Vol. 179
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2024-08-28
Josephson Traveling Wave Parametric Amplifier as Quantum Source of Entangled Photons for Microwave Quantum Radar Applications (Invited)
By
Progress In Electromagnetics Research, Vol. 179, 113-124, 2024
Abstract
Josephson Traveling Wave Parametric Amplifier (JTWPA) has the potential to offer quantum limited noise and a large bandwidth. This amplifier is based on parametric amplification of microwaves traveling through a transmission line with embedded non-linear elements. In this paper, starting from the fabrication of the JTWPA, based on Quantum Electrodynamics (QEDs), operating as a nonclassical quantum source for generating a signal-idler entangled state, its characterization in terms of scattering parameters is presented. The cryogenic and room temperature experimental results are discussed. The good performance of the JTWPA in terms of wide bandwidth and increased transmitted power makes it an ideal candidate for Microwave Quantum Radar (MQR) applications. Finally, the performance of an MQR based on the JTWPA developed at INRiM is reported, showing a radar maximum range equal to 82.2 m, which represents a greater value than previously published works.
Citation
Patrizia Livreri, Bernardo Galvano, Luca Fasolo, Luca Oberto, and Emanuele Enrico, "Josephson Traveling Wave Parametric Amplifier as Quantum Source of Entangled Photons for Microwave Quantum Radar Applications (Invited)," Progress In Electromagnetics Research, Vol. 179, 113-124, 2024.
doi:10.2528/PIER24041705
References

1. Dowling, Jonathan P., "Quantum optical metrology --- The lowdown on high-N00N states," Contemporary Physics, Vol. 49, No. 2, 125-143, 2008.
doi:10.1080/00107510802091298        Google Scholar

2. Lloyd, Seth, "Enhanced sensitivity of photodetection via quantum illumination," Science, Vol. 321, No. 5895, 1463-1465, 2008.
doi:10.1126/science.1160627        Google Scholar

3. Hao, Shuhong, Haowei Shi, Wei Li, Jeffrey H. Shapiro, Quntao Zhuang, and Zheshen Zhang, "Entanglement-assisted communication surpassing the ultimate classical capacity," Physical Review Letters, Vol. 126, No. 25, 250501, 2021.
doi:10.1103/PhysRevLett.126.250501        Google Scholar

4. Shapiro, Jeffrey H., "The quantum illumination story," IEEE Aerospace and Electronic Systems Magazine, Vol. 35, No. 4, 8-20, 2020.
doi:10.1109/MAES.2019.2957870        Google Scholar

5. Karsa, Athena, Gaetana Spedalieri, Quntao Zhuang, and Stefano Pirandola, "Quantum illumination with a generic gaussian source," Physical Review Research, Vol. 2, No. 2, 023414, 2020.
doi:10.1103/PhysRevResearch.2.023414        Google Scholar

6. Sorelli, Giacomo, Nicolas Treps, Frederic Grosshans, and Fabrice Boust, "Detecting a target with quantum entanglement," IEEE Aerospace and Electronic Systems Magazine, Vol. 37, No. 5, 68-90, 2021.
doi:10.1109/MAES.2021.3116323        Google Scholar

7. Shapiro, Jeffrey H., "Extended version of van trees's receiver operating characteristic approximation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 2, 709-716, 1999.
doi:10.1109/7.766950        Google Scholar

8. Lopaeva, E. D., Ivano Ruo Berchera, Ivo Pietro Degiovanni, S. Olivares, Giorgio Brida, and Marco Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, 2013.
doi:10.1103/PhysRevLett.110.153603        Google Scholar

9. Pirandola, Stefano, B. Roy Bardhan, Tobias Gehring, Christian Weedbrook, and Seth Lloyd, "Advances in photonic quantum sensing," Nature Photonics, Vol. 12, No. 12, 724-733, 2018.
doi:10.1038/s41566-018-0301-6        Google Scholar

10. Luong, David, C. W. Sandbo Chang, A. M. Vadiraj, Anthony Damini, Christopher M. Wilson, and Bhashyam Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2041-2060, 2019.
doi:10.1109/TAES.2019.2951213        Google Scholar

