1. Jones, R. Jason, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, "Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity," Physical Review Letters, Vol. 94, No. 19, 193201, 2005. Google Scholar
2. Gohle, Christoph, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, "A frequency comb in the extreme ultraviolet," Nature, Vol. 436, No. 7048, 234-237, 2005. Google Scholar
3. Lu, Xiyuan, Gregory Moille, Ashutosh Rao, Daron A. Westly, and Kartik Srinivasan, "Efficient photoinduced second-harmonic generation in silicon nitride photonics," Nature Photonics, Vol. 15, No. 2, 131-136, 2021. Google Scholar
4. Rutledge, Jay, Anthony Catanese, Daniel D. Hickstein, Scott A. Diddams, Thomas K. Allison, and Abijith S. Kowligy, "Broadband ultraviolet-visible frequency combs from cascaded high-harmonic generation in quasi-phase-matched waveguides," Journal of the Optical Society of America B, Vol. 38, No. 8, 2252-2260, 2021. Google Scholar
5. Stegeman, George I. and Roger H. Stolen, "Waveguides and fibers for nonlinear optics," Journal of the Optical Society of America B, Vol. 6, No. 4, 652-662, 1989. Google Scholar
6. Walmsley, Ian A. and Christophe Dorrer, "Characterization of ultrashort electromagnetic pulses," Advances in Optics and Photonics, Vol. 1, No. 2, 308-437, 2009. Google Scholar
7. Kauranen, Martti and Anatoly V. Zayats, "Nonlinear plasmonics," Nature Photonics, Vol. 6, No. 11, 737-748, 2012. Google Scholar
8. Liu, Xianwen, Alexander W. Bruch, Juanjuan Lu, Zheng Gong, Joshua B. Surya, Liang Zhang, Junxi Wang, Jianchang Yan, and Hong X. Tang, "Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide," Nature Communications, Vol. 10, No. 1, 2971, 2019. Google Scholar
9. Zhang, Yuquan, Changjun Min, Xiujie Dou, Xianyou Wang, Hendrik Paul Urbach, Michael G. Somekh, and Xiaocong Yuan, "Plasmonic tweezers: For nanoscale optical trapping and beyond," Light: Science & Applications, Vol. 10, No. 1, 59, 2021. Google Scholar
10. Boyd, R. W., Nonlinear Optics, Academic Press, 2003.
11. Fiore, A., V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature, Vol. 391, No. 6666, 463-466, 1998. Google Scholar
12. Fiore, Andrea, S. Janz, L. Delobel, P. Van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, "Second-harmonic generation at λ= 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching," Applied Physics Letters, Vol. 72, No. 23, 2942-2944, 1998. Google Scholar
13. Rao, S. Venugopal, K. Moutzouris, and M. Ebrahimzadeh, "Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques," Journal of Optics A: Pure and Applied Optics, Vol. 6, No. 6, 569, 2004. Google Scholar
14. Moutzouris, K., S. Venugopal Rao, Majid Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, "Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides," Optics Letters, Vol. 26, No. 22, 1785-1787, 2001. Google Scholar
15. Levy, Jacob S., Mark A. Foster, Alexander L. Gaeta, and Michal Lipson, "Harmonic generation in silicon nitride ring resonators," Optics Express, Vol. 19, No. 12, 11415-11421, 2011. Google Scholar
16. Akhmediev, Nail and Magnus Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Physical Review A, Vol. 51, No. 3, 2602, 1995. Google Scholar
17. Brasch, Victor, Michael Geiselmann, Tobias Herr, Grigoriy Lihachev, Martin H. P. Pfeiffer, Michael L. Gorodetsky, and Tobias J. Kippenberg, "Photonic chip–based optical frequency comb using soliton Cherenkov radiation," Science, Vol. 351, No. 6271, 357-360, 2016. Google Scholar
18. Corcoran, Bill, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, "Optical signal processing on a silicon chip at 640Gb/s using slow-light," Optics Express, Vol. 18, No. 8, 7770-7781, 2010. Google Scholar
19. Yariv, Amnon, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics Letters, Vol. 36, No. 4, 321-322, 2000. Google Scholar
20. Marcatili, E. A. J., "Bends in optical dielectric guides," Bell System Technical Journal, Vol. 48, No. 7, 2103-2132, 1969. Google Scholar
21. Yariv, Amnon, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics Letters, Vol. 36, No. 4, 321-322, 2000. Google Scholar
22. Yariv, Amnon, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, Vol. 14, No. 4, 483-485, 2002. Google Scholar
23. Rabus, D. G., Integrated Ring Resonators, Springer, 2007.
24. Tatian, Berge, "Fitting refractive-index data with the Sellmeier dispersion formula," Applied Optics, Vol. 23, No. 24, 4477-4485, 1984. Google Scholar
25. Fleming, James W., "Dispersion in GeO2-SiO2 glasses," Applied Optics, Vol. 23, No. 24, 4486-4493, 1984. Google Scholar
26. Luke, Kevin, Yoshitomo Okawachi, Michael R. E. Lamont, Alexander L. Gaeta, and Michal Lipson, "Broadband mid-infrared frequency comb generation in a Si3N4 microresonator," Optics Letters, Vol. 40, No. 21, 4823-4826, 2015. Google Scholar
27. Agrawal, G. P., "Nonlinear fiber optics," Nonlinear Science at the Dawn of the 21st Century, 195-211, P. L. Christiansen, M. P. Sorensen, A. C. Scott (eds.), Springer, 2000. Google Scholar
