School of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electrical Engineering, School of Computer Science and Communication Engineering
Jiangsu University
China
HomepageSchool of Physics and Electronic Engineering, School of Computer Science and Communications Engineering
Jiangsu University
China
HomepageSchool of Physics and Electronic Engineering, School of Computer Science and Communications Engineering
Jiangsu University
China
Homepage1. Shi, C. Z., M. Dubois, Y. Wang, and X. Zhang, "High-speed acoustic communication by multiplexing orbital angular momentum," Proc. Natl. Acad. Sci. U. S. A., Vol. 114, No. 28, 7250-7253, 2017.
doi:10.1073/pnas.1704450114 Google Scholar
2. Li, X. J., Y. Z. Li, Q. Y. Ma, G. P. Guo, J. Tu, and D. Zhang, "Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays," J. Appl. Phys., Vol. 127, No. 12, 124902, 2020.
doi:10.1063/1.5135991 Google Scholar
3. Jimenez-Gambin, S., N. Jimenez, and F. Camarena, "Transcranial focusing of ultrasonic vortices by acoustic holograms," Phys. Re. Applied, Vol. 14, No. 15, 054070, 2020.
doi:10.1103/PhysRevApplied.14.054070 Google Scholar
4. Cao, J. M., K. X. Yang, X. S. Fang, L. Guo, Y. Li, and Q. Cheng, "Holographic tomography of dynamic three-dimensional acoustic vortex beam in liquid," Appl. Phys. Lett., Vol. 119, No. 14, 143501, 2021.
doi:10.1063/5.0062529 Google Scholar
5. Melde, K., E. Choi, Z. Wu, S. Palagi, T. Qiu, and P. Fischer, "Acoustic fabrication via the assembly and fusion of particles," Adv. Mater., Vol. 30, No. 3, 1704507, 2018.
doi:10.1002/adma.201704507 Google Scholar
6. Lim, M. X., A. Souslov, V. Vitelli, and H. M. Jaeger, "Cluster formation by acoustic forces and active fluctuations in levitated granular matter," Nat. Phys., Vol. 15, No. 5, 460-464, 2019.
doi:10.1038/s41567-019-0440-9 Google Scholar
7. Meng, L., F. Cai, F. Li, W. Zhou, L. Niu, and H. Zheng, "Acoustic tweezers," J. Phys. D: Appl. Phys., Vol. 52, No. 27, 273001, 2019.
doi:10.1088/1361-6463/ab16b5 Google Scholar
8. Wu, P. Y., Z. Ya, Y. Li, M. T. Zhu, L. Zhang, Y. J. Zong, S. F. Guo, and M. X. Wan, "Focused acoustic vortex-regulated composite nanodroplets combined with checkpoint blockade for high-performance tumor synergistic therapy," ACS Appl. Mater. Inter., Vol. 14, No. 27, 30466, 2022.
doi:10.1021/acsami.2c02137 Google Scholar
9. Zhang, L. K., "Reversals of orbital angular momentum transfer and radiation torque," Phys. Rev. Applied, Vol. 10, No. 3, 034039, 2018.
doi:10.1103/PhysRevApplied.10.034039 Google Scholar
10. Li, Y. Z., G. P. Guo, J Tu, Q. Y. Ma, X. S. Guo, D. Zhang, and O. A. Sapozhnikov, "Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects," Appl. Phys. Lett., Vol. 112, No. 25, 254101, 2018.
doi:10.1063/1.5036976 Google Scholar
11. Baresch, D., J. L. Thomas, and R. Marchiano, "Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams," Phys. Rev. Lett., Vol. 121, No. 7, 074301, 2018.
doi:10.1103/PhysRevLett.121.074301 Google Scholar
12. Li, J. F., A. Crivoi, X. Y. Peng, L. Shen, Y. J. Pu, Z. Fan, and S. A. Cummer, "Three dimensional acoustic tweezers with vortex streaming," Commun. Phys., Vol. 4, No. 1, 113, 2021.