11. Alibart, Olivier, Virginia D'Auria, Marc De Micheli, Florent Doutre, Florian Kaiser, and others, "Quantum photonics at telecom wavelengths based on lithium niobate waveguides," J. Opt., Vol. 18, 104001, 2016.
doi:10.1088/2040-8978/18/10/104001        Google Scholar

12. Lee, Kim Fook, Jun Chen, Chuang Liang, Xiaoying Li, Paul L. Voss, and Prem Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Optics Letters, Vol. 31, No. 12, 1905-1907, 2006.
doi:10.1364/OL.31.001905        Google Scholar

13. Eichler, Christopher, Deniz Bozyigit, Christian Lang, Martin Baur, Lars Steffen, Johannes M. Fink, Stefan Filipp, and Andreas Wallraff, "Observation of two-mode squeezing in the microwave frequency domain," Physical Review Letters, Vol. 107, No. 11, 113601, 2011.
doi:10.1103/PhysRevLett.107.113601        Google Scholar

14. Flurin, Emmanuel, Nicolas Roch, Francois Mallet, Michel H. Devoret, and Benjamin Huard, "Generating entangled microwave radiation over two transmission lines," Physical Review Letters, Vol. 109, No. 18, 183901, 2012.
doi:10.1103/PhysRevLett.109.183901        Google Scholar

15. Flurin, Emmanuel, Nicolas Roch, Jean-Damien Pillet, Francois Mallet, and Benjamin Huard, "Superconducting quantum node for entanglement and storage of microwave radiation," Physical Review Letters, Vol. 114, No. 9, 090503, 2015.
doi:10.1103/PhysRevLett.114.090503        Google Scholar

16. Menzel, E. P., R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester, and others, "Path entanglement of continuous-variable quantum microwaves," Physical Review Letters, Vol. 109, No. 25, 250502, 2012.
doi:10.1103/PhysRevLett.109.250502        Google Scholar

17. Ku, H. S., W. F. Kindel, F. Mallet, S. Glancy, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, "Generating and verifying entangled itinerant microwave fields with efficient and independent measurements," Physical Review A, Vol. 91, No. 4, 042305, 2015.
doi:10.1103/PhysRevA.91.042305        Google Scholar

18. Fedorov, Kirill G., L. Zhong, S. Pogorzalek, P. Eder, M. Fischer, J. Goetz, E. Xie, F. Wulschner, K. Inomata, T. Yamamoto, and others, "Displacement of propagating squeezed microwave states," Physical Review Letters, Vol. 117, No. 2, 020502, 2016.
doi:10.1103/PhysRevLett.117.020502        Google Scholar

19. Fedorov, Kirill G., S. Pogorzalek, U. Las Heras, M. Sanz, P. Yard, P. Eder, M. Fischer, J. Goetz, E. Xie, K. Inomata, and others, "Finite-time quantum entanglement in propagating squeezed microwaves," Scientific Reports, Vol. 8, No. 1, 6416, 2018.
doi:10.1038/s41598-018-24742-z        Google Scholar

20. Westig, M, Bjorn Kubala, Olivier Parlavecchio, Yury Mukharsky, Carles Altimiras, Philippe Joyez, Denis Vion, Patrice Roche, Daniel Esteve, Max Hofheinz, and others, "Emission of nonclassical radiation by inelastic cooper pair tunneling," Physical Review Letters, Vol. 119, No. 13, 137001, 2017.
doi:10.1103/PhysRevLett.119.137001        Google Scholar

21. Grimsmo, Arne L. and Alexandre Blais, "Squeezing and quantum state engineering with josephson travelling wave amplifiers," Npj Quantum Information, Vol. 3, No. 1, 20, 2017.
doi:10.1038/s41534-017-0020-8        Google Scholar

22. Tan, Si-Hui, Baris I. Erkmen, Vittorio Giovannetti, Saikat Guha, Seth Lloyd, Lorenzo Maccone, Stefano Pirandola, and Jeffrey H. Shapiro, "Quantum illumination with gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, 2008.
doi:10.1103/PhysRevLett.101.253601        Google Scholar

