1. Bjarnason, J. E., T. L. J. Chan, A. W. M. Lee, et al. "Millimeter-wave, terahertz, and mid-infrared transmission through common clothing," Applied Physics Letters, Vol. 85, No. 4, 519-521, 2004.
doi:10.1063/1.1771814 Google Scholar
2. Lin, S., Microwave and Millimeter-Wave Remote Sensing for Security Applications, 372 pages, Jeffrey A. Nanzer, Artech House, 2012, ISBN 978-1-60807-172-2[J].
3. Enander, B. and G. Larson, "Microwave radiometric measurements of the temperature inside a body," Electronics Letters, Vol. 10, No. 15, 317-317, 1974.
doi:10.1049/el:19740250 Google Scholar
4. Barrett, A. H. and P. C. Myers, "Subcutaneous temperatures: A method of noninvasive sensing," Science, Vol. 190, No. 4215, 669-671, 1975.
doi:10.1126/science.1188361 Google Scholar
5. Maruyma, K., S. Mizushina, T. Sugiura, et al. "Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 2141-2147, 2000.
doi:10.1109/22.884206 Google Scholar
6. Hand, J. W., G. M. J. Van Leeuwen, S. Mizushina, et al. "Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling," Physics in Medicine & Biology, Vol. 46, No. 7, 1885, 2001.
doi:10.1088/0031-9155/46/7/311 Google Scholar
7. Popovic, Z., R. Scheeler, P. Momenroodaki, et al. Microwave thermometer for internal body temperature retrieval, U.S. Patent Application 15/608,284[P], Nov. 30, 2017.
8. Momenroodaki, P., W. Haines, M. Fromandi, et al. "Noninvasive internal body temperature tracking with near-field microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 5, 2535-2545, 2018.
doi:10.1109/TMTT.2017.2776952 Google Scholar
9. McGrath, J. A., R. A. J. Eady, and F. M. Pope, "Anatomy and organization of human skin," Rook's Textbook of Dermatology, Vol. 1, 3.2-3.80, 2004. Google Scholar
10. Black, D., J. Vora, M. Hayward, et al. "Measurement of subcutaneous fat thickness with high frequency pulsed ultrasound: Comparisons with a caliper and a radiographic technique," Clinical Physics and Physiological Measurement, Vol. 9, No. 1, 57, 1988.
doi:10.1088/0143-0815/9/1/005 Google Scholar
11. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine & Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
12. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissue II: Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
13. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, 41, 1996. Google Scholar
14. Bigu-Del-Blanco, J., C. Romero-Sierra, and J. A. Tanner, "Some theory and preliminary experiments on microwave radiometry of biological systems," S-MTT International Microwave Symposium Digest, 41-44, 1974.
doi:10.1109/MWSYM.1974.1123473 Google Scholar
15. Mamouni, A., Y. Leroy, M. Samsel, and M. Gautherie, "Radiothermometrie micro-onde a 9 GHz: Applications aux cancers du sein et a des localisations tumorales diverses. Resultats preliminaires," Microwave Power Symposium 1979, XIVe Symposium International sur les Applications energetiques des Micro-ondes, Monaco, Jun. 11-15, 1979. Google Scholar
16. Mamouni, A., D. D. N'Guven, M. Robillard, M. Chive, and Y. Leroy, "Physical basis and technology of microwave radiometry," Proc. SPIE 0211, Optics and Photonics Applied to Medicine, May 29, 1980. Google Scholar
17. Gautherie, M., A. Mamouni, M. Samsel, J. L. Guerquin-Kern, Y. Leroy, and C. Gros, "Microwave radiothermometry (9 GHz) applied to breast cancer," Proc. SPIE 0211, Optics and Photonics Applied to Medicine, May 29, 1980. Google Scholar
18. Robert, J., J. Edrich, Y. Leroy, A. Mamouni, J. M. Escanye, and P. Thouvenot, "Clinical applications of microwave thermography," Proc. SPIE 0211, Optics and Photonics Applied to Medicine, May 29, 1980. Google Scholar
19. Abdul-Razzak, M. M., B. A. Hardwick, G. L. Hey-Shipton, et al. "Microwave thermography for medical applications," IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews), Vol. 134, No. 2, 171-174, 1987.