28. Kumar, A. and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Press, 2011.
29. Turner, Amy C., Christina Manolatou, Bradley S. Schmidt, Michal Lipson, Mark A. Foster, Jay E. Sharping, and Alexander L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Optics Express, Vol. 14, No. 10, 4357-4362, 2006. Google Scholar
30. Luan, Feng, Mark D. Pelusi, Michael R. E. Lamont, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton, "Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals," Optics Express, Vol. 17, No. 5, 3514-3520, 2009. Google Scholar
31. Yang, Ki Youl, Katja Beha, Daniel C. Cole, Xu Yi, Pascal Del'Haye, Hansuek Lee, Jiang Li, Dong Yoon Oh, Scott A. Diddams, Scott B. Papp, and Kerry J. Vahala, "Broadband dispersion-engineered microresonator on a chip," Nature Photonics, Vol. 10, No. 5, 316-320, 2016. Google Scholar
32. Miller, Steven A., Yoshitomo Okawachi, Sven Ramelow, Kevin Luke, Avik Dutt, Alessandro Farsi, Alexander L. Gaeta, and Michal Lipson, "Tunable frequency combs based on dual microring resonators," Optics Express, Vol. 23, No. 16, 21527-21540, 2015. Google Scholar
33. Riemensberger, Johann, Klaus Hartinger, Tobias Herr, Victor Brasch, Ronald Holzwarth, and Tobias J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition," Optics Express, Vol. 20, No. 25, 27661-27669, 2012. Google Scholar
34. Ramelow, Sven, Alessandro Farsi, Stéphane Clemmen, Jacob S. Levy, Adrea R. Johnson, Yoshitomo Okawachi, Michael. R. E. Lamont, Michal Lipson, and Alexander L. Gaeta, "Strong polarization mode coupling in microresonators," Optics Letters, Vol. 39, No. 17, 5134-5137, 2014. Google Scholar
35. Li, Yu, Jiachen Li, Yuandong Huo, Minghua Chen, Sigang Yang, and Hongwei Chen, "Spatial-mode-coupling-based dispersion engineering for integrated optical waveguide," Optics Express, Vol. 26, No. 3, 2807-2816, 2018. Google Scholar
36. Ferrera, M., D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, "Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million," Optics Express, Vol. 17, No. 16, 14098-14103, 2009. Google Scholar
37. Billington, R., "Effective area of optical fibres definition and measurement techniques", Centre for Optical and Environmental Metrology, National Physical Laboratory (NPL), 1999.
38. Leuthold, Juerg, Christian Koos, and Wolfgang Freude, "Nonlinear silicon photonics," Nature Photonics, Vol. 4, No. 8, 535-544, 2010. Google Scholar
39. Guo, Y., "Dispersion engineering in micro- and nano-optical devices," Ph.D. dissertation, Tianjin University, Tianjin, China, 2020.
40. Jacobsen, Rune S., Karin N. Andersen, Peter I. Borel, Jacob Fage-Pedersen, Lars H. Frandsen, Ole Hansen, Martin Kristensen, Andrei V. Lavrinenko, Gaid Moulin, Haiyan Ou, Christophe Peucheret, Beáta Zsigri, and Anders Bjarklev, "Strained silicon as a new electro-optic material," Nature, Vol. 441, No. 7090, 199-202, 2006. Google Scholar
41. Hochberg, Michael, Thomas Baehr-Jones, Guangxi Wang, Jingqing Huang, Phil Sullivan, Larry Dalton, and Axel Scherer, "Towards a millivolt optical modulator with nano-slot waveguides," Optics Express, Vol. 15, No. 13, 8401-8410, 2007. Google Scholar
42. Baehr-Jones, Tom, Boyan Penkov, Jingqing Huang, Phil Sullivan, Joshua Davies, Jocelyn Takayesu, Jingdong Luo, Tae-Dong Kim, Larry Dalton, Alex Jen, Michael Hochberg, and Axel Scherer, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Applied Physics Letters, Vol. 92, No. 16, 163303, 2008. Google Scholar
43. Zhang, Xueyue, Qi-Tao Cao, Zhuo Wang, Yu-xi Liu, Cheng-Wei Qiu, Lan Yang, Qihuang Gong, and Yun-Feng Xiao, "Symmetry-breaking-induced nonlinear optics at a microcavity surface," Nature Photonics, Vol. 13, No. 1, 21-24, 2019. Google Scholar
44. Yamada, K., H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technology Letters, Vol. 18, No. 9, 1046-1048, 2006. Google Scholar
45. Olsson, B.-E., Peter Ohlen, Lavanya Rau, and Daniel J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technology Letters, Vol. 12, No. 7, 846-848, 2000. Google Scholar
46. Ta’eed, Vahid G., Libin Fu, Mark Pelusi, Martin Rochette, Ian C. M. Littler, David J. Moss, and Benjamin J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Optics Express, Vol. 14, No. 22, 10371-10376, 2006. Google Scholar
47. Tangdiongga, E., Y. Liu, H. De Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Optics Letters, Vol. 32, No. 7, 835-837, 2007. Google Scholar
48. Li, J., B. Olsson, M. Karlsson, and P. Andrekson, "OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber," Optical Fiber Communication Conference, TuH6, TuH6, Atlanta, GA, USA, Mar. 2003.
49. Ta'eed, Vahid G., Mehrdad Shokooh-Saremi, Libin Fu, Ian C. M. Littler, David J. Moss, Martin Rochette, Benjamin J. Eggleton, Yinlan Ruan, and Barry Luther-Davies, "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 3, 360-370, 2006. Google Scholar
50. Salem, Reza, Mark A. Foster, Amy C. Turner, David F. Geraghty, Michal Lipson, and Alexander L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics, Vol. 2, No. 1, 35-38, 2008. Google Scholar
51. Willner, Alan E., Zhongqi Pan, and Changyuan Yu, Optical performance monitoring, 233-292 Elsevier, 5th Ed., Elsevier, 2008.