23. Assouly, Reouven, Remy Dassonneville, Theau Peronnin, Audrey Bienfait, and Benjamin Huard, "Demonstration of quantum advantage in microwave quantum radar," arXiv:2211.05684v1, 2022.        Google Scholar

24. Macklin, C., K. O'Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, "A near–quantum-limited josephson traveling-wave parametric amplifier," Science, Vol. 350, No. 6258, 307-310, 2015.
doi:10.1126/science.aaa8525        Google Scholar

25. Planat, Luca, Arpit Ranadive, Remy Dassonneville, Javier Puertas Martinez, Sebastien Leger, Cecile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, and Nicolas Roch, "Photonic-crystal josephson traveling-wave parametric amplifier," Physical Review X, Vol. 10, No. 2, 021021, 2020.
doi:10.1103/PhysRevX.10.021021        Google Scholar

26. Livreri, Patrizia, Emanuele Enrico, Luca Fasolo, Angelo Greco, Alessio Rettaroli, David Vitali, Alfonso Farina, Com F. Marchetti, and A. Sq. D. Giacomin, "Microwave quantum radar using a josephson traveling wave parametric amplifier," 2022 IEEE Radar Conference (RadarConf22), 1-5, New York City, NY, USA, 2022.

27. Livreri, Patrizia, Emanuele Enrico, David Vitali, and Alfonso Farina, "Microwave quantum radar using a josephson traveling wave parametric amplifier and a phase-conjugate receiver for a long-distance detection," 2023 IEEE Radar Conference (RadarConf23), 1-5, San Antonio, TX, USA, 2023.

28. Luong, David, Sreeraman Rajan, and Bhashyam Balaji, "Quantum two-mode squeezing radar and noise radar: correlation coefficients for target detection," IEEE Sensors Journal, Vol. 20, No. 10, 5221-5228, 2020.
doi:10.1109/JSEN.2020.2971851        Google Scholar

29. Qiu, Jack Y., Arne Grimsmo, Kaidong Peng, Bharath Kannan, Benjamin Lienhard, Youngkyu Sung, Philip Krantz, Vladimir Bolkhovsky, Greg Calusine, David Kim, and others, "Broadband squeezed microwaves and amplification with a josephson travelling-wave parametric amplifier," Nature Physics, Vol. 19, No. 5, 706-713, 2023.        Google Scholar

30. Van Trees, Harry L., Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory, New York, NY, USA, John Wiley & Sons, 2004.

31. Helstrom, Carl W., "Quantum detection and estimation theory," Journal of Statistical Physics, Vol. 1, 231-252, 1969.
doi:10.1007/BF01007479        Google Scholar

32. Mollow, B. R. and R. J. Glauber, "Quantum theory of parametric amplification. I," Physical Review, Vol. 160, No. 5, 1076, 1967.
doi:10.1103/PhysRev.160.1076        Google Scholar

33. Kroll, Norman M., "Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies," Physical Review, Vol. 127, No. 4, 1207, 1962.
doi:10.1103/PhysRev.127.1207        Google Scholar

34. Kingston, R. H., "Parametric amplification and oscillation at optical frequencies," Proceedings of The Institute of Radio Engineers, Vol. 50, No. 4, 472, 1962.        Google Scholar

35. Akhmanov, S. A. and R. V. Khokhlov, "Concerning one possibility of amplification of light waves," Sov. Phys. Jetp, Vol. 16, 252-257, 1963.        Google Scholar

36. Josephson, Brian David, "Possible new effects in superconductive tunnelling," Physics Letters, Vol. 1, No. 7, 251-253, 1962.
doi:10.1016/0031-9163(62)91369-0        Google Scholar

37. Yurke, Bernard, L. R. Corruccini, P. G. Kaminsky, L. W. Rupp, A. D. Smith, A. H. Silver, R. W. Simon, and E. A. Whittaker, "Observation of parametric amplification and deamplification in a josephson parametric amplifier," Physical Review A, Vol. 39, No. 5, 2519, 1989.
doi:10.1103/PhysRevA.39.2519        Google Scholar

