1. Dowling, Jonathan P., "Quantum optical metrology --- The lowdown on high-N00N states," Contemporary Physics, Vol. 49, No. 2, 125-143, 2008.
doi:10.1080/00107510802091298 Google Scholar
2. Lloyd, Seth, "Enhanced sensitivity of photodetection via quantum illumination," Science, Vol. 321, No. 5895, 1463-1465, 2008.
doi:10.1126/science.1160627 Google Scholar
3. Hao, Shuhong, Haowei Shi, Wei Li, Jeffrey H. Shapiro, Quntao Zhuang, and Zheshen Zhang, "Entanglement-assisted communication surpassing the ultimate classical capacity," Physical Review Letters, Vol. 126, No. 25, 250501, 2021.
doi:10.1103/PhysRevLett.126.250501 Google Scholar
4. Shapiro, Jeffrey H., "The quantum illumination story," IEEE Aerospace and Electronic Systems Magazine, Vol. 35, No. 4, 8-20, 2020.
doi:10.1109/MAES.2019.2957870 Google Scholar
5. Karsa, Athena, Gaetana Spedalieri, Quntao Zhuang, and Stefano Pirandola, "Quantum illumination with a generic gaussian source," Physical Review Research, Vol. 2, No. 2, 023414, 2020.
doi:10.1103/PhysRevResearch.2.023414 Google Scholar
6. Sorelli, Giacomo, Nicolas Treps, Frederic Grosshans, and Fabrice Boust, "Detecting a target with quantum entanglement," IEEE Aerospace and Electronic Systems Magazine, Vol. 37, No. 5, 68-90, 2021.
doi:10.1109/MAES.2021.3116323 Google Scholar
7. Shapiro, Jeffrey H., "Extended version of van trees's receiver operating characteristic approximation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 2, 709-716, 1999.
doi:10.1109/7.766950 Google Scholar
8. Lopaeva, E. D., Ivano Ruo Berchera, Ivo Pietro Degiovanni, S. Olivares, Giorgio Brida, and Marco Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, 2013.
doi:10.1103/PhysRevLett.110.153603 Google Scholar
9. Pirandola, Stefano, B. Roy Bardhan, Tobias Gehring, Christian Weedbrook, and Seth Lloyd, "Advances in photonic quantum sensing," Nature Photonics, Vol. 12, No. 12, 724-733, 2018.
doi:10.1038/s41566-018-0301-6 Google Scholar
10. Luong, David, C. W. Sandbo Chang, A. M. Vadiraj, Anthony Damini, Christopher M. Wilson, and Bhashyam Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2041-2060, 2019.
doi:10.1109/TAES.2019.2951213 Google Scholar
11. Alibart, Olivier, Virginia D'Auria, Marc De Micheli, Florent Doutre, Florian Kaiser, and others, "Quantum photonics at telecom wavelengths based on lithium niobate waveguides," J. Opt., Vol. 18, 104001, 2016.
doi:10.1088/2040-8978/18/10/104001 Google Scholar
12. Lee, Kim Fook, Jun Chen, Chuang Liang, Xiaoying Li, Paul L. Voss, and Prem Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Optics Letters, Vol. 31, No. 12, 1905-1907, 2006.
doi:10.1364/OL.31.001905 Google Scholar
13. Eichler, Christopher, Deniz Bozyigit, Christian Lang, Martin Baur, Lars Steffen, Johannes M. Fink, Stefan Filipp, and Andreas Wallraff, "Observation of two-mode squeezing in the microwave frequency domain," Physical Review Letters, Vol. 107, No. 11, 113601, 2011.
doi:10.1103/PhysRevLett.107.113601 Google Scholar
14. Flurin, Emmanuel, Nicolas Roch, Francois Mallet, Michel H. Devoret, and Benjamin Huard, "Generating entangled microwave radiation over two transmission lines," Physical Review Letters, Vol. 109, No. 18, 183901, 2012.
doi:10.1103/PhysRevLett.109.183901 Google Scholar
15. Flurin, Emmanuel, Nicolas Roch, Jean-Damien Pillet, Francois Mallet, and Benjamin Huard, "Superconducting quantum node for entanglement and storage of microwave radiation," Physical Review Letters, Vol. 114, No. 9, 090503, 2015.
doi:10.1103/PhysRevLett.114.090503 Google Scholar
16. Menzel, E. P., R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester, and others, "Path entanglement of continuous-variable quantum microwaves," Physical Review Letters, Vol. 109, No. 25, 250502, 2012.
doi:10.1103/PhysRevLett.109.250502 Google Scholar
17. Ku, H. S., W. F. Kindel, F. Mallet, S. Glancy, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, "Generating and verifying entangled itinerant microwave fields with efficient and independent measurements," Physical Review A, Vol. 91, No. 4, 042305, 2015.