doi:10.1038/s42005-021-00617-0 Google Scholar
13. Riaud, A., J. L. Thomas, E. Charron, A. Bussonniere, O. B. Matar, and M. Baudoin, "Anisotropic swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic vortices," Phys. Rev. Applied, Vol. 4, No. 3, 034004, 2015.
doi:10.1103/PhysRevApplied.4.034004 Google Scholar
14. Muelas-Hurtado, R. D., J. L. Ealo, and K. Volke-Sepulveda, "Active-spiral Fresnel zone plate with tunable focal length for airborne generation of focused acoustic vortices," Appl. Phys. Lett., Vol. 116, No. 11, 114101, 2020.
doi:10.1063/1.5137766 Google Scholar
15. Huang, H. F. and H. M. Huang, "Millimeter-wave wideband high efficiency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405 Google Scholar
16. Liang, Z. and J. Li, "Extreme acoustic metamaterial by coiling up space," Phys. Rev. Lett., Vol. 108, No. 11, 114301, 2012.
doi:10.1103/PhysRevLett.108.114301 Google Scholar
17. Cummer, S. A., J. Christensen, and A. Alu, "Controlling sound with acoustic metamaterials," Nat. Rev. Mater., Vol. 1, No. 3, 16001, 2016.
doi:10.1038/natrevmats.2016.1 Google Scholar
18. Wu, Y., M. Yang, and P. Sheng, "Perspective: Acoustic metamaterials in transition," J. Appl. Phys., Vol. 123, No. 9, 090901, 2018.
doi:10.1063/1.5007682 Google Scholar
19. Fan, X. D., Z. Zou, and L. Zhang, "Acoustic vortices in inhomogeneous media," Phys. Rev. Res., Vol. 1, No. 3, 032014, 2019.
doi:10.1103/PhysRevResearch.1.032014 Google Scholar
20. Ma, F., J. Chen, and J. H. Wu, "Experimental study on performance of time reversal focusing," J. Phys. D: Appl. Phys., Vol. 53, No. 5, 055302, 2019.
doi:10.1088/1361-6463/ab5696 Google Scholar
21. Jia, D., Y. Wang, Y. Ge, S. Q. Yuan, and H. X. Sun, "Tunable topological refractions in valley sonic crystals with triple valley hall phase transitions," Progress In Electromagnetics Research, Vol. 172, 13-22, 2021.
doi:10.2528/PIER21102002 Google Scholar
22. Wang, B. B., Y. Ge, S. Q. Yuan, D. Jia, and H. X. Sun, "Exceptional ring by non-hermitian sonic crystals," Progress In Electromagnetics Research, Vol. 176, 1-10, 2023. Google Scholar
23. Ye, L. P., C. Y. Qiu, J. Lu, K. Tang, H. Jia, M. Ke, S. Peng, and Z. Y. Liu, "Making sound vortices by metasurfaces," AIP Adv., Vol. 6, No. 8, 085007, 2016.
doi:10.1063/1.4961062 Google Scholar
24. Li, J., A. Diaz-Rubio, C. Shen, Z. Jia, S. Tretyakov, and S. A. Cummer, "Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces," Phys. Rev. Applied, Vol. 11, No. 2, 024016, 2019.
doi:10.1103/PhysRevApplied.11.024016 Google Scholar
25. Jiang, X., D. A. Ta, and W. Q. Wang, "Modulation of orbital-angular-momentum symmetry of nondiffractive acoustic vortex beams and realization using a metasurface," Phys. Rev. Applied, Vol. 14, No. 3, 034014, 2020.
doi:10.1103/PhysRevApplied.14.034014 Google Scholar
26. Zhang, H. K., W. X. Zhang, Y. H. Liao, X. M. Zhou, J. F. Li, G. K. Hu, and X. D. Zhang, "Creation of acoustic vortex knots," Nat. Commun., Vol. 11, No. 1, 3956, 2020.