52. Luo, T., Changyuan Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, "All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber," IEEE Photonics Technology Letters, Vol. 18, No. 2, 430-432, 2006. Google Scholar
53. Blows, Justin L., Peifang Hu, and Benjamin J. Eggleton, "Differential group delay monitoring using an all-optical signal spectrum-analyser," Optics Communications, Vol. 260, No. 1, 288-291, 2006. Google Scholar
54. Westbrook, P. S., S. Hunsche, G. Raybon, T. H. Her, and B. J. Eggleton, "Measurement of pulse degradation using all-optical 2R regenerator," Electronics Letters, Vol. 38, No. 20, 1193-1194, 2002. Google Scholar
55. Konishi, Tsuyoshi, Kazunori Tanimura, Kousuke Asano, Yoshinori Oshita, and Yoshiki Ichioka, "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique," Journal of the Optical Society of America B, Vol. 19, No. 11, 2817-2823, 2002. Google Scholar
56. Lin, Qiang, Jidong Zhang, Philippe M. Fauchet, and Govind P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Optics Express, Vol. 14, No. 11, 4786-4799, 2006. Google Scholar
57. Liu, Qiang, Shiming Gao, Zhiqiang Li, Yanqiao Xie, and Sailing He, "Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion," Applied Optics, Vol. 50, No. 9, 1260-1265, 2011. Google Scholar
58. Corcoran, Bill, Christelle Monat, Christian Grillet, David J. Moss, Benjamin J. Eggleton, Thomas P. White, Liam O'Faolain, and Thomas F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nature Photonics, Vol. 3, No. 4, 206-210, 2009. Google Scholar
59. Absil, P. P., J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Optics Letters, Vol. 25, No. 8, 554-556, 2000. Google Scholar
60. Del’Haye, Pascal, Albert Schliesser, Olivier Arcizet, Tom Wilken, Ronald Holzwarth, and Tobias J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature, Vol. 450, No. 7173, 1214-1217, 2007. Google Scholar
61. Moss, D. J., S. D. Jackson, A. Pasquazi, M. Peccianti, and R. Morandotti, "Hydex glass: A new CMOS compatible platform for all-optical photonic chips," arXiv:1404.5610, Physics. Optics, 2014. Google Scholar
62. Pelusi, Mark, Feng Luan, Trung D. Vo, Michael R. E. Lamont, Steven J. Madden, Douglas A. Bulla, Duk-Yong Choi, Barry Luther-Davies, and Benjamin J. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nature Photonics, Vol. 3, No. 3, 139-143, 2009. Google Scholar
63. Moss, David J., Roberto Morandotti, Alexander L. Gaeta, and Michal Lipson, "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nature Photonics, Vol. 7, No. 8, 597-607, 2013. Google Scholar
64. Leuthold, J., C. Koos, and W. Freude, "Nonlinear silicon photonics," Nature Photonics, Vol. 4, No. 8, 535-544, 2010. Google Scholar
65. Liu, Y. and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Applied Physics Letters, Vol. 90, No. 21, 211105, 2007. Google Scholar
66. Vallaitis, Thomas, Siegwart Bogatscher, Luca Alloatti, Pieter Dumon, Roel Baets, Michelle L. Scimeca, Ivan Biaggio, François Diederich, Christian Koos, Wolfgang Freude, and Juerg Leuthold, "Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries," Optics Express, Vol. 17, No. 20, 17357-17368, 2009. Google Scholar
67. Franken, P. A., A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of optical harmonics," Physical Review Letters, Vol. 7, No. 4, 118, 1961. Google Scholar
68. Bloembergen, N. and P. S. Pershan, "Light waves at the boundary of nonlinear media," Physical Review, Vol. 128, No. 2, 606, 1962. Google Scholar
69. Stolen, R. and J. Bjorkholm, "Parametric amplification and frequency conversion in optical fibers," IEEE Journal of Quantum Electronics, Vol. 18, No. 7, 1062-1072, 1982. Google Scholar
70. Agrawal, G. P., Nonlinear Fiber Optics, sixth Ed., Academic Press, 2019.
71. Stolen, R. H. and H. W. K. Tom, "Self-organized phase-matched harmonic generation in optical fibers," Optics Letters, Vol. 12, No. 8, 585-587, 1987. Google Scholar
72. Tom, H. W. K., R. H. Stolen, G. D. Aumiller, and W. Pleibel, "Preparation of long-coherence-length second-harmonic-generating optical fibers by using mode-locked pulses," Optics Letters, Vol. 13, No. 6, 512-514, 1988. Google Scholar
73. He, G., Nonlinear Optics and Photonics, Shanghai Scientific & Technical Publishers, 2018.
74. Li, Yuhua, Shao Hao Wang, Yayuan Tian, Wai Lok Ho, Yangyang Li, Leiran Wang, Roy R. Davidson, Brent E. Little, and Sai Tak Chu, "Third-harmonic generation in CMOS-compatible highly doped silica micro-ring resonator," Optics Express, Vol. 28, No. 1, 641-651, 2020. Google Scholar
75. Wang, Shaohao, Yuhua Li, Brent E. Little, Leiran Wang, Xiang Wang, Roy R. Davidson, and Sai Tak Chu, "Athermal third harmonic generation in micro-ring resonators," Opto-Electronic Advances, Vol. 3, No. 12, 200028-1, 2020. Google Scholar
76. Wang, Shao Hao, Yuhua Li, Leiran Wang, Brent E. Little, and Sai Tak Chu, "Thermal analysis of visible emission from micro-ring resonators by third-harmonic generation," IEEE Photonics Technology Letters, Vol. 33, No. 5, 235-238, 2021. Google Scholar
77. Liu, Bodong, Huakang Yu, Zhi-yuan Li, and Limin Tong, "Phase-matched second-harmonic generation in coupled nonlinear optical waveguides," Journal of the Optical Society of America B, Vol. 36, No. 10, 2650-2658, 2019. Google Scholar
78. Guo, Hairun, Maxim Karpov, Erwan Lucas, Arne Kordts, Martin H. P. Pfeiffer, Victor Brasch, Grigory Lihachev, Valery E. Lobanov, Michael L. Gorodetsky, and Tobias J. Kippenberg, "Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators," Nature Physics, Vol. 13, No. 1, 94-102, 2017. Google Scholar
79. Bao, Chengying, Yi Xuan, Jose A. Jaramillo-Villegas, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner, "Direct soliton generation in microresonators," Optics Letters, Vol. 42, No. 13, 2519-2522, 2017. Google Scholar
80. Carmon, Tal, Lan Yang, and Kerry J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Optics Express, Vol. 12, No. 20, 4742-4750, 2004. Google Scholar
81. Ikeda, Kazuhiro, Robert E. Saperstein, Nikola Alic, and Yeshaiahu Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Optics Express, Vol. 16, No. 17, 12987-12994, 2008. Google Scholar
82. Foster, Mark A., Amy C. Turner, Jay E. Sharping, Bradley S. Schmidt, Michal Lipson, and Alexander L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature, Vol. 441, No. 7096, 960-963, 2006. Google Scholar
83. Pu, Minhao, Hao Hu, Luisa Ottaviano, Elizaveta Semenova, Dragana Vukovic, Leif Katsuo Oxenløwe, and Kresten Yvind, "Ultra‐Efficient and broadband nonlinear AlGaAs‐on‐insulator chip for low‐power optical signal processing," Laser & Photonics Reviews, Vol. 12, No. 12, 1800111, 2018. Google Scholar
84. Eggleton, B., S. Radic, D. Moss, I. P. Kaminow, L. Tingye, and A. E. Willner, Optical Fiber Telecommunications V: Components and Sub-Systems, 759-828, Academic Press, 2008.
