Vol. 180
Latest Volume
All Volumes
PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2024-12-17
Optimization Design of Photonic-Crystal Surface-Emitting Lasers: Toward Large Bandwidth and Single-Lane 200 g Optical Transmission
By
Progress In Electromagnetics Research, Vol. 180, 89-101, 2024
Abstract
By using the time-dependent three-dimensional coupled-wave theory (3D-CWT), the transient analysis of photonic-crystal surface-emitting lasers (PCSELs) with double-lattice photonic crystals is performed. By optimizing the size of the PCSELs and the shape of the double-lattice photonic crystals, the resonance frequency is increased, and the damping (photon lifetime) is decreased, which enables over 40 GHz intrinsic 3 dB modulation bandwidth of the PCSELs. 100 Gb/s open eye under non-return-to-zero (NRZ) modulation is demonstrated by using such PCSELs. The large bandwidth enables single-lane 200 G optical transmission under four-level pulse-amplitude modulation (PAM-4). This study shows the design principles of large-bandwidth PCSELs and promises PCSELs to be an ideal candidate for the application of high-speed, high-power, free-space optical communication.
Citation
Xing-Chen Ai, Shao-Chi Pan, Yu-Hao Wang, and Si-Cong Tian, "Optimization Design of Photonic-Crystal Surface-Emitting Lasers: Toward Large Bandwidth and Single-Lane 200 g Optical Transmission," Progress In Electromagnetics Research, Vol. 180, 89-101, 2024.
doi:10.2528/PIER24102901
References

1. Yang, Yun-Cheng, Hao-Tien Cheng, and Chao-Hsin Wu, "Single-channel 106.25 Gb/s PAM-4 and 64 Gb/s NRZ transmission with a 33.4-GHz 850-nm VCSEL with low-RIN characteristics," Journal of Lightwave Technology, Vol. 42, No. 1, 293-301, 2024.

2. Haghighi, Nasibeh, Gunter Larisch, Ricardo Rosales, Martin Zorn, and James A. Lott, "35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs," 2018 IEEE International Semiconductor Laser Conference (ISLC), 1-2, Santa Fe, NM, USA, Sep. 2018.

3. Ge, Chang, Liang Dong, Xiaodong Gu, and Fumio Koyama, "1060 nm single-mode intra-cavity metal-aperture VCSEL for over 2 km standard 1300 nm SMF transmission," 2023 Conference on Lasers and Electro-Optics (CLEO), 1-2, San Jose, CA, USA, 2023.

4. Murty, M. V. Ramana, Jingyi Wang, Sizhu Jiang, David Dolfi, T. K. Wang, Derek Vaughan, Zheng-Wen Feng, Nelvin Leong, Aadi Sridhara, Sumitro T. Joyo, Jason Chu, and Laura Giovane, "Toward 200 G per lane VCSEL-based multimode links," 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2024.

5. Shimizu, Satoshi, Chang Ge, Liang Dong, Xiaodong Gu, Atsushi Matsumoto, Satoshi Shinada, and Fumio Koyama, "Record high-baud-rate 128-Gbit/s NRZ-OOK direct modulation of 1060-nm single-mode VCSEL for transmission over 2-km standard SMF," 2023 Opto-Electronics and Communications Conference (OECC), 1-4, Shanghai, China, 2023.

6. Jiang, Sizhu, Jingyi Wang, M. V. Ramana Murty, Zheng-Wen Feng, Gim-Hong Koh, Sumtro-Joyo Taslim, Aadi Sridhara, Xinle Cai, Nelvin Leong, David W. Dolfi, Jason Chu, and Laura M. Giovane, "Development and characterization of 100 Gb/s 940 nm VCSELs for multimode optical links," Vertical-Cavity Surface-Emitting Lasers XXVIII, Vol. 1290406, 35-40, San Francisco, California, USA, 2024.

7. Zuo, Tianjian, Tingting Zhang, Sen Zhang, and Lei Liu, "Single-lane 200-Gbps PAM-4 transmission for datacenter intra-connections employing 850-nm VCSEL," 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 2020.

8. Inoue, Takuya, Taejoon Kim, Shumpei Katsuno, Ryohei Morita, Masahiro Yoshida, Menaka De Zoysa, Kenji Ishizaki, and Susumu Noda, "Measurement and numerical analysis of intrinsic spectral linewidths of photonic-crystal surface-emitting lasers," Applied Physics Letters, Vol. 122, No. 5, 051101, 2023.

9. Hirose, Kazuyoshi, Yong Liang, Yoshitaka Kurosaka, Akiyoshi Watanabe, Takahiro Sugiyama, and Susumu Noda, "Watt-class high-power, high-beam-quality photonic-crystal lasers," Nature Photonics, Vol. 8, No. 5, 406-411, 2014.