doi:10.1103/PhysRevA.91.042305 Google Scholar
18. Fedorov, Kirill G., L. Zhong, S. Pogorzalek, P. Eder, M. Fischer, J. Goetz, E. Xie, F. Wulschner, K. Inomata, T. Yamamoto, and others, "Displacement of propagating squeezed microwave states," Physical Review Letters, Vol. 117, No. 2, 020502, 2016.
doi:10.1103/PhysRevLett.117.020502 Google Scholar
19. Fedorov, Kirill G., S. Pogorzalek, U. Las Heras, M. Sanz, P. Yard, P. Eder, M. Fischer, J. Goetz, E. Xie, K. Inomata, and others, "Finite-time quantum entanglement in propagating squeezed microwaves," Scientific Reports, Vol. 8, No. 1, 6416, 2018.
doi:10.1038/s41598-018-24742-z Google Scholar
20. Westig, M, Bjorn Kubala, Olivier Parlavecchio, Yury Mukharsky, Carles Altimiras, Philippe Joyez, Denis Vion, Patrice Roche, Daniel Esteve, Max Hofheinz, and others, "Emission of nonclassical radiation by inelastic cooper pair tunneling," Physical Review Letters, Vol. 119, No. 13, 137001, 2017.
doi:10.1103/PhysRevLett.119.137001 Google Scholar
21. Grimsmo, Arne L. and Alexandre Blais, "Squeezing and quantum state engineering with josephson travelling wave amplifiers," Npj Quantum Information, Vol. 3, No. 1, 20, 2017.
doi:10.1038/s41534-017-0020-8 Google Scholar
22. Tan, Si-Hui, Baris I. Erkmen, Vittorio Giovannetti, Saikat Guha, Seth Lloyd, Lorenzo Maccone, Stefano Pirandola, and Jeffrey H. Shapiro, "Quantum illumination with gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, 2008.
doi:10.1103/PhysRevLett.101.253601 Google Scholar
23. Assouly, Reouven, Remy Dassonneville, Theau Peronnin, Audrey Bienfait, and Benjamin Huard, "Demonstration of quantum advantage in microwave quantum radar," arXiv:2211.05684v1, 2022. Google Scholar
24. Macklin, C., K. O'Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, "A near–quantum-limited josephson traveling-wave parametric amplifier," Science, Vol. 350, No. 6258, 307-310, 2015.
doi:10.1126/science.aaa8525 Google Scholar
25. Planat, Luca, Arpit Ranadive, Remy Dassonneville, Javier Puertas Martinez, Sebastien Leger, Cecile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, and Nicolas Roch, "Photonic-crystal josephson traveling-wave parametric amplifier," Physical Review X, Vol. 10, No. 2, 021021, 2020.
doi:10.1103/PhysRevX.10.021021 Google Scholar
26. Livreri, Patrizia, Emanuele Enrico, Luca Fasolo, Angelo Greco, Alessio Rettaroli, David Vitali, Alfonso Farina, Com F. Marchetti, and A. Sq. D. Giacomin, "Microwave quantum radar using a josephson traveling wave parametric amplifier," 2022 IEEE Radar Conference (RadarConf22), 1-5, New York City, NY, USA, 2022.
27. Livreri, Patrizia, Emanuele Enrico, David Vitali, and Alfonso Farina, "Microwave quantum radar using a josephson traveling wave parametric amplifier and a phase-conjugate receiver for a long-distance detection," 2023 IEEE Radar Conference (RadarConf23), 1-5, San Antonio, TX, USA, 2023.
28. Luong, David, Sreeraman Rajan, and Bhashyam Balaji, "Quantum two-mode squeezing radar and noise radar: correlation coefficients for target detection," IEEE Sensors Journal, Vol. 20, No. 10, 5221-5228, 2020.
doi:10.1109/JSEN.2020.2971851 Google Scholar
29. Qiu, Jack Y., Arne Grimsmo, Kaidong Peng, Bharath Kannan, Benjamin Lienhard, Youngkyu Sung, Philip Krantz, Vladimir Bolkhovsky, Greg Calusine, David Kim, and others, "Broadband squeezed microwaves and amplification with a josephson travelling-wave parametric amplifier," Nature Physics, Vol. 19, No. 5, 706-713, 2023. Google Scholar
30. Van Trees, Harry L., Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory, New York, NY, USA, John Wiley & Sons, 2004.