85. Nozaki, Kengo, Takasumi Tanabe, Akihiko Shinya, Shinji Matsuo, Tomonari Sato, Hideaki Taniyama, and Masaya Notomi, "Sub-femtojoule all-optical switching using a photonic-crystal nanocavity," Nature Photonics, Vol. 4, No. 7, 477-483, 2010. Google Scholar
86. Reimer, Christian, Michael Kues, Piotr Roztocki, Benjamin Wetzel, Fabio Grazioso, Brent E. Little, Sai T. Chu, Tudor Johnston, Yaron Bromberg, Lucia Caspani, et al. "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science, Vol. 351, No. 6278, 1176-1180, 2016. Google Scholar
87. Kues, Michael, Christian Reimer, Piotr Roztocki, Luis Romero Cortés, Stefania Sciara, Benjamin Wetzel, Yanbing Zhang, Alfonso Cino, Sai T. Chu, Brent E. Little, et al. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Vol. 546, No. 7660, 622-626, 2017. Google Scholar
88. Wang, Ke-Yao, Keith G. Petrillo, Mark A. Foster, and Amy C. Foster, "Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides," Optics Express, Vol. 20, No. 22, 24600-24606, 2012. Google Scholar
89. Mathlouthi, Walid, Haisheng Rong, and Mario Paniccia, "Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides," Optics Express, Vol. 16, No. 21, 16735-16745, 2008. Google Scholar
90. Wang, Cheng, Mian Zhang, Xi Chen, Maxime Bertrand, Amirhassan Shams-Ansari, Sethumadhavan Chandrasekhar, Peter Winzer, and Marko Lončar, "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Vol. 562, No. 7725, 101-104, 2018. Google Scholar
91. Foster, Mark A., Reza Salem, David F. Geraghty, Amy C. Turner-Foster, Michal Lipson, and Alexander L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature, Vol. 456, No. 7218, 81-84, 2008. Google Scholar
92. Pasquazi, Alessia, Marco Peccianti, Yongwoo Park, Brent E. Little, Sai T. Chu, Roberto Morandotti, José Azaña, and David J. Moss, "Sub-picosecond phase-sensitive optical pulse characterization on a chip," Nature Photonics, Vol. 5, No. 10, 618-623, 2011. Google Scholar
93. Corcoran, Bill, Mengxi Tan, Xingyuan Xu, Andreas Boes, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, "Ultra-dense optical data transmission over standard fibre with a single chip source," Nature Communications, Vol. 11, No. 1, 2568, 2020. Google Scholar
94. Fridman, Moti, Alessandro Farsi, Yoshitomo Okawachi, and Alexander L. Gaeta, "Demonstration of temporal cloaking," Nature, Vol. 481, No. 7379, 62-65, 2012. Google Scholar
95. Little, Brent, "A VLSI photonics platform," Optical Fiber Communication Conference, ThD1, 2003.
96. Ferrera, M., L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures," Nature Photonics, Vol. 2, No. 12, 737-740, 2008. Google Scholar
97. Grillet, C., L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, "Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability," Optics Express, Vol. 20, No. 20, 22609-22615, 2012. Google Scholar
98. Dinu, Mihaela, Francesco Quochi, and Hugo Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Applied Physics Letters, Vol. 82, No. 18, 2954-2956, 2003. Google Scholar
99. Eggleton, Benjamin J., Barry Luther-Davies, and Kathleen Richardson, "Chalcogenide photonics," Nature Photonics, Vol. 5, No. 3, 141-148, 2011. Google Scholar
100. Lacava, C., V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, "Nonlinear properties of AlGaAs waveguides in continuous wave operation regime," Optics Express, Vol. 22, No. 5, 5291-5298, 2014. Google Scholar
101. Gai, Xin, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla, and Barry Luther-Davies, "Progress in optical waveguides fabricated from chalcogenide glasses," Optics Express, Vol. 18, No. 25, 26635-26646, 2010. Google Scholar
102. Lu, Juanjuan, Joshua B. Surya, Xianwen Liu, Yuntao Xu, and Hong X. Tang, "Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides," Optics Letters, Vol. 44, No. 6, 1492-1495, 2019. Google Scholar
103. DeSalvo, Richard, Ali A Said, David J. Hagan, Eric W. Van Stryland, and Mansoor Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n/sub 2/in wide bandgap solids," IEEE Journal of Quantum Electronics, Vol. 32, No. 8, 1324-1333, 1996. Google Scholar
104. Tan, D. T. H., K. Ikeda, P. C. Sun, and Y. Fainman, "Group velocity dispersion and self phase modulation in silicon nitride waveguides," Applied Physics Letters, Vol. 96, No. 6, 061101, 2010. Google Scholar
105. Levy, Jacob S., Alexander Gondarenko, Mark A. Foster, Amy C. Turner-Foster, Alexander L. Gaeta, and Michal Lipson, "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nature Photonics, Vol. 4, No. 1, 37-40, 2010. Google Scholar
106. Hausmann, B. J. M., I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, "Diamond nonlinear photonics," Nature Photonics, Vol. 8, No. 5, 369-374, 2014. Google Scholar
107. Duchesne, David, Marcello Ferrera, Luca Razzari, Roberto Morandotti, Brent E. Little, Sai T. Chu, and David J. Moss, "Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides," Optics Express, Vol. 17, No. 3, 1865-1870, 2009. Google Scholar
108. Duchesne, D., M. Ferrera, L. Razzari, R. Morandotti, B. Little, S. T. Chu, and D. J. Moss, "Hydex glass: A CMOS compatible platform for integrated waveguide structures for nonlinear optics," arXiv preprint arXiv:1505.05953, 2015. Google Scholar
109. Yin, Lianghong, Study of Nonlinear Optical Effects in Silicon Waveguides, University of Rochester, 2009.
110. Hon, Nick K., Kevin K. Tsia, Daniel R. Solli, and Bahram Jalali, "Periodically poled silicon," Applied Physics Letters, Vol. 94, No. 9, 091116, 2009. Google Scholar
111. Koonath, Prakash, Daniel R. Solli, and Bahram Jalali, "Broadband coherent anti-Stokes Raman scattering in silicon," Optics Letters, Vol. 35, No. 3, 351-353, 2010. Google Scholar
112. Mallari, Jonathan, Cailin Wei, Dan Jin, Guomin Yu, Anna Barklund, Eric Miller, Padraig O’Mathuna, Raluca Dinu, Ali Motafakker-Fard, and Bahram Jalali, "100Gbps EO polymer modulator product and its characterization using a real-time digitizer," Optical Fiber Communication Conference, OThU2, 2010.