doi:10.1038/s41467-020-17744-x Google Scholar
27. Fan, S. W., Y. F. Wang, L. Y. Cao, Y. F. Zhu, A. L. Chen, B. Vincent, B. Assouar, and Y. S. Wang, "Acoustic vortices with high-order orbital angular momentum by a continuously tunable metasurface," Appl. Phys. Lett., Vol. 116, No. 16, 163504, 2020.
doi:10.1063/5.0007351 Google Scholar
28. Jimenez, N., J. P. Groby, and V. Romero-Garcia, "Spiral sound-diffusing metasurfaces based on holographic vortices," Sci. Rep., Vol. 11, No. 1, 1-13, 2021.
doi:10.1038/s41598-020-79139-8 Google Scholar
29. Han, T. C., K. H. Wen, Z. X. Xie, and X. L. Yue, "An ultra-thin wideband reflection reduction metasurface based on polarization conversion," Progress In Electromagnetics Research, Vol. 173, 1-8, 2022.
doi:10.2528/PIER21121405 Google Scholar
30. Long, Y., D. M. Zhang, C. W. Yang, J. M. Ge, H. Chen, and J. Ren, "Realization of acoustic spin transport in metasurface waveguides," Nat. Commun., Vol. 11, No. 1, 4716, 2020.
doi:10.1038/s41467-020-18599-y Google Scholar
31. Gong, K. M., X. Zhou, and J. L. Mo, "Continuously tuneable acoustic metasurface for high order transmitted acoustic vortices," Smart Mater. Struct., Vol. 31, No. 11, 115001, 2022.
doi:10.1088/1361-665X/ac9265 Google Scholar
32. Hong, Z. Y., J. Zhang, and B. W. Drinkwater, "On the radiation force fields of fractional-order acoustic vortices," EPL, Vol. 110, No. 1, 14002, 2015.
doi:10.1209/0295-5075/110/14002 Google Scholar
33. Jia, Y. R., Q. Wei, D. J. Wu, Z. Xu, and X. J. Liu, "Generation of fractional acoustic vortex with a discrete Archimedean spiral structure plate," Appl. Phys. Lett., Vol. 112, No. 17, 173501, 2018.
doi:10.1063/1.5026646 Google Scholar
34. Ealo, J. L., J. C. Prieto, and F. Seco, "Airborne ultrasonic vortex generation using flexible ferroelectrets," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 58, No. 8, 1651-1657, 2011.
doi:10.1109/TUFFC.2011.1992 Google Scholar
35. Wunenburger, R., J. I. V. Lozano, and E. Brasselet, "Acoustic orbital angular momentum transfer to matter by chiral scattering," New J. Phys., Vol. 17, No. 1, 103022, 2015.
doi:10.1088/1367-2630/17/10/103022 Google Scholar
36. Jiang, X., J. J. Zhao, S. L. Liu, B. Liang, X. Y. Zou, J. Yang, C. W. Qiu, and J. C. Cheng, "Broadband and stable acoustic vortex emitter with multi-arm coiling slits," Appl. Phys. Lett., Vol. 108, No. 20, 203501, 2016.
doi:10.1063/1.4949337 Google Scholar
37. Jimenez, N., V. Romero-Garcia, L. M. Garcia-Raffi, F. Camarena, and K. Staliunas, "Sharp acoustic vortex focusing by Fresnel-spiral zone plates," Appl. Phys. Lett., Vol. 112, No. 20, 204101, 2018.
doi:10.1063/1.5029424 Google Scholar
38. Jiang, X., Y. Li, B. Liang, J. C. Cheng, and L. Zhang, "Convert acoustic resonances to orbital angular momentum," Phys. Rev. Lett., Vol. 117, No. 3, 034301, 2016.