31. Helstrom, Carl W., "Quantum detection and estimation theory," Journal of Statistical Physics, Vol. 1, 231-252, 1969.
doi:10.1007/BF01007479 Google Scholar
32. Mollow, B. R. and R. J. Glauber, "Quantum theory of parametric amplification. I," Physical Review, Vol. 160, No. 5, 1076, 1967.
doi:10.1103/PhysRev.160.1076 Google Scholar
33. Kroll, Norman M., "Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies," Physical Review, Vol. 127, No. 4, 1207, 1962.
doi:10.1103/PhysRev.127.1207 Google Scholar
34. Kingston, R. H., "Parametric amplification and oscillation at optical frequencies," Proceedings of The Institute of Radio Engineers, Vol. 50, No. 4, 472, 1962. Google Scholar
35. Akhmanov, S. A. and R. V. Khokhlov, "Concerning one possibility of amplification of light waves," Sov. Phys. Jetp, Vol. 16, 252-257, 1963. Google Scholar
36. Josephson, Brian David, "Possible new effects in superconductive tunnelling," Physics Letters, Vol. 1, No. 7, 251-253, 1962.
doi:10.1016/0031-9163(62)91369-0 Google Scholar
37. Yurke, Bernard, L. R. Corruccini, P. G. Kaminsky, L. W. Rupp, A. D. Smith, A. H. Silver, R. W. Simon, and E. A. Whittaker, "Observation of parametric amplification and deamplification in a josephson parametric amplifier," Physical Review A, Vol. 39, No. 5, 2519, 1989.
doi:10.1103/PhysRevA.39.2519 Google Scholar
38. Malnou, Maxime, Joe Aumentado, M. R. Vissers, J. D. Wheeler, Johannes Hubmayr, J. N. Ullom, and Jiansong Gao, "Performance of a kinetic inductance traveling-wave parametric amplifier at 4 kelvin: toward an alternative to semiconductor amplifiers," Physical Review Applied, Vol. 17, No. 4, 044009, 2022.
doi:10.1103/PhysRevApplied.17.044009 Google Scholar
39. Aumentado, Jose, "Superconducting parametric amplifiers: the state of the art in josephson parametric amplifiers," IEEE Microwave Magazine, Vol. 21, No. 8, 45-59, 2020.
doi:10.1109/MMM.2020.2993476 Google Scholar
40. Perelshtein, M. R., K. V. Petrovnin, Visa Vesterinen, Sina Hamedani Raja, Ilari Lilja, Marco Will, Alexander Savin, Slawomir Simbierowicz, Robab Najafi Jabdaraghi, Janne S Lehtinen, and others, "Broadband continuous-variable entanglement generation using a kerr-free josephson metamaterial," Physical Review Applied, Vol. 18, No. 2, 024063, 2022.
doi:10.1103/PhysRevApplied.18.024063 Google Scholar
41. Esposito, Martina, Arpit Ranadive, Luca Planat, and Nicolas Roch, "Perspective on traveling wave microwave parametric amplifiers," Applied Physics Letters, Vol. 119, No. 12, 2021.
doi:10.1063/5.0064892 Google Scholar
42. O’Brien, Kevin, Chris Macklin, Irfan Siddiqi, and Xiang Zhang, "Resonant phase matching of josephson junction traveling wave parametric amplifiers," Physical Review Letters, Vol. 113, No. 15, 157001, 2014.
doi:10.1103/PhysRevLett.113.157001 Google Scholar
43. Frattini, N. E., V. V. Sivak, A. Lingenfelter, S. Shankar, and M. H. Devoret, "Optimizing the nonlinearity and dissipation of a snail parametric amplifier for dynamic range," Physical Review Applied, Vol. 10, No. 5, 054020, 2018.
doi:10.1103/PhysRevApplied.10.054020 Google Scholar
44. Caves, Carlton M., "Quantum limits on noise in linear amplifiers," Physical Review D, Vol. 26, No. 8, 1817, 1982.
doi:10.1103/PhysRevD.26.1817 Google Scholar
45. Castellanos-Beltran, Manuel A., K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, "Amplification and squeezing of quantum noise with a tunable josephson metamaterial," Nature Physics, Vol. 4, No. 12, 929-931, 2008.
doi:10.1038/nphys1090 Google Scholar
46. Clerk, Aashish A., Michel H. Devoret, Steven M. Girvin, Florian Marquardt, and Robert J. Schoelkopf, "Introduction to quantum noise, measurement, and amplification," Reviews of Modern Physics, Vol. 82, No. 2, 1155-1208, 2010.
doi:10.1103/RevModPhys.82.1155 Google Scholar
47. Cullen, A. L., "Theory of the travelling-wave parametric amplifier," Proceedings of The Iee-part B: Electronic and Communication Engineering, Vol. 107, No. 32, 101-107, 1960.
doi:10.1049/pi-b-2.1960.0085 Google Scholar
48. Naaman, Ofer and Jose Aumentado, "Synthesis of parametrically coupled networks," PRX Quantum, Vol. 3, No. 2, 020201, 2022.