113. Wang, Xiaokun, Xiaowei Guan, Qiangsheng Huang, Jiajiu Zheng, Yaocheng Shi, and Daoxin Dai, "Suspended ultra-small disk resonator on silicon for optical sensing," Optics Letters, Vol. 38, No. 24, 5405-5408, 2013. Google Scholar
114. Gorodetsky, Mikhail L., Anatoly A. Savchenkov, and Vladimir S. Ilchenko, "Ultimate Q of optical microsphere resonators," Optics Letters, Vol. 21, No. 7, 453-455, 1996. Google Scholar
115. Gorodetsky, Michael L., Andrew D. Pryamikov, and Vladimir S. Ilchenko, "Rayleigh scattering in high-Q microspheres," Journal of the Optical Society of America B, Vol. 17, No. 6, 1051-1057, 2000. Google Scholar
116. Vernooy, D. W., Vladimir S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Optics Letters, Vol. 23, No. 4, 247-249, 1998. Google Scholar
117. Agha, Imad H., Yoshitomo Okawachi, and Alexander L. Gaeta, "Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres," Optics Express, Vol. 17, No. 18, 16209-16215, 2009. Google Scholar
118. Schiller, Stephan and R. L. Byer, "High-resolution spectroscopy of whispering gallery modes in large dielectric spheres," Optics Letters, Vol. 16, No. 15, 1138-1140, 1991. Google Scholar
119. Borisova, Z., Glassy Semiconductors, Springer Science & Business Media, 2013.
120. Wang, Yingying and Shixun Dai, "Mid-infrared supercontinuum generation in chalcogenide glass fibers: A brief review," PhotoniX, Vol. 2, No. 1, 9, 2021. Google Scholar
121. Quémard, C., F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," Journal of Physics and Chemistry of Solids, Vol. 62, No. 8, 1435-1440, 2001. Google Scholar
122. Harbold, J. M., F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Optics Letters, Vol. 27, No. 2, 119-121, 2002. Google Scholar
123. Prasad, Amrita, Cong-Ji Zha, Rong-Ping Wang, Anita Smith, Steve Madden, and Barry Luther-Davies, "Properties of GexAsySe1-xy glasses for all-optical signal processing," Optics Express, Vol. 16, No. 4, 2804-2815, 2008. Google Scholar
124. Gopinath, Juliet T., Marin Soljačić, Erich P. Ippen, Vladimir N. Fuflyigin, Wesley A. King, and Max Shurgalin, "Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications," Journal of Applied Physics, Vol. 96, No. 11, 6931-6933, 2004. Google Scholar
125. Frerichs, Rudolf, "New optical glasses with good transparency in the infrared," Journal of the Optical Society of America, Vol. 43, No. 12, 1153-1157, 1953. Google Scholar
126. Hilton, A. R. and S. Kemp, Chalcogenide Glasses for Infrared Optics, McGraw-Hill, New York, 2010.
127. Suzuki, K., Y. Hamachi, and T. Baba, "Nonlinear photonic crystal waveguide with chalcogenide glass," 2009 IEEE LEOS Annual Meeting Conference Proceedings, 823-824, Belek-Antalya, Turkey, Oct. 2009.
128. Ta’eed, Vahid G., Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R. E. Lamont, David J. Moss, Hong C. Nguyen, Benjamin J. Eggleton, Duk Yong Choi, Steven Madden, and Barry Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Optics Express, Vol. 15, No. 15, 9205-9221, 2007. Google Scholar
129. Yeom, Dong-Il, Eric C. Mägi, Michael R. E. Lamont, Michaël A. F. Roelens, Libin Fu, and Benjamin J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Optics Letters, Vol. 33, No. 7, 660-662, 2008. Google Scholar
130. Lamont, Michael R. E., C. Martijn de Sterke, and Benjamin J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Optics Express, Vol. 15, No. 15, 9458-9463, 2007. Google Scholar
131. Yu, Yi, Xin Gai, Pan Ma, Khu Vu, Zhiyong Yang, Rongping Wang, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies, "Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide," Optics Letters, Vol. 41, No. 5, 958-961, 2016. Google Scholar
132. Gai, Xin, "Mid-infrared waveguides and applications," CLEO Pacific Rim Conference 2018, Tu3E-2, 2018.
133. Levy, Jacob S., Kasturi Saha, Yoshitomo Okawachi, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson, "High-performance silicon-nitride-based multiple-wavelength source," IEEE Photonics Technology Letters, Vol. 24, No. 16, 1375-1377, 2012. Google Scholar
134. Herr, Tobias, Klaus Hartinger, Johann Riemensberger, Christine Y. Wang, Emanuel Gavartin, Ronald Holzwarth, Michael L. Gorodetsky, and Tobias J. Kippenberg, "Universal formation dynamics and noise of Kerr-frequency combs in microresonators," Nature Photonics, Vol. 6, No. 7, 480-487, 2012. Google Scholar
135. Okawachi, Yoshitomo, Kasturi Saha, Jacob S. Levy, Y. Henry Wen, Michal Lipson, and Alexander L. Gaeta, "Octave-spanning frequency comb generation in a silicon nitride chip," Optics Letters, Vol. 36, No. 17, 3398-3400, 2011. Google Scholar
136. Johnson, Adrea R., Yoshitomo Okawachi, Jacob S. Levy, Jaime Cardenas, Kasturi Saha, Michal Lipson, and Alexander L. Gaeta, "Chip-based frequency combs with sub-100 GHz repetition rates," Optics Letters, Vol. 37, No. 5, 875-877, 2012. Google Scholar
137. Ferdous, Fahmida, Houxun Miao, Daniel E. Leaird, Kartik Srinivasan, Jian Wang, Lei Chen, Leo Tom Varghese, and Andrew M. Weiner, "Spectral line-by-line pulse shaping of on-chip microresonator frequency combs," Nature Photonics, Vol. 5, No. 12, 770-776, 2011. Google Scholar
138. Kippenberg, Tobias J., Ronald Holzwarth, and Scott A. Diddams, "Microresonator-based optical frequency combs," Science, Vol. 332, No. 6029, 555-559, 2011. Google Scholar
139. Saha, Kasturi, Yoshitomo Okawachi, Bonggu Shim, Jacob S. Levy, Reza Salem, Adrea R. Johnson, Mark A. Foster, Michael R. E. Lamont, Michal Lipson, and Alexander L. Gaeta, "Modelocking and femtosecond pulse generation in chip-based frequency combs," Optics Express, Vol. 21, No. 1, 1335-1343, 2013. Google Scholar
140. Wang, Leiran, Lin Chang, Nicolas Volet, Martin H. P. Pfeiffer, Michael Zervas, Hairun Guo, Tobias J. Kippenberg, and John E. Bowers, "Frequency comb generation in the green using silicon nitride microresonators," Laser & Photonics Reviews, Vol. 10, No. 4, 631-638, 2016. Google Scholar
141. Pfeiffer, Martin H. P., Arne Kordts, Victor Brasch, Michael Zervas, Michael Geiselmann, John D. Jost, and Tobias J. Kippenberg, "Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics," Optica, Vol. 3, No. 1, 20-25, 2016. Google Scholar