doi:10.1049/ip-a-1.1987.0023 Google Scholar
20. Poikalainen, V. and J. Praks, "The use of microwave thermometer for the determination of cows' body surface temperature," Transactions of the Estonian Academic Agricultural Society (Estonia), 1998. Google Scholar
21. Kanakov, V. A. and A. G. Kislyakov, "Human-body temperature measurements using contact radiometer with built-in calibrators," Radiophysics & Quantum Electronics, Vol. 42, No. 2, 150-156, 1999.
doi:10.1007/BF02677554 Google Scholar
22. Tipa, R. and O. Baltag, "Microwave thermography for cancer detection," Romanian Journal of Physics, Vol. 51, No. 3/4, 371, 2006. Google Scholar
23. Stephan, K. D., J. B. Mead, D. M. Pozar, et al. "A near field focused microstrip array for a radiometric temperature sensor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1199-1203, 2007.
doi:10.1109/TAP.2007.893429 Google Scholar
24. David, J. I., M. B. Zemel, C. T. Lyster, and N. Feld, Passive microwave assessment of human body core to surface temperature gradients and basal metabolic rate, USA, US 8,013,745 B2[P], Sep. 6, 2011.
25. Zhao, K., J. X. Shi, and H. D. Zhang, "High sensitivity airborne l-band microwave radiometer measurements of sea surface salinity," Journal of Remote Sensing, 2008. Google Scholar
26. Jian, S., Z. Kai, J. Tao, et al. "A new airborne Ka-band double-antenna microwave radiometer for cloud liquid water content measurement," Proceedings of SPIE --- The International Society for Optical Engineering, Vol. 8866, 17, 2013. Google Scholar
27. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave remote sensing: Active and passive. Volume 1 | Microwave remote sensing fundamentals and radiometry," Remote Sensing A, Vol. 2, No. 5, 355-356, 1981. Google Scholar
28. Wohlleben, R., H. Mattes, and O. Lochner, "Simple small primary feed for large opening angles and high aperture efficiency," Electronics Letters, Vol. 8, No. 19, 474-476, Sep. 21, 1972.
doi:10.1049/el:19720341 Google Scholar
29. Milligan, T. A., Modern Antenna Design, 2nd Ed., Wiley, 2005.
doi:10.1002/0471720615.ch10
30. James, G. L., "Radiation properties of 90◦ conical horns," Electronics Letters, Vol. 13, No. 10, 293-294, May 12, 1977.
doi:10.1049/el:19770215 Google Scholar
31. Silver, S., Microwave Antenna Theory and Design, Chapter 11, 1984.
doi:10.1049/PBEW019E
32. Clarricoats, P. J. B. and P. K. Saha, "Radiation pattern of a lens-corrected conical scalar horn," Electronics Letters, Vol. 5, No. 23, 592-593, Nov. 1969.
doi:10.1049/el:19690442 Google Scholar
33. Neto, A., S. Maci, and P. J. I. de Maagt, "Reflections inside an elliptical dielectric lens antenna," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 145, No. 3, 243-247, Jun. 1998.
doi:10.1049/ip-map:19981884 Google Scholar
34. Pohl, N., "A dielectric lens antenna with enhanced aperture efficiency for industrial radar applications," IEEE Middle East Conference on Antennas and Propagation (MECAP 2010), 1-5, 2010. Google Scholar
35. Van der Vorst, M. J. M., P. J. L. de Maagt, and M. H. A. J. Herben, "Effect of internal reflections on the radiation properties and input admittance of integrated lens antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1696-1704, Sep. 1999.
doi:10.1109/22.788611 Google Scholar
36. Nguyen, N. T., R. Sauleau, and C. J. M. Perez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 1907-1913, Jul. 2009.
doi:10.1109/TAP.2009.2021884 Google Scholar
37., https://www.pasternack.cn/wr-62-waveguide-gain-horn-antenna-15db-square-flange-pewan062-15-p.aspx..