doi:10.1103/PRXQuantum.3.020201 Google Scholar
49. Malnou, Maxime and Jose Aumentado, "Deconstructing the traveling wave parametric amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 4, 2158-2167, 2024.
doi:10.1109/TMTT.2024.3367176 Google Scholar
50. Greco, Angelo, Luca Fasolo, Alice Meda, Luca Callegaro, and Emanuele Enrico, "Quantum model for rf-squid-based metamaterials enabling three-wave mixing and four-wave mixing traveling-wave parametric amplification," Physical Review B, Vol. 104, No. 18, 184517, 2021.
doi:10.1103/PhysRevB.104.184517 Google Scholar
51. Macklin, Chris, K. O'brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, "A near-quantum-limited josephson traveling-wave parametric amplifier," Science, Vol. 350, No. 6258, 307-310, 2015.
doi:10.1126/science.aaa8525 Google Scholar
52. Wustmann, Waltraut and Vitaly Shumeiko, "Parametric resonance in tunable superconducting cavities," Physical Review B --- Condensed Matter and Materials Physics, Vol. 87, No. 18, 184501, 2013.
doi:10.1103/PhysRevB.87.184501 Google Scholar
53. Plenio, Martin B. and Susana F. Huelga, "Dephasing-assisted transport: quantum networks and biomolecules," New Journal of Physics, Vol. 10, No. 11, 113019, 2008.
doi:10.1088/1367-2630/10/11/113019 Google Scholar
54. Eichler, Christopher, Deniz Bozyigit, Christian Lang, Martin Baur, Lars Steffen, Johannes M. Fink, Stefan Filipp, and Andreas Wallraff, "Observation of two-mode squeezing in the microwave frequency domain," Physical Review Letters, Vol. 107, No. 11, 113601, 2011.
doi:10.1103/PhysRevLett.107.113601 Google Scholar
55. Kraus, Karl, "General state changes in quantum theory," Annals of Physics, Vol. 64, No. 2, 311-335, 1971.
doi:10.1016/0003-4916(71)90108-4 Google Scholar
56. Adesso, Gerardo and Fabrizio Illuminati, "Entanglement in continuous-variable systems: recent advances and current perspectives," Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 28, 7821, 2007.
doi:10.1088/1751-8113/40/28/S01 Google Scholar
57. Dolinar, S. J., "Optimum detection of coherent electromagnetic radiation," Ph.D. dissertation, Stanford Univ., Stanford, CA, USA, 1973.
58. Guha, S., "Quantum-enhanced sensing," Phys. Rev. A, Vol. 94, 012108, 2016. Google Scholar
59. Shi, H., J. H. Shapiro, and Z. Zhang, "Practical quantum radar and lidar: physics, principles, and techniques," J. Opt., Vol. 25, 013002, 2023. Google Scholar
60. Reichert, L., A. Ferri, S. T. Johansen, C. Lupo, R. Elgharib, M. R. Vissers, L. Frunzio, M. H. Devoret, L. P. Pryadko, and A. A. Houck, "Quantum-enhanced sensing and readout of microwave resonators," Phys. Rev. Res., Vol. 5, 023137, 2023. Google Scholar
61. Skolnik, Merrill Ivan and others, Introduction to Radar Systems, 2 Ed., Vol. 3, McGraw-Hill, 1980.
62. Luong, D. and B. Balaji, "Quantum radar with gaussian states and non-gaussian detectors: sensitivity and performance," IEEE Trans. on Aerospace and Electronic Systems, Vol. 58, 4239-4257, 2022. Google Scholar
63. Mahafza, Bassem R., Radar Systems Analysis and Design Using MATLAB, 4 Ed., CRC Press, Boca Raton, FL, USA, 2022.
doi:10.1201/9781003051282
64. Norouzi, M. and J. D. Saari, "Quantum radar: State of the art and new avenues," IEEE Aerospace and Electronic Systems Magazine, Vol. 38, 62-76, 2023. Google Scholar
65. Barzanjeh, Shabir, Stefano Pirandola, David Vitali, and Johannes M. Fink, "Microwave quantum illumination using a digital receiver," Science Advances, Vol. 6, No. 19, eabb0451, 2020.
doi:10.1126/sciadv.abb0451 Google Scholar
66. Fasolo, L., C. Barone, M. Borghesi, G. Carapella, A. P. Caricato, I. Carusotto, Woohyun Chung, A. Cian, D. Di Gioacchino, E. Enrico, and others, "Bimodal approach for noise figures of merit evaluation in quantum-limited josephson traveling wave parametric amplifiers," IEEE Transactions on Applied Superconductivity, Vol. 32, No. 4, 1-6, 2022.
doi:10.1109/TASC.2022.3148692 Google Scholar