142. Liu, Junqiu, Arslan S. Raja, Maxim Karpov, Bahareh Ghadiani, Martin H. P. Pfeiffer, Botao Du, Nils J. Engelsen, Hairun Guo, Michael Zervas, and Tobias J. Kippenberg, "Ultralow-power chip-based soliton microcombs for photonic integration," Optica, Vol. 5, No. 10, 1347-1353, 2018. Google Scholar
143. Liu, Junqiu, Guanhao Huang, Rui Ning Wang, Jijun He, Arslan S. Raja, Tianyi Liu, Nils J. Engelsen, and Tobias J. Kippenberg, "High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits," Nature Communications, Vol. 12, No. 1, 2236, 2021. Google Scholar
144. Ye, Zhichao, Haiyan Jia, Zhangjun Huang, Chen Shen, Jinbao Long, Baoqi Shi, Yi-Han Luo, Lan Gao, Wei Sun, Hairun Guo, Jijun He, and Junqiu Liu, "Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits," Photonics Research, Vol. 11, No. 4, 558-568, 2023. Google Scholar
145. Ji, Xingchen, Samantha Roberts, Mateus Corato-Zanarella, and Michal Lipson, "Methods to achieve ultra-high quality factor silicon nitride resonators," APL Photonics, Vol. 6, No. 7, 071101, 2021. Google Scholar
146. Kim, Sangsik, Kyunghun Han, Cong Wang, Jose A. Jaramillo-Villegas, Xiaoxiao Xue, Chengying Bao, Yi Xuan, Daniel E. Leaird, Andrew M. Weiner, and Minghao Qi, "Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators," Nature Communications, Vol. 8, No. 1, 372, 2017. Google Scholar
147. Ji, Xingchen, Felippe A. S. Barbosa, Samantha P. Roberts, Avik Dutt, Jaime Cardenas, Yoshitomo Okawachi, Alex Bryant, Alexander L. Gaeta, and Michal Lipson, "Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold," Optica, Vol. 4, No. 6, 619-624, 2017. Google Scholar
148. Hosseini, Ehsan Shah, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visiblewavelength range," Optics Express, Vol. 17, No. 17, 14543-14551, 2009. Google Scholar
149. Domeneguetti, Renato R., Yun Zhao, Xingchen Ji, Marcelo Martinelli, Michal Lipson, Alexander L. Gaeta, and Paulo Nussenzveig, "Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths," Optica, Vol. 8, No. 3, 316-322, 2021. Google Scholar
150. Wang, Weiqiang, Wenfu Zhang, Sai T. Chu, Brent E. Little, Qinghua Yang, Leiran Wang, Xiaohong Hu, Lei Wang, Guoxi Wang, Yishan Wang, and Wei Zhao, "Repetition rate multiplication pulsed laser source based on a microring resonator," ACS Photonics, Vol. 4, No. 7, 1677-1683, 2017. Google Scholar
151. Li, Yuhua, Zhe Kang, Kun Zhu, Shiqi Ai, Xiang Wang, Roy R. Davidson, Yan Wu, Roberto Morandotti, Brent E. Little, David J. Moss, and Sai Tak Chu, "All-optical RF spectrum analyzer with a 5 THz bandwidth based on CMOS-compatible high-index doped silica waveguides," Optics Letters, Vol. 46, No. 7, 1574-1577, 2021. Google Scholar
152. Little, Brent E., Sai T. Chu, Hermann A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," Journal of Lightwave Technology, Vol. 15, No. 6, 998-1005, 1997. Google Scholar
153. Hryniewicz, J. V., P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photonics Technology Letters, Vol. 12, No. 3, 320-322, 2000. Google Scholar
154. Chu, Sai Tak, Brent E. Little, Wugen Pan, Taro Kaneko, and Yasuo Kokubun, "Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters," IEEE Photonics Technology Letters, Vol. 11, No. 11, 1423-1425, 1999. Google Scholar
155. Chu, Sai Tak, Brent E. Little, Wugen Pan, Taro Kaneko, and Yasuo Kokubun, "Second-order filter response from parallel coupled glass microring resonators," IEEE Photonics Technology Letters, Vol. 11, No. 11, 1426-1428, 1999. Google Scholar
156. Djordjev, K., Seung-June Choi, Sang-Jun Choi, and R. D. Dapkus, "Microdisk tunable resonant filters and switches," IEEE Photonics Technology Letters, Vol. 14, No. 6, 828-830, 2002. Google Scholar
157. Peccianti, M., A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Demonstration of a stable ultrafast laser based on a nonlinear microcavity," Nature Communications, Vol. 3, No. 1, 765, 2012. Google Scholar
158. Pasquazi, Alessia, Marco Peccianti, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti, "Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator," Optics Express, Vol. 20, No. 24, 27355-27363, 2012. Google Scholar
159. Bao, Hualong, Andrew Cooper, Sai T. Chu, Dave J. Moss, Roberto Morandotti, Brent E. Little, Marco Peccianti, and Alessia Pasquazi, "Type-II micro-comb generation in a filter-driven four wave mixing laser," Photonics Research, Vol. 6, No. 5, B67-B73, 2018. Google Scholar
160. Wang, Weiqiang, Zhizhou Lu, Wenfu Zhang, Sai T. Chu, Brent E. Little, Leiran Wang, Xiaoping Xie, Mulong Liu, Qinghua Yang, Lei Wang, et al. "Robust soliton crystals in a thermally controlled microresonator," Optics Letters, Vol. 43, No. 9, 2002-2005, 2018. Google Scholar
161. Bao, Hualong, Andrew Cooper, Maxwell Rowley, Luigi Di Lauro, Juan Sebastian Totero Gongora, Sai T. Chu, Brent E. Little, Gian-Luca Oppo, Roberto Morandotti, David J. Moss, et al. "Laser cavity-soliton microcombs," Nature Photonics, Vol. 13, No. 6, 384-389, 2019. Google Scholar
162. Li, Guixin, Shuang Zhang, and Thomas Zentgraf, "Nonlinear photonic metasurfaces," Nature Reviews Materials, Vol. 2, No. 5, 1-14, 2017. Google Scholar
163. Winterfeldt, Carsten, Christian Spielmann, and Gustav Gerber, "Colloquium: Optimal control of high-harmonic generation," Reviews of Modern Physics, Vol. 80, No. 1, 117-140, 2008. Google Scholar
164. Sohler, W., B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, "Integrated optical parametric devices," Journal of Lightwave Technology, Vol. 4, No. 7, 772-777, 1986. Google Scholar
165. Yoshikawa, Naotaka, Tomohiro Tamaya, and Koichiro Tanaka, "High-harmonic generation in graphene enhanced by elliptically polarized light excitation," Science, Vol. 356, No. 6339, 736-738, 2017. Google Scholar
166. Zuo, Yonggang, Wentao Yu, Can Liu, Xu Cheng, Ruixi Qiao, Jing Liang, Xu Zhou, Jinhuan Wang, Muhong Wu, Yun Zhao, et al. "Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity," Nature Nanotechnology, Vol. 15, No. 12, 987-991, 2020. Google Scholar
