, and Y. D. Xu, "Sound vortex diffraction via topological charge in phase gradient metagratings," Sci. Adv., Vol. 6, No. 40, eaba9876, 2020.
doi:10.1126/sciadv.aba9876        Google Scholar

47. Fu, Y. Y., Y. Tian, X. Li, S. L. Yang, Y. W. Liu, Y. D. Xu, and M. H. Lu, "Asymmetric generation of acoustic vortex using dual-layer metasurfaces," Phys. Rev. Lett., Vol. 128, No. 1, 104501, 2022.
doi:10.1103/PhysRevLett.128.104501        Google Scholar

48. Qian, J., Y. Wang, J. P. Xia, Y. Ge, S. Q. Yuan, H. X. Sun, and X. J. Liu, "Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms," Appl. Phys. Lett., Vol. 116, No. 22, 223505, 2020.
doi:10.1063/5.0004579        Google Scholar

49. Wang, Y., J. Qian, J. P. Xia, Y. Ge, S. Q. Yuan, H. X. Sun, and X. J. Liu, "Acoustic bessel vortex beam by quasi-three-dimensional reflected metasurfaces," Micromachines, Vol. 12, No. 11, 1388, 2021.
doi:10.3390/mi12111388        Google Scholar