doi:10.1103/PhysRevLett.117.034301 Google Scholar
39. Guo, Z. Y., H. J. Liu, H. Zhou, K. Y. Zhou, S. M. Wang, F. Shen, Y. B. Gong, J. Gao, S. T. Liu, and K. Guo, "High-order acoustic vortex field generation based on a metasurface," Phys. Rev. E, Vol. 100, No. 5, 053315, 2019.
doi:10.1103/PhysRevE.100.053315 Google Scholar
40. Chen, D. C., Q. X. Zhou, X. F. Zhu, Z. Xu, and D. J. Wu, "Focused acoustic vortex by an artificial structure with two sets of discrete Archimedean spiral slits," Appl. Phys. Lett., Vol. 115, No. 8, 083501, 2019.
doi:10.1063/1.5108687 Google Scholar
41. Guo, S. F., X. Y. Guo, X. Wang, X. Du, P. Y. Wu, A. Bouakaz, and M. X. Wan, "Manipulation of nanodroplets via a nonuniform focused acoustic vortex," Phys. Rev. Applied, Vol. 13, No. 3, 034009, 2020.
doi:10.1103/PhysRevApplied.13.034009 Google Scholar
42. Li, X. R., Y. R. Jia, Y. C. Luo, J. Yao, and D. J. Wu, "Mixed focused-acoustic-vortices generated by an artificial structure plate engraved with discrete rectangular holes," Appl. Phys. Lett., Vol. 118, No. 4, 043503, 2021.
doi:10.1063/5.0038892 Google Scholar
43. Li, X. R., D. J. Wu, Y. C. Luo, J. Yao, and X. J. Liu, "Coupled focused acoustic vortices generated by degenerated artificial plates for acoustic coded communication," Adv. Mater. Technol., Vol. 7, No. 9, 2200102, 2022.
doi:10.1002/admt.202200102 Google Scholar
44. Baudoin, M., J. C. Gerbedoen, A. Riaud, O. B. Matar, N. Smagin, and J. L. Thomas, "Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers," Sci. Adv., Vol. 5, No. 4, eaav1967, 2019.
doi:10.1126/sciadv.aav1967 Google Scholar
45. Baudoin, M., J. L. Thomas, R. A. Sahely, J. C. Gerbedoen, Z. Gong, A. Sivery, O. B. Matar, N. Smagin, P. Favreau, and A. Vlandas, "Spatially selective manipulation of cells with single-beam acoustical tweezers," Nat. Commun,, Vol. 11, No. 1, 4244, 2020.
doi:10.1038/s41467-020-18000-y Google Scholar
46. Fu, Y. Y., C. Shen, X. H. Zhu, J. F. Li, Y. W. Liu, S. A. Cummer, and Y. D. Xu, "Sound vortex diffraction via topological charge in phase gradient metagratings," Sci. Adv., Vol. 6, No. 40, eaba9876, 2020.
doi:10.1126/sciadv.aba9876 Google Scholar
47. Fu, Y. Y., Y. Tian, X. Li, S. L. Yang, Y. W. Liu, Y. D. Xu, and M. H. Lu, "Asymmetric generation of acoustic vortex using dual-layer metasurfaces," Phys. Rev. Lett., Vol. 128, No. 1, 104501, 2022.
doi:10.1103/PhysRevLett.128.104501 Google Scholar
48. Qian, J., Y. Wang, J. P. Xia, Y. Ge, S. Q. Yuan, H. X. Sun, and X. J. Liu, "Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms," Appl. Phys. Lett., Vol. 116, No. 22, 223505, 2020.
doi:10.1063/5.0004579 Google Scholar
49. Wang, Y., J. Qian, J. P. Xia, Y. Ge, S. Q. Yuan, H. X. Sun, and X. J. Liu, "Acoustic bessel vortex beam by quasi-three-dimensional reflected metasurfaces," Micromachines, Vol. 12, No. 11, 1388, 2021.
doi:10.3390/mi12111388 Google Scholar