167. Carmon, Tal and Kerry J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nature Physics, Vol. 3, No. 6, 430-435, 2007. Google Scholar
168. Farnesi, D., A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, "Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators," Physical Review Letters, Vol. 112, No. 9, 093901, 2014. Google Scholar
169. Asano, M., S. Komori, R. Ikuta, N. Imoto, Ş. K. Özdemir, and T. Yamamoto, "Visible light emission from a silica microbottle resonator by second-and third-harmonic generation," Optics Letters, Vol. 41, No. 24, 5793-5796, 2016. Google Scholar
170. Sederberg, S. and A. Y. Elezzabi, "Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion," Physical Review Letters, Vol. 114, No. 22, 227401, 2015. Google Scholar
171. Sasagawa, Kiyotaka and Masahiro Tsuchiya, "Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator," Applied Physics Express, Vol. 2, No. 12, 122401, 2009. Google Scholar
172. Ning, Tingyin, Outi Hyvärinen, Henna Pietarinen, Tommi Kaplas, Martti Kauranen, and Göery Genty, "Third-harmonic UV generation in silicon nitride nanostructures," Optics Express, Vol. 21, No. 2, 2012-2017, 2013. Google Scholar
173. Surya, Joshua B., Xiang Guo, Chang-Ling Zou, and Hong X. Tang, "Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings," Optica, Vol. 5, No. 2, 103-108, 2018. Google Scholar
174. Wu, Tingting, Perry Ping Shum, Xuguang Shao, Yunxu Sun, Tinaye Huang, and Lei Wei, "Efficient phase-matched third harmonic generation in a metal-clad plasmonic double-slot waveguide," Journal of Optics, Vol. 17, No. 2, 025506, 2015. Google Scholar
175. Armstrong, J. A., N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Physical Review, Vol. 127, No. 6, 1918, 1962. Google Scholar
176. Yu, X., L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, "Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides," Optics Express, Vol. 13, No. 26, 10742-10748, 2005. Google Scholar
177. Hutchings, David C., Sean J. Wagner, Barry M. Holmes, Usman Younis, Amr S. Helmy, and J. Stewart Aitchison, "Type-II quasi phase matching in periodically intermixed semiconductor superlattice waveguides," Optics Letters, Vol. 35, No. 8, 1299-1301, 2010. Google Scholar
178. Chowdhury, Aref and Leon McCaughan, "Continuously phase-matched M-waveguides for second-order nonlinear upconversion," IEEE Photonics Technology Letters, Vol. 12, No. 5, 486-488, 2000. Google Scholar
179. Kim, Tae Woong, Tomonori Matsushita, and Takashi Kondo, "Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides," Applied Physics Express, Vol. 4, No. 8, 082201, 2011. Google Scholar
180. Duchesne, D., K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, "Second harmonic generation in AlGaAs photonic wires using low power continuous wave light," Optics Express, Vol. 19, No. 13, 12408-12417, 2011. Google Scholar
181. Blau, G., E. Popov, F. Kajzar, A. Raimond, J. F. Roux, and J. L. Coutaz, "Grating-assisted phase-matched second-harmonic generation from a polymer waveguide," Optics Letters, Vol. 20, No. 10, 1101-1103, 1995. Google Scholar
182. Ning, Tingyin, Henna Pietarinen, Outi Hyvärinen, Ravi Kumar, Tommi Kaplas, Martti Kauranen, and Goëry Genty, "Efficient second-harmonic generation in silicon nitride resonant waveguide gratings," Optics Letters, Vol. 37, No. 20, 4269-4271, 2012. Google Scholar
183. Cazzanelli, M., F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, "Second-harmonic generation in silicon waveguides strained by silicon nitride," Nature Materials, Vol. 11, No. 2, 148-154, 2012. Google Scholar
184. Puckett, Matthew W., Rajat Sharma, Hung-Hsi Lin, Mu-han Yang, Felipe Vallini, and Yeshaiahu Fainman, "Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities," Optics Express, Vol. 24, No. 15, 16923-16933, 2016. Google Scholar
185. Chen, Hao-Jing, Qing-Xin Ji, Heming Wang, Qi-Fan Yang, Qi-Tao Cao, Qihuang Gong, Xu Yi, and Yun-Feng Xiao, "Chaos-assisted two-octave-spanning microcombs," Nature Communications, Vol. 11, No. 1, 2336, 2020. Google Scholar
186. Nitiss, Edgars, Ozan Yakar, Anton Stroganov, and Camille-Sophie Brès, "Highly tunable second-harmonic generation in all-optically poled silicon nitride waveguides," Optics Letters, Vol. 45, No. 7, 1958-1961, 2020. Google Scholar
187. Clementi, Marco, Edgars Nitiss, Junqiu Liu, Elena Durán-Valdeiglesias, Sofiane Belahsene, Hélène Debrégeas, Tobias J. Kippenberg, and Camille-Sophie Brès, "A chip-scale second-harmonic source via self-injection-locked all-optical poling," Light: Science & Applications, Vol. 12, No. 1, 296, 2023. Google Scholar
188. Smith, Jack A., Henry Francis, Gabriele Navickaite, and Michael J. Strain, "Sin foundry platform for high performance visible light integrated photonics," Optical Materials Express, Vol. 13, No. 2, 458-468, 2023. Google Scholar
189. Li, Yuhua, Shao Hao Wang, Wai Lok Ho, Xiaotian Zhu, Xiang Wang, Roy R. Davidson, Brent E. Little, Rui-Pin Chen, and Sai Tak Chu, "Second-harmonic generation in a high-index doped silica micro-ring resonator," Optics Letters, Vol. 47, No. 15, 3884-3887, 2022. Google Scholar
190. Jung, Hojoong, Rebecca Stoll, Xiang Guo, Debra Fischer, and Hong X. Tang, "Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator," Optica, Vol. 1, No. 6, 396-399, 2014. Google Scholar
191. Ilchenko, Vladimir S., Anatoliy A. Savchenkov, Andrey B. Matsko, and Lute Maleki, "Nonlinear optics and crystalline whispering gallery mode cavities," Physical Review Letters, Vol. 92, No. 4, 043903, 2004. Google Scholar
192. Rao, Ashutosh, Jeff Chiles, Saeed Khan, Seyfollah Toroghi, Marcin Malinowski, Guillermo Fernando Camacho-González, and Sasan Fathpour, "Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation," Applied Physics Letters, Vol. 110, No. 11, 111109, 2017. Google Scholar
193. Schmidt, Jan, Agnes Merkle, B. Hoex, M. C. M. Van De Sanden, W. M. M. Kessels, and Rolf Brendel, "Atomic-layer-deposited aluminum oxide for the surface passivation of high-efficiency silicon solar cells," 2008 33rd IEEE Photovoltaic Specialists Conference, 1-5, IEEE, San Diego, CA, USA, May 2008.