10. Inoue, Takuya, Masahiro Yoshida, John Gelleta, Koki Izumi, Keisuke Yoshida, Kenji Ishizaki, Menaka De Zoysa, and Susumu Noda, "General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation," Nature Communications, Vol. 13, No. 1, 3262, 2022.

11. Yoshida, Masahiro, Shumpei Katsuno, Takuya Inoue, John Gelleta, Koki Izumi, Menaka De Zoysa, Kenji Ishizaki, and Susumu Noda, "High-brightness scalable continuous-wave single-mode photonic-crystal laser," Nature, Vol. 618, No. 7966, 727-732, 2023.
doi:10.1038/s41586-023-06059-8

12. Itoh, Yuhki, Naoya Kono, Daisuke Inoue, Naoki Fujiwara, Makoto Ogasawara, Kosuke Fujii, Hiroyuki Yoshinaga, Hideki Yagi, Masaki Yanagisawa, Masahiro Yoshida, et al., "High-power CW oscillation of 1.3-µm wavelength InP-based photonic-crystal surface-emitting lasers," Optics Express, Vol. 30, No. 16, 29539-29545, 2022.

13. Inoue, T., M. Yoshida, M. D. Zoysa, K. Ishizaki, and S. Noda, "Design of photonic-crystal surface-emitting lasers with enhanced in-plane optical feedback for high-speed operation," Optics Express, Vol. 28, No. 4, 5050-5057, 2020.

14. Li, Rusong, Yunfei Xu, Shichen Zhang, Yu Ma, Junhong Liu, Binru Zhou, Lijun Wang, Ning Zhuo, Junqi Liu, Jinchuan Zhang, et al., "High brightness terahertz quantum cascade laser with near-diffraction-limited Gaussian beam," Light: Science & Applications, Vol. 13, No. 1, 193, 2024.
doi:10.1038/s41586-024-07291-6

15. Yoshida, Masahiro, Menaka De Zoysa, Kenji Ishizaki, Yoshinori Tanaka, Masato Kawasaki, Ranko Hatsuda, Bongshik Song, John Gelleta, and Susumu Noda, "Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams," Nature Materials, Vol. 18, No. 2, 121-128, 2019.

16. Inoue, Takuya, Ryohei Morita, Kazuki Nigo, Masahiro Yoshida, Menaka De Zoysa, Kenji Ishizaki, and Susumu Noda, "Self-evolving photonic crystals for ultrafast photonics," Nature Communications, Vol. 14, No. 1, 50, 2023.

17. Ishimura, Shota, Ryohei Morita, Takuya Inoue, Kosuke Nishimura, Hidenori Takahashi, Takehiro Tsuritani, Menaka De Zoysa, Kenji Ishizaki, Masatoshi Suzuki, and Susumu Noda, "Proposal and demonstration of free-space optical communication using photonic crystal surface-emitting lasers," Journal of Lightwave Technology, Vol. 41, No. 12, 3688-3694, 2023.

18. Morita, Ryohei, Shota Ishimura, Takuya Inoue, Kosuke Nishimura, Hidenori Takahashi, Takehiro Tsuritani, Menaka De Zoysa, Kenji Ishizaki, Masatoshi Suzuki, and Susumu Noda, "High-speed high-power free-space optical communication via directly modulated watt-class photonic-crystal surface-emitting lasers," Optica, Vol. 11, No. 7, 971-979, 2024.

19. Chan, Vincent W. S., "Optical satellite networks," Journal of Lightwave Technology, Vol. 21, No. 11, 2811, 2003.

20. Peng, Chun-Yen, Hao-Tien Cheng, Yu-Heng Hong, Wen-Cheng Hsu, Fu-He Hsiao, Tien-Chang Lu, Shu-Wei Chang, Shih-Chen Chen, Chao-Hsin Wu, and Hao-Chung Kuo, "Performance analyses of photonic-crystal surface-emitting laser: Toward high-speed optical communication," Nanoscale Research Letters, Vol. 17, No. 1, 90, 2022.

21. Pan, Mingsen, Chhabindra Gautam, Akhil Kalapala, Yudong Chen, Thomas Rotter, Ming Zhou, Ricky Gibson, Robert Bedford, Shanhui Fan, Ganesh Balakrishnan, and Weidong Zhou, "Frequency response characteristics of high-power photonic crystal surface-emitting lasers," 2023 IEEE Photonics Conference (IPC), 1-2, Orlando, Florida, USA, 2023.