38. Malnou, Maxime, Joe Aumentado, M. R. Vissers, J. D. Wheeler, Johannes Hubmayr, J. N. Ullom, and Jiansong Gao, "Performance of a kinetic inductance traveling-wave parametric amplifier at 4 kelvin: toward an alternative to semiconductor amplifiers," Physical Review Applied, Vol. 17, No. 4, 044009, 2022.
doi:10.1103/PhysRevApplied.17.044009        Google Scholar

39. Aumentado, Jose, "Superconducting parametric amplifiers: the state of the art in josephson parametric amplifiers," IEEE Microwave Magazine, Vol. 21, No. 8, 45-59, 2020.
doi:10.1109/MMM.2020.2993476        Google Scholar

40. Perelshtein, M. R., K. V. Petrovnin, Visa Vesterinen, Sina Hamedani Raja, Ilari Lilja, Marco Will, Alexander Savin, Slawomir Simbierowicz, Robab Najafi Jabdaraghi, Janne S Lehtinen, and others, "Broadband continuous-variable entanglement generation using a kerr-free josephson metamaterial," Physical Review Applied, Vol. 18, No. 2, 024063, 2022.
doi:10.1103/PhysRevApplied.18.024063        Google Scholar

41. Esposito, Martina, Arpit Ranadive, Luca Planat, and Nicolas Roch, "Perspective on traveling wave microwave parametric amplifiers," Applied Physics Letters, Vol. 119, No. 12, 2021.
doi:10.1063/5.0064892        Google Scholar

42. O’Brien, Kevin, Chris Macklin, Irfan Siddiqi, and Xiang Zhang, "Resonant phase matching of josephson junction traveling wave parametric amplifiers," Physical Review Letters, Vol. 113, No. 15, 157001, 2014.
doi:10.1103/PhysRevLett.113.157001        Google Scholar

43. Frattini, N. E., V. V. Sivak, A. Lingenfelter, S. Shankar, and M. H. Devoret, "Optimizing the nonlinearity and dissipation of a snail parametric amplifier for dynamic range," Physical Review Applied, Vol. 10, No. 5, 054020, 2018.
doi:10.1103/PhysRevApplied.10.054020        Google Scholar

44. Caves, Carlton M., "Quantum limits on noise in linear amplifiers," Physical Review D, Vol. 26, No. 8, 1817, 1982.
doi:10.1103/PhysRevD.26.1817        Google Scholar

45. Castellanos-Beltran, Manuel A., K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, "Amplification and squeezing of quantum noise with a tunable josephson metamaterial," Nature Physics, Vol. 4, No. 12, 929-931, 2008.
doi:10.1038/nphys1090        Google Scholar

46. Clerk, Aashish A., Michel H. Devoret, Steven M. Girvin, Florian Marquardt, and Robert J. Schoelkopf, "Introduction to quantum noise, measurement, and amplification," Reviews of Modern Physics, Vol. 82, No. 2, 1155-1208, 2010.
doi:10.1103/RevModPhys.82.1155        Google Scholar

47. Cullen, A. L., "Theory of the travelling-wave parametric amplifier," Proceedings of The Iee-part B: Electronic and Communication Engineering, Vol. 107, No. 32, 101-107, 1960.
doi:10.1049/pi-b-2.1960.0085        Google Scholar

48. Naaman, Ofer and Jose Aumentado, "Synthesis of parametrically coupled networks," PRX Quantum, Vol. 3, No. 2, 020201, 2022.
doi:10.1103/PRXQuantum.3.020201        Google Scholar

49. Malnou, Maxime and Jose Aumentado, "Deconstructing the traveling wave parametric amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 4, 2158-2167, 2024.
doi:10.1109/TMTT.2024.3367176        Google Scholar

50. Greco, Angelo, Luca Fasolo, Alice Meda, Luca Callegaro, and Emanuele Enrico, "Quantum model for rf-squid-based metamaterials enabling three-wave mixing and four-wave mixing traveling-wave parametric amplification," Physical Review B, Vol. 104, No. 18, 184517, 2021.
doi:10.1103/PhysRevB.104.184517        Google Scholar