194. Guha, Biswarup, Felix Marsault, Fabian Cadiz, Laurence Morgenroth, Vladimir Ulin, Vladimir Berkovitz, Aristide Lemaître, Carmen Gomez, Alberto Amo, Sylvain Combrié, Bruno Gérard, Giuseppe Leo, and Ivan Favero, "Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106," Optica, Vol. 4, No. 2, 218-221, 2017. Google Scholar
195. Guo, Xiang, Chang-Ling Zou, and Hong X. Tang, "Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency," Optica, Vol. 3, No. 10, 1126-1131, 2016. Google Scholar
196. Little, Brent E., Juha-Pekka Laine, and Sai T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Optics Letters, Vol. 22, No. 1, 4-6, 1997. Google Scholar
197. Fürst, J. U., D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, "Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator," Physical Review Letters, Vol. 104, No. 15, 153901, 2010. Google Scholar
198. Xiong, Chi, Wolfram Pernice, Kevin K. Ryu, Carsten Schuck, King Y. Fong, Tomas Palacios, and Hong X. Tang, "Integrated GaN photonic circuits on silicon (100) for second harmonic generation," Optics Express, Vol. 19, No. 11, 10462-10470, 2011. Google Scholar
199. Pernice, W. H. P., C. Xiong, C. Schuck, and H. X. Tang, "Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators," Applied Physics Letters, Vol. 100, No. 22, 223501, 2012. Google Scholar
200. Lin, Guoping, Josef U. Fürst, Dmitry V. Strekalov, and Nan Yu, "Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators," Applied Physics Letters, Vol. 103, No. 18, 181107, 2013. Google Scholar
201. Lake, David P., Matthew Mitchell, Harishankar Jayakumar, Laís Fujii dos Santos, Davor Curic, and Paul E. Barclay, "Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks," Applied Physics Letters, Vol. 108, No. 3, 031109 2016. Google Scholar
202. Roland, I., M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, "Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks," Scientific Reports, Vol. 6, No. 1, 34191, 2016. Google Scholar
203. Billat, Adrien, Davide Grassani, Martin H. P. Pfeiffer, Svyatoslav Kharitonov, Tobias J. Kippenberg, and Camille-Sophie Brès, "Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching," Nature Communications, Vol. 8, No. 1, 1016, 2017. Google Scholar
204. Liu, Shijie, Yuanlin Zheng, and Xianfeng Chen, "Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk," Optics Letters, Vol. 42, No. 18, 3626-3629, 2017. Google Scholar
205. Bruch, Alexander W., Xianwen Liu, Xiang Guo, Joshua B. Surya, Zheng Gong, Liang Zhang, Junxi Wang, Jianchang Yan, and Hong X. Tang, "17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators," Applied Physics Letters, Vol. 113, No. 13, 131102, 2018. Google Scholar
206. Chen, Jia-Yang, Zhao-Hui Ma, Yong Meng Sua, Zhan Li, Chao Tang, and Yu-Ping Huang, "Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings," Optica, Vol. 6, No. 9, 1244-1245, 2019. Google Scholar
207. Lu, Xiyuan, Gregory Moille, Qing Li, Daron A. Westly, Anshuman Singh, Ashutosh Rao, Su-Peng Yu, Travis C. Briles, Scott B. Papp, and Kartik Srinivasan, "Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics," Nature Photonics, Vol. 13, No. 9, 593-601, 2019. Google Scholar
208. Lin, Jintian, Ni Yao, Zhenzhong Hao, Jianhao Zhang, Wenbo Mao, Min Wang, Wei Chu, Rongbo Wu, Zhiwei Fang, Lingling Qiao, Wei Fang, Fang Bo, and Ya Cheng, "Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator," Physical Review Letters, Vol. 122, No. 17, 173903, 2019. Google Scholar
209. Luo, Rui, Yang He, Hanxiao Liang, Mingxiao Li, Jingwei Ling, and Qiang Lin, "Optical parametric generation in a lithium niobate microring with modal phase matching," Physical Review Applied, Vol. 11, No. 3, 034026, 2019. Google Scholar
210. Grassani, Davide, Martin H. P. Pfeiffer, Tobias J. Kippenberg, and Camille-Sophie Brès, "Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide," Optics Letters, Vol. 44, No. 1, 106-109, 2019. Google Scholar
211. Lukin, Daniil M., Constantin Dory, Melissa A. Guidry, Ki Youl Yang, Sattwik Deb Mishra, Rahul Trivedi, Marina Radulaski, Shuo Sun, Dries Vercruysse, Geun Ho Ahn, and Jelena Vučković, "4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics," Nature Photonics, Vol. 14, No. 5, 330-334, 2020. Google Scholar
212. Hosseini, Ehsan Shah, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi, "Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths," Optics Express, Vol. 18, No. 3, 2127-2136, 2010. Google Scholar
213. Pereira, S. F., Min Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Physical Review A, Vol. 38, No. 9, 4931, 1988. Google Scholar