22. Orchard, Jonathan R., Pavlo Ivanov, Adam F. McKenzie, Calum H. Hill, Ibrahim Javed, Connor W. Munro, Jeff Kettle, Richard A. Hogg, David T. D. Childs, and Richard J. E. Taylor, "Small signal modulation of photonic crystal surface emitting lasers," Scientific Reports, Vol. 13, No. 1, 19019, 2023.

23. Inoue, Takuya, Ryohei Morita, Masahiro Yoshida, Menaka De Zoysa, Yoshinori Tanaka, and Susumu Noda, "Comprehensive analysis of photonic-crystal surface-emitting lasers via time-dependent three-dimensional coupled-wave theory," Physical Review B, Vol. 99, No. 3, 035308, 2019.

24. Kalapala, Akhil, Alex Y. Song, Mingsen Pan, Chhabindra Gautam, Luke Overman, Kevin Reilly, Thomas J. Rotter, Ganesh Balakrishnan, Ricky Gibson, Robert Bedford, James J. Coleman, Shanhui Fan, and Weidong Zhou, "Scaling challenges in high power photonic crystal surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 58, No. 4, 1-9, 2022.

25. Zhou, Ming, Akhil Raj Kumar Kalapala, Mingsen Pan, Ricky Gibson, Kevin James Reilly, Thomas Rotter, Garnesh Balakrishnan, Robert Bedford, Weidong Zhou, and Shanhui Fan, "Increasing the Q-contrast in large photonic crystal slab resonators using bound-states-in-continuum," ACS Photonics, Vol. 10, No. 5, 1519-1528, 2023.

26. Gelleta, John, Yong Liang, Hitoshi Kitagawa, and Susumu Noda, "Influence of external reflection on the TE mode of photonic crystal surface-emitting lasers," Journal of the Optical Society of America B, Vol. 32, No. 7, 1435-1441, 2015.

27. Taylor, Richard J. E., Guangrui Li, Pavlo Ivanov, David T. D. Childs, Timothy S. Roberts, Benjamin J. Stevens, Bret Harrison, Jayanta Sarma, Nasser Babazadeh, Gary Terrnent, and Richard A. Hogg, "Mode control in photonic crystal surface emitting lasers through external reflection," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 6, 1-8, 2017.

28. Bian, Zijun, Xingyu Zhao, Katherine J. Rae, Aye S. M. Kyaw, Daehyun Kim, Adam F. McKenzie, Ben C. King, Jingzhao Liu, Stephen Thoms, Paul Reynolds, et al., "Resonator embedded photonic crystal surface emitting lasers," 2022 28th International Semiconductor Laser Conference (ISLC), 1-2, Matsue, Japan, 2022.

29. Sakai, Kyosuke, Eiji Miyai, and Susumu Noda, "Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization," IEEE Journal of Quantum Electronics, Vol. 46, No. 5, 788-795, 2010.

30. Liang, Yong, Chao Peng, Kyosuke Sakai, Seita Iwahashi, and Susumu Noda, "Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: Finite-size effects," Optics Express, Vol. 20, No. 14, 15945-15961, 2012.

31. Otsuka, K., K. Sakai, Y. Kurosaka, J. Kashiwagi, W. Kunishi, D. Ohnishi, and S. Noda, "High-power surface-emitting photonic crystal laser," LEOS 2007 --- IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 562-563, Lake Buena Vista, FL, USA, 2007.

32. Coldren, Larry A., Scott W. Corzine, and Milan L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Vol. 218, John Wiley & Sons, Hoboken, N.J., 2012.
doi:10.1002/9781118148167

33. Tian, Si-Cong, Mansoor Ahamed, Gunter Larisch, and Dieter Bimberg, "Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems," Japanese Journal of Applied Physics, Vol. 61, No. SK, SK0801, 2022.

34. Tian, Si-Cong, Mansoor Ahamed, and Dieter Bimberg, "Progress in short wavelength energy-efficient high-speed vertical-cavity surface-emitting lasers for data communication," Photonics, Vol. 10, No. 4, 410, 2023.

35. Westbergh, Petter, Johan S. Gustavsson, Benjamin Kögel, Åsa Haglund, and Anders Larsson, "Impact of photon lifetime on high-speed VCSEL performance," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 6, 1603-1613, 2011.

36. Larisch, Gunter, Philip Moser, James A. Lott, and Dieter Bimberg, "Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs," IEEE Photonics Technology Letters, Vol. 28, No. 21, 2327-2330, 2016.

37. Larisch, Gunter, Sicong Tian, and Dieter Bimberg, "Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates," Optics Express, Vol. 28, No. 13, 18931-18937, 2020.

38. Haglund, Emanuel P., Petter Westbergh, Johan S. Gustavsson, and Anders Larsson, "Impact of damping on high-speed large signal VCSEL dynamics," Journal of Lightwave Technology, Vol. 33, No. 4, 795-801, 2014.