51. Macklin, Chris, K. O'brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, "A near-quantum-limited josephson traveling-wave parametric amplifier," Science, Vol. 350, No. 6258, 307-310, 2015.
doi:10.1126/science.aaa8525        Google Scholar

52. Wustmann, Waltraut and Vitaly Shumeiko, "Parametric resonance in tunable superconducting cavities," Physical Review B --- Condensed Matter and Materials Physics, Vol. 87, No. 18, 184501, 2013.
doi:10.1103/PhysRevB.87.184501        Google Scholar

53. Plenio, Martin B. and Susana F. Huelga, "Dephasing-assisted transport: quantum networks and biomolecules," New Journal of Physics, Vol. 10, No. 11, 113019, 2008.
doi:10.1088/1367-2630/10/11/113019        Google Scholar

54. Eichler, Christopher, Deniz Bozyigit, Christian Lang, Martin Baur, Lars Steffen, Johannes M. Fink, Stefan Filipp, and Andreas Wallraff, "Observation of two-mode squeezing in the microwave frequency domain," Physical Review Letters, Vol. 107, No. 11, 113601, 2011.
doi:10.1103/PhysRevLett.107.113601        Google Scholar

55. Kraus, Karl, "General state changes in quantum theory," Annals of Physics, Vol. 64, No. 2, 311-335, 1971.
doi:10.1016/0003-4916(71)90108-4        Google Scholar

56. Adesso, Gerardo and Fabrizio Illuminati, "Entanglement in continuous-variable systems: recent advances and current perspectives," Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 28, 7821, 2007.
doi:10.1088/1751-8113/40/28/S01        Google Scholar

57. Dolinar, S. J., "Optimum detection of coherent electromagnetic radiation," Ph.D. dissertation, Stanford Univ., Stanford, CA, USA, 1973.

58. Guha, S., "Quantum-enhanced sensing," Phys. Rev. A, Vol. 94, 012108, 2016.        Google Scholar

59. Shi, H., J. H. Shapiro, and Z. Zhang, "Practical quantum radar and lidar: physics, principles, and techniques," J. Opt., Vol. 25, 013002, 2023.        Google Scholar

60. Reichert, L., A. Ferri, S. T. Johansen, C. Lupo, R. Elgharib, M. R. Vissers, L. Frunzio, M. H. Devoret, L. P. Pryadko, and A. A. Houck, "Quantum-enhanced sensing and readout of microwave resonators," Phys. Rev. Res., Vol. 5, 023137, 2023.        Google Scholar

61. Skolnik, Merrill Ivan and others, Introduction to Radar Systems, 2 Ed., Vol. 3, McGraw-Hill, 1980.

62. Luong, D. and B. Balaji, "Quantum radar with gaussian states and non-gaussian detectors: sensitivity and performance," IEEE Trans. on Aerospace and Electronic Systems, Vol. 58, 4239-4257, 2022.        Google Scholar

63. Mahafza, Bassem R., Radar Systems Analysis and Design Using MATLAB, 4 Ed., CRC Press, Boca Raton, FL, USA, 2022.
doi:10.1201/9781003051282

64. Norouzi, M. and J. D. Saari, "Quantum radar: State of the art and new avenues," IEEE Aerospace and Electronic Systems Magazine, Vol. 38, 62-76, 2023.        Google Scholar

65. Barzanjeh, Shabir, Stefano Pirandola, David Vitali, and Johannes M. Fink, "Microwave quantum illumination using a digital receiver," Science Advances, Vol. 6, No. 19, eabb0451, 2020.
doi:10.1126/sciadv.abb0451        Google Scholar

66. Fasolo, L., C. Barone, M. Borghesi, G. Carapella, A. P. Caricato, I. Carusotto, Woohyun Chung, A. Cian, D. Di Gioacchino, E. Enrico, and others, "Bimodal approach for noise figures of merit evaluation in quantum-limited josephson traveling wave parametric amplifiers," IEEE Transactions on Applied Superconductivity, Vol. 32, No. 4, 1-6, 2022.
doi:10.1109/TASC.2022.3148692        Google Scholar