38., https://www.pasternack.cn/wr-62-waveguide-standard-gain-horn-antenna-15-dbi-sma-pewan062-15elsf-p.aspx.
39. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2012.
40. Holmes, J., C. Balanis, and W. Truman, "Application of Fourier transforms for microwave radiometric inversions," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 6, 797-806, 1975.
doi:10.1109/TAP.1975.1141180 Google Scholar
41. Truman, W., C. Balanis, and J. Holmes, "Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 1, 95-104, 1977.
doi:10.1109/TAP.1977.1141538 Google Scholar
42. Li, Q., G. Wei, Z. Zhang, et al. "Brightness temperature of extended targets," ICMMT'98. 1998 International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.98EX106), 483-487, 1998. Google Scholar
43. Li, Q., G. Wei, Z. Zhang, et al. "Models for the brightness temperature of extended targets at MM wave frequency," International Journal of Infrared and Millimeter Waves, Vol. 19, No. 9, 1247-1253, 1998.
doi:10.1023/A:1022629011120 Google Scholar
44. Xiao, Z., J. Xu, and T. Hu, "Research on the transmissivity of some clothing materials at millimeter-wave band," 2008 International Conference on Microwave and Millimeter Wave Technology, 1750-1753, 2008.
doi:10.1109/ICMMT.2008.4540812 Google Scholar
45. Susek, W., "Thermal microwave radiation for subsurface absolute temperature measurement," ACTA Phys. Pol. A, Vol. 118, 1246-1249, 2010.
doi:10.12693/APhysPolA.118.1246 Google Scholar
46. Momenroodaki, P., Z. Popovic, and R. Scheeler, "A 1.4-GHz radiometer for internal body temperature measurements," 2015 European Microwave Conference (EuMC), 694-697, Paris, France, Sep. 7-10, 2015. Google Scholar
47. Jacobsen, S. and O. Klemetsen, "Improved detectability in medical microwave radio-thermometers as obtained by active antennas," IEEE Trans. Biomed. Eng., Vol. 55, 2778-2785, 2008.
doi:10.1109/TBME.2008.2002156 Google Scholar
48. Bonds, Q., J. Gerig, T. M. Weller, and P. Herzig, "Towards core body temperature measurement via close proximity radiometric sensing," IEEE Sensors Journal, Vol. 12, 519-526, 2012.
doi:10.1109/JSEN.2011.2113332 Google Scholar
49. Klemetsen, O., Y. Birkelund, S. K. Jacobsen, P. F. Maccarini, and P. R. Stauffer, "Design of medical radiometer front-end for improved performance," Progress In Electromagnetics Research B, Vol. 27, 289-306, 2011.
doi:10.2528/PIERB10101204 Google Scholar
50. International Telecommunication Union Radiocommunication Assembly, Attenuation due to clouds and fog, Recommendation ITU-R P.840-8, 2019.
51. Mcintyre, M. K., B. Baker, T. J. Peacock, et al. "Initial characterization of the pig skin bacteriome and its effect on in vitro models of wound healing," The FASEB Journal, 30, 2016. Google Scholar
52. Abd, E., S. A. Yousef, M. N. Pastore, et al. "Skin models for the testing of transdermal drugs," Research & Reports in Transdermal Drug Delivery, Vol. 8, 163-176, 2016. Google Scholar
53. Paul, H., A. Jon, M. Krysta, et al. "Vital, porcine, gal-knockout skin transplants provide efficacious temporary closure of full-thickness wounds: Good laboratory practice-compliant studies in nonhuman primates," Journal of Burn Care & Research, Vol. 41, No. 2, 229-240, Official Publication of the American Burn Association, 2020. Google Scholar